

Latest results on single electroweak boson production from CMS experiment

Marco Cipriani

Sapienza Università di Roma e INFN Roma1

On behalf of the CMS collaboration

LHCP2018:

Sixth Annual Conference on Large Hadron Collider Physics 04-09 June 2018, Bologna (Italy)

35 years of electroweak bosons!

\blacktriangleright W and Z bosons discovered at CERN in 1983 (predicted \approx 20 years before)

properties more deeply studied later at LEP and Tevatron in 90'

Still on the front line of the LHC physics programme

- Z bosons extensively used for e/μ energy scale calibration
- inclusive and differential cross-section measurements provide stringent tests of perturbative QCD calculation and parton distribution functions (PDF)

The success of the Standard Model

Experimental cross section measurements span over > 7 orders of magnitude

• very good agreement with theoretical predictions at different energy scales

Still of paramount interest

Z/W production is a constant presence in any analysis at LHC

- main source of background in searches for dark matter
- precise experimental knowledge of kinematic spectra, supported by robust theoretical calculation, fundamental for searches for new physics

Key role for other Standard Model measurements as well

• $d\sigma/dp_T^Z$ and $d\sigma/dp_T^W$ crucial to reach O(10) MeV precision on W-boson mass

Main features of Z/W analyses

> Latest CMS public results mostly based on 8 TeV or early 13 TeV data

- unlike searches for new physics, details (and systematics) matter a lot
- analysis with recent data ongoing/under approval

> Cross-sections measured (double-)differentially in many kinematic variables

- boson or lepton p_T , η , number of jets or other suitable variables
- often **normalized to total cross-section**: some uncertainties cancel out

Results compared with predictions from several MC generators

- test different approaches to model parton shower and/or hard scattering
- theoretical calculations often available at NNLO(+NNLL) at few % precision

For each bin i of given observable

$$\sum \left[\frac{d\sigma}{dx} \right]_{i} = \frac{\mathbf{N_{evt}^{i}} - \mathbf{B}^{i}}{\mathbf{L} \cdot (\mathbf{\epsilon} \cdot \mathbf{A})^{i} \cdot \Delta x^{i}}$$

- N_{evt} : observed events in i-th bin
 - : background events
 - : integrated luminosity
- $\boldsymbol{\epsilon} \cdot \boldsymbol{A}$: efficiency times accceptance

Common experimental details

Clean signatures due to leptonic decay (especially for Z bosons)

- isolated high p_T leptons
- main backgrounds: top quark production, DiBosons, τ (from Z/W), QCD
- Measurements performed in fiducial regions
 - $e/\mu p_T$ thresholds dictated by trigger (depend on \sqrt{s})
 - η limited by tracker acceptance

Unfolding techniques to allow for direct comparison with predictions

• efficiency and detector resolution

Typical kinematic requirements		
Flavour	p _T [GeV]	η (<)
Electron	25	2.5
Muon	20	2.4

8 TeV data

W and Z-boson d σ /d p_T

published in <u>JHEP</u>

- large logarithmic terms for $p_T \ll m_{Z,W}$ due to soft gluon radiation, resummation needed
- measurements at $p_T \lesssim 10$ GeV are precious
- Data collected during special low-luminosity run (18.4 pb⁻¹)
 - less background, improved recoil resolution (mainly for W)

Signal extraction

- W: fit to E^{miss}, QCD shape from control region (inverted lepton ID/isolation)
- Z: count events within selected mass window

Comparison with theory

published in <u>JHEP</u>

Z-boson $d\sigma/d\varphi^*$

0.8

10⁻³

10⁻²

10

showering method and non perturbative effects are important 19.7 fb⁻¹ (8 TeV)

13 TeV data

Inclusive W and Z production cross sections

13

Inclusive and differential Z production cross sections

Measurement on full 2015 dataset with Z $\rightarrow \mu \mu$

• Inclusive and differential in $p_T^{\mu\mu}, \varphi^*, |Y^{\mu\mu}|, p_T^{\mu}$

Inclusive measurement: 1870 \pm 2 (stat) \pm 35 (syst) \pm 51 (lumi) pb

good agreement with theory (NNLO QCD + NLO EWK)

For differential measurements, no generator describes data in all phase-space

CMS PAS SMP-15-011

Differential Drell-Yan cross section

CMS-PAS SMP-16-009

- paramount for searches for new resonances decaying into lepton pairs
- statistical uncertainty dominates at high mass
 - improve with more data
- limited by muon p_T resolution at high mass
 - improve adding electron channel (on its way)

2000

m [GeV

Rare decays: $Z \rightarrow J/\psi l^+ l^-$

- \succ Z \rightarrow ee/µµ, J/ ψ \rightarrow µµ
 - predicted branching ratio: $\approx 7 \cdot 10^{-7}$
 - first observation of this process

\succ Branching ratio presented as ratio to $Z \to 4 \mu$

- $R_{I/\psi l^+ l^-} = 0.70 \pm 0.18$ (stat) ± 0.05 (syst)
- assume unpolarized J/ ψ (extreme polarization scenarios imply \approx 20% variation)

Full 2016 dataset used

polarization study requires more data

CMS-PAS SMP-16-001

Summary

Some latest CMS result about Z/W production presented

- mostly on 8 and early 13 TeV data (many new results will become public soon)
- still a lot of space for improvements with larger 13 TeV dataset

Measurements of paramount importance for searches for new physics

- help consolidate our current knowledge of the electroweak sector
- lead to more accurate background predictions for other rare processes

Cross-sections measured (double-)differentially in many kinematic variables

valuable inputs to test theoretical calculations at higher orders

Results compared with predictions from many generators

- test different approaches to model parton shower and/or hard scattering
- level of agreement depends on considered phase-space, but generally good

BACKUP

W and Z-boson $d\sigma/dp_{T}$

W and Z-boson $d\sigma/dp_{T}$

- QCD background negligible in the Z channel
 - data-driven estimate
 - compute probability that a QCD object is identified as a lepton (pass ID/isolation)
 - use this probability to reweight events in a sample with non-isolated leptons

W and Z-boson $d\sigma/dp_T$

measurement performed in fiducial region

- p_T^l > 30 GeV, $|\eta_l|$ < 2.1 for first lepton
- $p_T^l > 20$ GeV, $|\eta_l| < 2.4$ for second lepton
- leptons defined before final-state radiation

> observed distributions unfolded to pre-FSR

using D'Agostini method with 4 iterations

"other" includes: background, pileup, electron energy scale or muon pT resolution, QED-FSR

Inclusive W and Z production cross sections

\succ W-boson signal extracted from fit to E_T^{miss}

- QCD modelled with analytic function
- signal and EWK background from simulations

\succ accurate description of E_T^{miss} response and resolution

derived from dedicated recoil calibration in Z events

Z yield counting events within selected mass window

25

Inclusive W and Z production cross sections

Inclusive and differential Z production cross sections

27

Inclusive and differential Z production cross sections

