

Searches for dark matter at CMS

Speaker: Marco Cipriani

on behalf of the CMS collaboration Sapienza Università di Roma & INFN Roma

Phenomenology Symposium 2017 Pittsburgh, 8-10 May 2017

Searching for dark matter (DM)

- DM probably made of Weakly Interacting Massive Particles (WIMPs)
- □ 3 types of searches, high degree of complementarity
- □ sensitivity depends on interaction details

DM scattering on nuclei

DM production in pp collisions

DM annihilation to SM particles

Dark Matter at colliders

General analysis strategy

MonoJet/V overview

Greatest potential: sensitive to all possible mediator coupling structure

- \rightarrow vector, axial-vector, scalar, pseudoscalar
- \rightarrow 2 exclusive category: jet from quark/gluon radiation or W/Z hadronic decay
- → can probe many theoretical scenarios, unlike other channels

MonoJet/V results

Analysis on full 2016 dataset (36 fb⁻¹) under approval, showing ICHEP results (12.9 fb⁻¹)

CMS paper (12.9 fb⁻¹) → arXiv:1703.01651 [hep-ex], submitted to JHEP

- interpretation with simplified models: (axial)vector, (pseudo)scalar mediators
- m_{med} < 1.95 TeV for (axial)vector, < 100(430) GeV for scalar(pseudoscalar) mediator</p>
 - translated into DM-nuclei cross section plane and compared to direct searches

MonoJet Higgs \rightarrow DM reinterpretation

Category	Expected	Observed	±1 s.d.	Expected signal
	limit	limit		composition
Mono-V	0.72	1.17	[0.51-1.02]	39.6% ggH, 6.9% VBF, 32.4% WH, 21.1% ZH
Monojet	0.85	0.48	[0.58-1.27]	71.5% ggH, 20.3% VBF, 4.4% WH, 3.8% ZH
Combined	0.56	0.44	[0.40-0.81]	-

direct searches: arXiv:1610.09218v2 [hep-ex]

MonoTop

Search for MET and a single top quark decaying hadronically

8

tī + Dark Matter

https://cds.cern.ch/record/2204933

https://cds.cern.ch/record/2208044

Probing Dark Matter with MonoHiggs

- Higgs ISR suppressed: probe direct Higgs-DM coupling
- > search for MET+ SM Higgs \rightarrow bb, $\gamma\gamma$, ZZ, $\tau\overline{\tau}$...

combination of **bb**, γγ (2.3 fb⁻¹ @ 13TeV) submitted to JHEP

- Z'-2HDM interpretation
- $\mathbf{m}_{\mathbf{Z}'}$ < 1860 GeV for $\mathbf{g}_{\mathbf{Z}'}$ = 0.8 and $\mathbf{m}_{\mathbf{A}}$ = 300 GeV

https://arxiv.org/pdf/1703.05236.pdf

Constraints on DM from dijet search

http://cds.cern.ch/record/2256873?In=en

What next?

Many analysis on full 2016 dataset (36 fb⁻¹) being approved: signal region still blinded

Coupling g_q

Not just a bare recast of lower luminosity analyses

- treatment of theoretical uncertainties
- better constraints from control regions with more available data
- additional interpretations

Still entering the high luminosity era

• other 100 fb⁻¹ expected in 2017-18

Limits scaling with couplings not trivial

• coupling \rightarrow mediator width \rightarrow kinematics

Perform scan in both mass and couplings phase space

https://cds.cern.ch/record/2256873

Summary and outlook

- CMS has an extensive physics program focused on dark matter
- searches performed in all possible final states
 - monoJet/V, monoHiggs, SingleTop/tt+DM presented
 - probe many theoretical scenarios
 - no evidence for DM production yet
- current public results mainly based on 2015 or ICHEP 2016 datasets
- many analyses (top, Higgs) still limited by low statistics
 - a lot to gain from an always larger datasets

generally speaking, LHC DM physics program still has a lot of potential

- energy bound (almost) reached, but high luminosity era approaching
- possibility to perform an unprecedented scan in mass-coupling phase space
- opportunity to **probe unexplored physics scenarios**

BACKUP

What do we know about dark matter?

many evidences of dark matter (DM) from astrophysical observations

particle nature of DM a big assumption, though very natural

D properties of DM:

- gravitational influence on ordinary matter
- **neutral** under electromagnetic or strong interaction
- stable on universe lifetime scale

assume DM interacts weakly with Standard Model (SM) particles

 \rightarrow Weakly Interacting Massive Particle (WIMP)

COMPACT MUON SOLENOID

CMS longitudinal view

 η differences are Lorentz invariant for high energy particles

Particles reconstruction in CMS

Particle flow algorithm:

 combine information from all subdetectors to build particles

Seeing the invisible

event candidate for monoJet

 \vec{p}_T : momentum in transverse plane

- DM does not interact with the detector
- observed through momentum imbalance in transverse plane
- single DM particle kinematics not accessible, only the pair total transverse momentum (i.e. the mediator \vec{p}_T)
- irreducible backgrounds due to SM processes involving neutrinos

Theory

Lagrangian for spin 1 mediator

arXiv:1603.04156v1

$$\mathcal{L}_{\text{vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q ,$$
$$\mathcal{L}_{\text{axial-vector}} = -g_{\text{DM}} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma_5 \chi - g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma_5 q$$

Partial widths

$$\Gamma_{\text{vector}}^{\chi\bar{\chi}} = \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 - 4z_{\text{DM}}\right)^{1/2} \left(1 + 2z_{\text{DM}}\right) ,$$

$$\Gamma_{\text{vector}}^{q\bar{q}} = \frac{g_q^2 M_{\text{med}}}{4\pi} \left(1 - 4z_q\right)^{1/2} \left(1 + 2z_q\right) ,$$

$$\begin{split} \Gamma^{\chi\bar{\chi}}_{\rm axial-vector} &= \frac{g_{\rm DM}^2 \, M_{\rm med}}{12\pi} \left(1 - 4z_{\rm DM}\right)^{3/2} \,, \\ \Gamma^{q\bar{q}}_{\rm axial-vector} &= \frac{g_q^2 \, M_{\rm med}}{4\pi} \left(1 - 4z_q\right)^{3/2} \,. \end{split}$$

$$z_{\mathrm{DM},q} = m_{\mathrm{DM},q}^2 / M_{\mathrm{med}}^2$$

Theory

Lagrangian for spin 0 mediator

arXiv:1603.04156v1

$$\mathcal{L}_{\text{scalar}} = -g_{\text{DM}}\phi\bar{\chi}\chi - g_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}q ,$$
$$\mathcal{L}_{\text{pseudo-scalar}} = -ig_{\text{DM}}\phi\bar{\chi}\gamma_5\chi - ig_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}\gamma_5q ,$$

Partial widths

$$\Gamma_{\text{scalar}}^{\chi\bar{\chi}} = \frac{g_{\text{DM}}^2 M_{\text{med}}}{8\pi} \left(1 - 4z_{\text{DM}}^2\right)^{3/2} , \\ \Gamma_{\text{scalar}}^{q\bar{q}} = \frac{3g_q^2 y_q^2 M_{\text{med}}}{16\pi} \left(1 - 4z_q^2\right)^{3/2} , \\ \Gamma_{\text{scalar}}^{gg} = \frac{3g_q^2 y_q^2 M_{\text{med}}}{16\pi} \left(1 - 4z_q^2\right)^{3/2} , \\ \Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{scalar}}(4z_t) \right|^2 ,$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{scalar}}(4z_t) \right|^2 ,$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{scalar}}(4z_t) \right|^2 ,$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2 .$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2 .$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2 .$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2 .$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2 .$$

$$\Gamma_{\text{scalar}}^{gg} = \frac{\alpha_s^2 g_q^2 M_{\text{med}}^3}{32\pi^3 v^2} \left| f_{\text{pseudo-scalar}}(4z_t) \right|^2 .$$

Comparison to indirect searches

- vector, scalar mediator → spin independent (SI) cross section
- axial-vector, pseudoscalar mediator → spin dependent (SI) cross section

DM-nucleon scattering cross section

$$\sigma_{\rm SI} = \frac{f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4}, \qquad \mu_{n\chi} = m_n m_{\rm DM}/(m_n + m_{\rm DM}) \qquad m_n \simeq 0.939 \,\rm GeV$$

vector:
$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \,\rm cm^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \,\rm TeV}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,\rm GeV}\right)^2$$

scalar:
$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-43} \,\rm cm^2 \cdot \left(\frac{g_q g_{\rm DM}}{1}\right)^2 \left(\frac{125 \,\rm GeV}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,\rm GeV}\right)^2$$

$$\begin{split} \sigma_{\rm SD} &= \frac{3f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4} \,. \\ \text{axial-vector:} \qquad \sigma^{\rm SD} \simeq 2.4 \times 10^{-42} \,\, {\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1\,{\rm TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1\,{\rm GeV}}\right)^2 \,. \end{split}$$
pseudoscalar: highly suppressed

Theoretical overview

Interpretation with simplified models

- □ Dark Matter Forum prescriptions → arXiv:1507.00966
- benchmark of Run2 interpretation
- new mediator connecting SM and DM
- free parameters: m_{DM}, M_{med}, g_{DM}, g_q

Assumptions:

- DM is a Dirac fermion
- DM produced on-shell in pairs
- minimal decay width for mediator
- minimal flavour violation
- $g_{DM} = 1$ and $g_q = 0.25$

limits strongly depends on the couplings choice and model

- ightarrow change in couplings affects mediator's width
- \rightarrow more details: arXiv:1603.04156v1

Theoretical overview

ICHEP summary plots

monojet most sensitive channel for vector mediator direct searches more sensitive than collider searches for m_{DM} > few GeV

ICHEP summary plots

monojet most sensitive channel for axial-vector mediator collider searches more sensitive than direct searches everywhere

MonoJet background estimate

MonoJet event selection

Specific selection for monoV (boosted topology)

- ✓ leading **AK8 jet**: p_T > 250 GeV, |η| < 2.4
- ✓ MET > 250 GeV
- ✓ V-tagging techniques
 - boson pruned mass in [65,105] GeV
 - N-subjettines $\tau_2/\tau_1 < 0.6$

N-subjettiness

k runs over the constituent particles in a given jet, $p_{T,k}$ are their transverse momenta and $\Delta R_{J,k}$ is the distance in rapidity-azimuth plane between a candidate subjet J and a constituent particle k

tt + Dark Matter

- top tagging techiniques: identify top quarks decaying into three resolved jets
- hadronic or semileptonic top decays considered \geq
- data-driven estimate of SM tt and W/Z+jets backgounds \succ

Comparison of Monojet and $t\bar{t}$ +DM

monoJet and tt+DM most sensitive channels for (pseudo)scalar mediator

tt+DM has a better S/B ratio (note the different luminosity in the plot)

direct searches have much less or no sensitivity to this case

Probing Dark Matter with MonoHiggs

➤ Higgs ISR suppressed (coupling ∝ mass)

 \succ search for MET+ SM Higgs→ $b\bar{b}$, γγ, ΖΖ, $\tau\bar{\tau}$...

\succ H→ $b\bar{b}$

- b-tagging (resolved and boosted category)
- \succ H \rightarrow $\gamma\gamma$
 - SM Higgs included as resonant background
 - non resonant bkg from fit to $m_{\gamma\gamma}$ in low- $p_T^{miss}\,\text{CR}$

https://arxiv.org/pdf/1507.00966.pdf

Mono-Higgs search results

https://arxiv.org/pdf/1703.05236.pdf

Dijet search

https://cds.cern.ch/record/2256873

Dijet search

