

Multiboson production at LHC

<u>C.Rovelli</u> INFN Roma on behalf of the ATLAS and CMS Collaborations

QCD@LHC, London, 2015 September 1st-5th

Multiboson physics

Cross-section measurements:

- precise test of Standard Model (SM)
- irreducible background to Higgs
- sensitivity to new particles

Triple/quartic gauge couplings:

- precision study of V self-couplings
- probe new physics through anomalous couplings (aTGCs, aQGCs)

At LHC:

small cross-sections, between 1-100pb

Signature

Multiboson final states: combination of photons, W, Z

- $\gamma\gamma$, $W\gamma$, $Z\gamma$, WW, WZ, ZZ + three bosons ($W\gamma\gamma$)
- $\sigma(\gamma) > \sigma(W) > \sigma(Z)$

At LHC measured mainly through leptonic final states:

- relatively low background
- small branching ratios
 - BR (W->lv) = 0.108, BR (Z->ll) = 0.034

Semileptonic or invisible channels also studied

- · to get complementary sensitivity
- to cover a larger kinematic region
 - but with larger experimental systematics

How the final state looks like:

- high p_T isolated photons, electrons, muons (taus)
- Z channels: dilepton invariant mass peak at Z mass
 - m(II) selection
- W channels: large missing transverse energy from undetected neutrinos
 - E_T^{miss} or $m_T(W)$ selection

Main backgrounds

V + jets:

- high p_T prompt leptons from boson decay
- non prompt leptons from heavy flavour decays
- fake leptons / photons from misidentified jets
- E_T^{miss} from particles outside acceptance

Top (ttbar, single top):

<u>Data-driven techniques</u>

- high p_T prompt leptons from W decay
- E_T^{miss} from W

Drell-Yan:

- high p_T prompt leptons from Z decay
- E_T^{miss} from particles outside acceptance, detector effects

Other di-boson processes:

background for each other

Estimated from MC

Run1 results overview

xsec: cross-section measurement aGC: anomalous gauge couplings measurement

	1	1		1	1	1	1	1
	ATLAS 7TeV, xsec	ATLAS 8TeV, <mark>xsec</mark>	ATLAS 7TeV, aGC	ATLAS 8TeV, aGC	CMS 7TeV, <mark>xsec</mark>	CMS 8TeV, <mark>xsec</mark>	CMS 7TeV, aGC	CMS 8TeV, aGC
WW(IIvv)	X	X	X		Х	Х	X	X
ZZ (4I)	X	X	X		Х	Х	X	X
ZZ (2l2v)	X		X		Х	Х	X	X
WZ (3I)	X	X	X		X	Х		
Wγ (Iv)	X		X		X		X	
Zγ (II)	X		X		X	Х	X	X
Ζγ (νν)	X		X		X	Х	Х	Х
VW or Z (jj)	X		X		X	Х	X	
γγ	X				X			
Wγγ		Х		X				
WWγ +WZγ						Х		X
Ewk WW+2jets		X		X		Х		X
Ewk Zy+2jets						Х		X

Selected results presented here (mainly 8TeV)

Cross-section experimental measurements

- cross-section in the fiducial region (FR):
 - · defined by detector acceptance and selection requirements
 - minimizes extrapolation to unmeasured regions
- production cross-section:
 - extrapolated from FR to the total phase space
- differential cross-sections in the fiducial region

WW -> 2|2v

Signature: 2 isolated leptons + E_T^{miss} Relatively large cross-section Main challenge: large background

Main backgrounds rejection:

- W+jets => tight lepton selection
- Top => anti b-tagging and jet veto
- Drell-Yan => Z mass veto and E_T^{miss}
- WZ, ZZ => third lepton veto

Uncertainty dominated by systematics:

- jet veto (theory)
- background estimates (experimental)
- lepton selection (experimental)

ATLAS: 0 jets only CMS: 0-1 jets Categorization based on lepton flavours

WW -> 2l2v, results

total σ [pb] 8TeV	theory
CMS: 60.1 ± 0.9 (stat) ± 3.2 (exp) ± 3.1 (th) ± 1.6 (lumi)	59.8 ^{+1.3} -1.1 (NNLO)
Atlas: 71.4 ^{+1.2} _{-1.2} (stat) ^{+5.0} _{-4.4} (syst) ^{+2.2} _{-2.1} (lumi)	58.7 ^{+3.0} _{-2.7} (qq NLO, gg LO) H->WW included

ATLAS / CMS 7 TeV Excess over NLO predictions

CMS 8TeV: good agreement with theory

Might be explained by

- NNLO contributions, ~10%
- Gluon resummation effects
 - · correlated with jet veto efficiency

Differential cross-sections also measured

- in fiducial region with zero jets
- after unfolding

Good agreement between data and theory

few differences depending on generator/variable

Differential results also available

•

σ (fiducial) [pb] 8TeV	MCFM
CMS: 7.7±0.5(stat) ^{+0.5} _{-0.4} (syst)±0.4(theo)±0.2(lumi)	7.7 ± 0.6
Atlas: 7.1 ^{+0.5} _{-0.4} (stat) ± 0.3 (syst) ± 0.2(lumi)	7.2 ^{+0.3} -0.2

ZZ->2l2v also

measured

W7->31

Semileptonic W and Z decays

Semileptonic channels with W and Z also studied at 7 and 8TeV:

- VW (V=W or Z), W->jj, V->leptons (CMS 7TeV)
- VZ (V=W or Z), V->jj, W->lv (ATLAS 7TeV)
- VZ (V=W or Z), Z->bb (CMS, 8TeV)

Pros: large BR => more events, access to higher boson p_{T} Cons: large backgrounds, worse S/B Challenge: background modeling for signal extraction

- $\sigma(pp-WZ)$ and $\sigma(pp-ZZ)$ consistent with NLO expectations

- VZ->Vbb observed with significance 6.3σ WW+WZ measured with significance 3.4σ
 - σ (WW+WZ) consistent with NLO expectations

Wy and Zy production

Wy and Zy cross-section results

	channel	σ (fiducial) [pb]	NLO [pb]
CMS 7TeV	Wγ -> Ινγ	37.0±0.8(stat)±4.0(syst)±0.8(lumi)	31.81±1.80
	Ζγ -> ΙΙγ	5.33 ± 0.08 ± 0.25 ± 0.12	5.45 ± 0.27
	Ζγ -> ννγ	21.1 ± 4.2 ± 4.3 ± 0.5 [fb]	21.9 ± 1.1 [fb]
ATLAS 7TeV	Wγ -> Ινγ	$2.77 \pm 0.03 \pm 0.33 \pm 0.14$	1.96 ± 0.17
	Ζγ->ΙΙγ	$1.31 \pm 0.02 \pm 0.11 \pm 0.05$	1.18 ± 0.05
	Ζγ->ννγ	$0.133 \pm 0.013 \pm 0.020 \pm 0.005$	0.156 ± 0.012
CMS 8TeV	Ζγ->ΙΙγ	$2.063 \pm 0.019 \pm 0.098 \pm 0.054$	2.100 ± 0.120
	Ζγ -> ννγ	NEW! 52.7 ± 2.1 ± 6.4 ± 1.4	50.0 + 2.4 – 2.2 [fb,NNLO]
			ATLAS/CMS,

- ✓ Overall good agreement with NLO predictions (MCFM)
- $\checkmark\,$ Small excess in Wy for both experiments
 - ✓ Discrepancy worse at high $p_T(\gamma)$ and jet multiplicity

NNLO [fb]	2453 ± 4.1%
ATLAS [fb]	$2770 \pm 30 \pm 330 \pm 140$

Cured when QCD NNLO corrections are included (Grazzini, hep-ph:1407.1618 Grazzini et al., hep-ph:1504.01330)

12

different fiducial regions:

not comparable results

Zγ differential distributions

First comparison with NNLO predictions [Grazzini et al., arXiv hep-ph 1309.7000]

Inclusive measurement: SHERPA in better agreement at high $p_{T}(\gamma)$ with NNLO than MCFM

Exclusive measurement (= no jet with p_T >30GeV and $|\eta|$ <2.4): reduced difference between MCFM and SHERPA at high $p_T(\gamma)$

Cross-sections summary

Good agreement between experiments and theory in most channels 14

Gauge Couplings in SM

Gauge bosons couplings:

- fundamental prediction of SM
- consequence of SU(2) x U(1) structure of EWK sector

Charged couplings only allowed at tree level, neutral couplings forbidden

Anomalous Gauge Couplings (aGCs)

Deviation from prediction Observation of a forbidden coupling

Anomalous coupling

aGCs predicted by many SM extensions Measurement of aGCs => indirect search for new physics

Most of ATLAS/CMS analyses measure together cross-section and aGCs6

Experimental searches for aGCs

Anomalous coupling => cross-section increase at high energies

Probed looking at:

- measured cross-section wrt expectations
- deviations in the spectrum of sensitive variables
 - eg boson p_T , diboson invariant mass, ...
 - different observables for different analyses

Signal model:

- Expected distributions derived for different parameter values (MC)
- Fit as a function of parameters in each observable bin
- uncertainties included here
 => 1D or 2D measurement
 by fitting parameters of interests

Limiting factors:

- observed statistics in the tails
- stat+syst uncertainty on the signal model⁰

aTGC parameterizations

A few parameterizations in usage:

- SM + additional terms up to a fixed energy scale Λ
- · as much as possible model independent
- limit number of free parameters imposing symmetries

Effective Lagrangian approach

Charged couplings (WW γ and WWZ vertices)

- 7 parameters each
- C+P conservation: 5 parameters
 - $\Delta \kappa_{\gamma} = (\kappa_{\gamma}-1), \lambda_{\gamma}, \Delta g_1^{Z} = (g_1^{Z}-1), \Delta \kappa_Z = (k_z-1), \lambda_Z$
- C+P+ SU(2)xU(1) gauge invariant Lagrangian with dim6:
 - $\Delta \kappa_{\gamma}, \lambda_{\gamma} = \lambda_{Z}, \Delta g_{1}^{Z}$ (LEP)

Neutral couplings:

- ZZV vertices:
 - f_4^{V} : CP-violating, f_5^{V} : CP-conserving
- ZyV vertices:
 - h_i, i=3 and 4 => CP-conserving

Effective Field theory approach

$$\mathcal{L}_{ ext{eff}} = \sum_{n=1}^{\infty} \sum_{i} rac{f_i^{(n)}}{\Lambda^n} \mathcal{O}_i^{(n+4)}$$

higher order operators, valid for sqrt(s) << ∧

Mostly used so far

Coupling	Parameters	Channel
WWγ	Δκ _γ , λ _γ	WW <i>,</i> Wγ
WWZ	Δg_1^{Z} , $\Delta \kappa_Z$, λ_Z	WW, WZ
ΖγΖ	h ₃ ^{z,} h ₄ ^z	Zγ
Ζγγ	$h_3^{\gamma}, h_4^{\gamma}$	Zγ
ZZZ	$f_4^{Z,} f_5^{Z}$	ZZ
ZZγ	$f_4^{\gamma}, f_5^{\gamma}$	ZZ

Phys.Rev.D41 (1990) 2113 Nucl.Phys. B282 (1987) 253 Phys. Rev. D 47 (1993) 4889 Phys.Rev.D48 (1993) 2182

aTGC, an example: Zγ->vvγ at 8TeV NEW

- aTCG signal generated with Sherpa
- Binned fit to $E_T(\gamma)$ spectrum
- No significant deviation in the high E_T(γ) tail => limits on parameters

Limit uncertainties statistically dominated

aTGC results

No deviation from SM predictions observed Sensitivity close to LEP, better than Tevatron Results at 8TeV improves a lot sensitivity

Channels with a lot of background (eg Z->2l2v, Z γ ->vv γ) very sensitive (larger BR, higher reach in kinematics)₂₀

aQGC parameterizations

$$\mathcal{L}_{ ext{eff}} = \sum_{n=1}^{\infty} \sum_i rac{f_i^{(n)}}{\Lambda^n} \mathcal{O}_i^{(n+4)}$$

Higher order operators respecting symmetries Assumption: CP conservation

Two formalisms used for quartic couplings:

Non linear

- Spontaneous symmetry breaking without Higgs scalar
- Non-decoupling: valid below ~3TeV scale

Eur.Phys.J.C13:283-293,2000

- dim6 operators
- Used by LEP and currently to compare with previous results

Linear:

- Spontaneous symmetry breaking with Higgs
- Decoupling: arbitrary scale of new physics
- Lowest independent aQGC operators: dim8
 - Not affecting aTGCs

Non linear operators: a_0^W/Λ^2 , a_c^W/Λ^2 , k_0^W/Λ^2 , k_c^W/Λ^2 ... Linear operators: $f_{T,0}/\Lambda^4$, $f_{M,0}/\Lambda^4$, $f_{M,1}/\Lambda^4$...

Phys.Rev.D74:073005,2006

Mostly used now

Triboson: Wγγ

Total significance: 3.7σ (inclusive), 2.1σ (exclusive) Cross-section larger than MCFM NLO predictions

First evidence of Wyy

	σ (fiducial) [fb]	MCFM [fb]
Njets>=0	6.1 ^{+1.1} (stat) ± 1.2(syst) ± 0.2(lumi)	2.90 ± 0.16
Njets=0	2.9 ^{+0.8} (stat) ^{+1.0} (syst) ± 0.1(lumi)	1.88 ± 0.20

Triboson: WVγ->lvjjγ

W -> lv V (= W or Z) -> jj Signature: lepton + photon + E_T^{miss} + jets

Selection:

- p_T(γ)>30GeV
- p_T(I)>30/25 GeV
- E_T^{miss}>35GeV, m_T^W>30GeV
- 70<m_{ii}<120GeV
- p_T(jets)>30GeV, btag veto

Backgrounds:

- Wγ+jets (dominant)
- Top, Zγ+jets, jet->γ misidentification

Upper limit at 95%CL on WV γ cross-section (photon p_T>30GeV and | η |<1.44) = 311fb

~3.4 larger than NLO SM predictions (91.6 ± 21.7fb)

aQGC from triboson channels

(ATLAS) Wyy	(CMS) WVy
 sensitive to WWyy 	 sensitive to WWyy and WWZy
 exclusive xsec with m_{vv}>300 GeV used 	 photon E_T distribution used
 form factor computed with VBFNLO 	 no form factor

CMS PAS SMP 14-018

NEW

 $\begin{array}{l} \label{eq:selection:} & \text{Selection:} \\ p_{T}(I) > 20 \; \text{GeV}, \; |\eta| < 2.4 \\ 70 < M_{\parallel} < 110 \; \text{GeV} \\ p_{T}(\gamma) > 20 \; \text{GeV}, \; |\eta| < 1.44 \\ p_{T} \; (jets) > 30 \; \text{GeV}, \; |\eta| < 4.7 \\ M_{jj} > 400 \; \text{GeV} \\ |\Delta\eta_{jj}| > 2.5 \\ |\Delta\phi_{Z\gamma,jj}| > 2.0 \quad (x\text{-sec}) \end{array}$

 $\begin{array}{l} \mbox{Main backgrounds:} \\ \mbox{QCD } Z\gamma \mbox{+2jets} \\ \mbox{Z+jets with fake } \gamma \end{array}$

Good agreement with theory

Mjj> [GeV]	Fiducial σ _{EWK} [fb] 8TeV	Madgraph LO [fb]	Evidence
400	1.86 ^{+0.89} _{-0.75} (stat) ^{+0.41} _{-0.27} (syst) ± 0.05(lumi)	1.26 ± 0.11(scale) ± 0.05(PDF)	3.0σ
800	1.00 ± 0.43(stat) ± 0.26(syst) ± 0.03(lumi)	0.78 ±0.09(scale) ± 0.02(PDF)	4.3σ

CMS PAS SMP 14-018

NEW

 $\begin{array}{l} \mbox{Selection:} \\ p_T(l)>20 \ GeV, \ |\eta|<2.4 \\ 70 < M_{II}<110 \ GeV \\ p_T(\gamma)>60 \ GeV, \ |\eta|<1.44 \ (aQGC) \\ p_T \ (jets)>30 \ GeV, \ |\eta|<4.7 \\ M_{jj}>400 \ GeV \\ |\Delta\eta_{ij}|>2.5 \end{array}$

Main backgrounds: QCD Zγ+2jets Z+jets with fake γ

 $M(Z\gamma)$ used to extract aQGC limits

No form-factor applied

Competitive limits set on fM0, fM1, fM2, fM3, fT0, fT1, fT2 First limits set on the neutral couplings fT8 and fT9

	Measured σ_{EWK} [fb] 8TeV	Predicted [fb]	Significance	ATLAS/CMS,
ATLAS	1.3 ± 0.4(stat) ± 0.2(syst)	0.95 ± 0.06	3.6σ	different fiducial regions: not
CMS	4.0 ^{+2.4} - _{2.0} (stat) ^{+1.1} - _{1.0} (syst)	5.8 ± 1.2	2.0σ	comparable results

Electroweak W[±]W[±]jj: aQGCs

LHC Run2 has started

Many measurements are currently statistically limited

- in control region or in signal region
- in the high p_T / mass / ... tail where aGC measurements are sensitive
- \Rightarrow Major improvement expected due to larger cross-section at 13 TeV

Anomalous coupling signals increase with energy

• Run2 will give soon better results

Many studies expected on VBS, triboson, aQGCs.... And (of course!) cross-section measurements at a new energy

Conclusions

Multiboson measurements allow precise comparison between data and theory

Overall good agreement observed in cross-sections

- only a few 1-2σ differences
- in some cases sensitivity to NNLO reached

8TeV LHC data: evidence for triboson production and vector boson scattering

No hint of anomalous gauge couplings so far: strong limits on aTGCs and aQGCs set

More measurements with full 8TeV dataset coming soon...

... And interesting results expected for RunII as well!

ATLAS CMS

Bibliography

• YY	• WW (2l2v)
JHEP 01 (2013) 086	ATLAS-CONF-2014-033
EPJC 74 (2014) 3129	SMP-14-016 (submitted to EPJC)
• WW (2l2v)	• WZ (3lv)
Phys.Rev.D87,112001 (2013)	ATLAS-CONF-2013-021
EPJC 73 (2013) 2610	CMS PAS SMP-12-006
• WZ (3lv)	• ZZ (4I)
Eur.Phys.J.C (2012) 72:2173	ATLAS-CONF-2013-020
CMS PAS SMP-12-006	PLB 740 (2015) 250
• ZZ (4I)	• ZZ (2l2v)
JHEP 03 (2013) 128	SMP-12-016 (submitted to EPJC)
JHEP 01 (2013) 063	Semileptonic WV
• ZZ (2l2v)	EPJC 74 (2014) 2973
SMP-12-016 (submitted to EPJC)	• Zy (Ily)
Semileptonic WV	JHEP 04 (2015) 164
JHEP 01 (2015) 049 7TeV	• Zy (vvy) 8TeV
EPJC 73 (2013) 2283	CMS PAS SMP-14-019
• Wγ (Ινγ)	 WVγ
Phys. Rev. D 87, 112003	PRD 90 (2014) 032008
PRD 89 (2014) 092005	• EWK W [±] W [±] jj
• Ζγ (ΙΙγ)	Phys. Rev. Lett. 113, 141803
Phys. Rev. D 87, 112003	PRL 114 (2015) 051801
PRD 89 (2014) 092005	• Wgg
 Ζγ (ννγ) 	Phys.Rev.Lett.115, 031802 (2015)
Phys. Rev. D 87, 112003	• EWK Zvii
JHEP 10 (2013) 164	CMS PAS SMP-14-018

Backup

WW – gluon resummation

The 0-1 jet bin applied in the analysis makes the kinematical distributions sensitive to higher order QCD corrections

CMS:

To improve the modeling of gluon resummation:

reweight $p_T(WW)$ of qq->WW MC to a NLO+NNLL p_T resummation calculation \Rightarrow strongly correlated with jet veto because of the p_T of jets

WW theoretical cross-section

Process	Cross section [pb]	Scale [pb]	PDF+ α_s [pb]	Branching fraction [pb]	Calculation	Total [pb]
$q \bar{q} ightarrow WW$	53.2	$^{+2.3}_{-1.9}$	$^{+1.0}_{-1.1}$	-	NLO MCFM [1]	$+2.5 \\ -2.2$
gg ightarrow WW	1.4	$^{+0.3}_{-0.2}$	$^{+0.1}_{-0.1}$	-	LO MCFM [1]	$^{+0.3}_{-0.2}$
$gg \rightarrow H \rightarrow WW$	4.1	± 0.3	±0.3	± 0.2	NNLO+NNLL QCD, NLO EW [3]	± 0.5

qq->WW, gg->WW: PDF = CT10 gg->H->WW: PDF = MSTW2008

ATLAS

$\frac{\sqrt{s}}{\text{TeV}}$	σ_{LO}	σ_{NLO}	σ_{NNLO}	$\sigma_{gg \to H \to WW^*}$
7	$29.52^{+1.6\%}_{-2.5\%}$	$45.16^{+3.7\%}_{-2.9\%}$	$49.04^{+2.1\%}_{-1.8\%}$	$3.25^{+7.1\%}_{-7.8\%}$
8	$35.50^{+2.4\%}_{-3.5\%}$	$54.77^{+3.7\%}_{-2.9\%}$	$59.84^{+2.2\%}_{-1.9\%}$	$4.14^{+7.2\%}_{-7.8\%}$
13	$67.16^{+5.5\%}_{-6.7\%}$	$106.0^{+4.1\%}_{-3.2\%}$	$118.7^{+2.5\%}_{-2.2\%}$	$9.44^{+7.4\%}_{-7.9\%}$
14	$73.74^{+5.9\%}_{-7.2\%}$	$116.7^{+4.1\%}_{-3.3\%}$	$131.3^{+2.6\%}_{-2.2\%}$	$10.64^{+7.5\%}_{-8.0\%}$

<u>CMS</u>, from Phys.Rev.Lett. 113 (2014) 212001

ABLE I. LO, NLO and NNLO cross sections (in picobarn) r on-shell W^+W^- production in the 4FNS and reference sults for $gg \to H \to WW^*$ from Ref. [75].

Observed Limits	Expected Limits
-71 (TeV ⁻⁴) < f_{M0}/Λ^4 < 75 (TeV ⁻⁴)	-109 (TeV ⁻⁴) < f_{M0}/Λ^4 < 111 (TeV ⁻⁴)
-190 (TeV ⁻⁴) $< f_{M1} / \Lambda^4 < 182 (TeV^{-4})$	-281 (TeV ⁻⁴) $< f_{M1} / \Lambda^4 < 280 \text{ (TeV^{-4})}$
-32 (TeV ⁻⁴) $< f_{M2} / \Lambda^4 < 31 (TeV^{-4})$	-47 (TeV ⁻⁴) $< {\rm f_{M2}}/{\Lambda^4} < 47~({\rm TeV^{-4}})$
-58 (TeV ⁻⁴) $< f_{M3} / \Lambda^4 < 59 (TeV^{-4})$	-87 (TeV ⁻⁴) $< {\rm f}_{\rm M3}/\Lambda^4 < 87~({ m TeV^{-4}})$
-3.8 (TeV ⁻⁴) $< f_{T0}/\Lambda^4 < 3.4$ (TeV ⁻⁴)	-5.1 (TeV ⁻⁴) $< f_{T0} / \Lambda^4 < 5.1$ (TeV ⁻⁴)
-4.4 (TeV ⁻⁴) $<$ f _{T1} / Λ^4 $<$ 4.4 (TeV ⁻⁴)	-6.5 (TeV ⁻⁴) $<$ f _{T1} / Λ^4 $<$ 6.5 (TeV ⁻⁴)
-9.9 (TeV ⁻⁴) $< f_{T2} / \Lambda^4 < 9.0 \text{ (TeV^{-4})}$	-14.0 (TeV ⁻⁴) < f_{T2}/Λ^4 < 14.5 (TeV ⁻⁴)
-1.8 (TeV ⁻⁴) $<$ f _{T8} / Λ^4 $<$ 1.8 (TeV ⁻⁴)	-2.7 (TeV ⁻⁴) $<$ f _{T8} / Λ^4 $<$ 2.7 (TeV ⁻⁴)
-4.0 (TeV ⁻⁴) $< f_{T9} / \Lambda^4 < 4.0$ (TeV ⁻⁴)	-6.0 (TeV ⁻⁴) < f_{T9}/Λ^4 < 6.0 (TeV ⁻⁴)

Parameterized by Zy mass

July 2015	CMS -		Channel	Limits	∫Ldt	s
f_{M0}/Λ^4	1		WVγ	-7.7e+01 - 8.1e+01	19.3 fb ⁻¹	8 TeV
	⊢		EWK Zγ +2Jets	-7.1e+01 - 7.5e+01	19.7 fb ⁻¹	8 TeV
	⊢		ss WW	-3.3e+01 - 3.2e+01	19.4 fb ⁻¹	8 TeV
	HH		γγ →WW	-1.5e+01 - 1.5e+01	5.1 fb ⁻¹	7 TeV
	H		γγ→WW	-4.6e+00 - 4.6e+00	19.7 fb ⁻¹	8 TeV
f_{M1}/Λ^4	F		WVγ	-1.3e+02 - 1.2e+02	19.3 fb ⁻¹	8 TeV
	 		EWK Zγ +2Jets	-1.9e+02 - 1.8e+02	19.7 fb ⁻¹	8 TeV
	+ +		ss WW	-4.4e+01 - 4.7e+01	19.4 fb ⁻¹	8 TeV
	······		γγ→WW	-5.7e+01 - 5.7e+01	5.1 fb ⁻¹	7 TeV
	h1		γγ→WW	-1.7e+01 - 1.7e+01	19.7 fb ⁻¹	8 TeV
f_{M2}/Λ^4	⊢−−−		EWK Zγ+2Jets	-3.2e+01 - 3.1e+01	19.7 fb ⁻¹	8 TeV
f_{M3}/Λ^4	⊢−−−−−		EWK Zγ+2Jets	-5.8e+01 - 5.9e+01	19.7 fb ⁻¹	8 TeV
			1 1			
	-200 0	200	_	400	600	T -1/ ⁻⁴ ,
			a	JGC LIMITS at S	95% UL (iev)

July 2015					
	AILAS	Channel	Limits	∫Ldt	√s
f_{T0}/Λ^4 $I-\cdot-$	· - · - · - · - · - · - · - · - · - · -	I w _{Y Y}	-9.0e+01 - 9.0e+01	20.3 fb ⁻¹	8 TeV
	F · − · − · I	WVγ	-2.5e+01 - 2.4e+01	19.3 fb ⁻¹	8 TeV
	н	EWK Zγ+2Jets	-3.8e+00 - 3.4e+00	19.7 fb ⁻¹	8 TeV
	E-4	ss WW	-4.2e+00 - 4.6e+00	19.4 fb ⁻¹	8 TeV
f_{T1}/Λ^4	н	EWK Z γ +2Jets	-4.4e+00 - 4.4e+00	19.7 fb ⁻¹	8 TeV
	Н	ss WW	-2.1e+00 - 2.4e+00	19.4 fb ⁻¹	8 TeV
f_{T2}/Λ^4	⊢ –−1	EWK Zγ+2Jets	-9.9e+00 - 9.0e+00	19.7 fb ⁻¹	8 TeV
	11	ss WW	-5.9e+00 - 7.1e+00	19.4 fb ⁻¹	8 TeV
f_{T8}/Λ^4	Н	EWK Z γ +2Jets	-1.8e+00 - 1.8e+00	19.7 fb ⁻¹	8 TeV
f_/Λ ⁴ ^{T9}	н	EWK Z γ +2Jets	-4.0e+00 - 4.0e+00	19.7 fb ⁻¹	8 TeV
-100	0	100	200	300	Л
		a	QGC Limits at 9	5% CL (TeV ⁻⁴)

aTGC parameterizations

A few parameterizations in usage:

- SM + additional terms up to a fixed energy scale Λ
- as much as possible model independent

aTGCs: EFT approach

$$\mathcal{L}_{ ext{eff}} = \sum_{n=1}^{\infty} \sum_i rac{f_i^{(n)}}{\Lambda^n} \mathcal{O}_i^{(n+4)}$$

• valid for sqrt(s) << \land

Coupling	Parameters	
WWγ, WWZ	$f_{www}/\Lambda^{2,} f_B/\Lambda^{2,} f_W/\Lambda^{2}$ (all dim6)	

- SU(3)xSU(2)xU(1) invariance by construction
- O_i = operator of energy dimension n
- f_i = adimensional couplings (~1)
- only first terms relevant because suppressed by $sqrt(s)/\Lambda \Rightarrow dominant contribution dim=6$

Assuming CP conservation => 3 independent parameters:

$$\mathcal{O}_{WWW} = \operatorname{Tr}[\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}_{\rho}^{\mu}],$$
$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}\hat{W}^{\mu\nu}(D_{\nu}\Phi),$$
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}\hat{B}^{\mu\nu}(D_{\nu}\Phi).$$

EFT <=> Effective lagrangian

$$\begin{split} g_1^Z &= 1 + f_W \; \frac{m_Z^2}{2\Lambda^2} \;, \\ \kappa_Z &= 1 + \left[f_W - s^2 (f_B + f_W) \right] \frac{m_Z^2}{2\Lambda^2} \;, \\ \kappa_\gamma &= 1 + (f_B + f_W) \; \frac{m_W^2}{2\Lambda^2} \;, \\ \lambda_\gamma &= \lambda_Z = \frac{3m_W^2 g^2}{2\Lambda^2} \; f_{WWW} = \lambda \;, \\ \text{with} \; s &= \sin \theta_W. \end{split}$$

39

WZ-> 3leptons

σ (fiducial) [pb] 8TeV	MCFM [pb]
CMS: 24.61±0.76(stat) ±1.13(syst) ±1.08(lumi)	21.91 ^{+1.17} -0.88
Atlas: 20.3 ^{+0.8} (stat) ^{+1.2} (syst) ^{+0.7} (lumi)	20.3 ± 0.8

W+Z / W-Z x-sec ratio also measured CMS: 1.81 ± 0.12 (stat) ± 0.03 (syst) (exp: 1.724 ± 0.003)