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Chapter 1

Theory

1.1 Standard Model

The Standard Model (SM) of particle physics is a theory that describes the
elementary constituents of matter and three of their four interactions: the elec-
tromagnetic, the weak and the strong interactions. It was formulated in the
‘60 by Glashow, Salam and Weinberg [1–3]. It is a quantum field theory which
is renormalizable and compatible with the special theory of relativity. Its La-
grangian has a gauge symmetry of the group SU(3)× SU(2)× U(1).

We can divide the SM in two sectors: the Quantum Chromodynamics (QCD)
sector and the electroweak sector. Therefore the Lagrangian of the SM can be
written as the sum of two terms:

LSM = LQCD + LEW (1.1)

The QCD describes the strong interactions of quarks and gluons, which are
mediated by the exchange of a color charge. The Lagrangian of the strong sector
has a SU(3)C symmetry of color and is given by:

LQCD = −1

4

∑
i

F iµνF
iµν + i

∑
r

q̄rαγ
µDα

µβq
β
r (1.2)

where F iµν are the tensors of the 8 gluon fields Giµ (i = 1, . . . , 8) which are
given by:

F iµν = ∂µG
i
ν − gF f ijkGjµGkν (1.3)

where gF is the coupling constant of the strong interactions and f ijk are the
structure constants of the group SU(3). In Eq. (1.2), qrα is the quark field of
flavor r and color α, and the covariant derivative Dα

µβ is given by:

Dα
µβ = ∂µδ

α
β +

i

2
gF
∑
i

Giµλ
iα
β (1.4)

where λiαβ are the matrices of the generators of SU(3).
The electroweak sector is described by a Lagrangian which is invariant under

gauge transformations of the symmetry group SU(2)W × U(1)Y . The group
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SU(2)W describes the weak isospin charge I, and the U(1)Y group describes
the weak hypercharge Y .

The fermions, which are leptons and quarks, are grouped in three families.
Their left handed components are grouped in weak isospin doublets with I =
1/2, and their right handed components are grouped in weak isospin singlets
with I = 0:

I =
1

2(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L(

u
d

)
L

(
c
s

)
L

(
t
b

)
L

(1.5)

I = 0

(e)R (µ)R (τ)R

(u)R (c)R (t)R

(d)R (s)R (b)R (1.6)

The existence of these gauge symmetries introduces four vector bosons, three
for the group SU(2)W , the fields W i

µ (i = 1, 2, 3), and one for the group U(1)Y ,
the field Bµ. The physical fields are given by linear combinations of these fields:

Aµ = sin θWW
3
µ + cos θWBµ (1.7)

Zµ = cos θWW
3
µ + sin θWBµ (1.8)

W±µ =
W 1
µ ∓ iW 2

µ√
2

(1.9)

Eq. (1.7) and (1.8) describe two neutral particles, the photon and the Z
boson, and Eq. (1.9) describes two charged particles, the W± bosons. θW is
called Weinberg angle.

In this way the theory is symmetric under local gauge transformations and
is described by the following Lagrangian:

LEW = Lfermions + Lgauge bosons = i
∑
f

f̄Dµγ
µf − 1

4

∑
G

FGµνF
Gµν (1.10)

where the sums run over all the fermionic fields f and over all the gauge
bosons fields G. The covariant derivative is given by:

Dµ = ∂µ − igG(λαGα)µ (1.11)

where gG is the generic coupling constant of the fermion to the gauge boson
field G, and λα are the generators of the symmetry group to which G is related.
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All the particles described in this theory are massless, so at this level the
theory cannot describe reality. On the other hand, explicit mass terms in the
Lagrangian break the gauge symmetries on which the model is based. The
Higgs mechanism solves this problem introducing the spontaneous symmetry
breaking [4].

1.2 Higgs mechanism

A Lagrangian is said to be symmetric when it is invariant under a group of
transformations. Degenerate eigenstates of a symmetric Lagrangian, when they
undergo these kind of transformations, are transformed in linear combinations
of themselves. If the Lagrangian has many degenerate fundamental states, by
choosing just one of them, this will not be invariant under the gauge trans-
formation under which the Lagrangian is symmetric. This kind of symmetry
breaking is called spontaneous symmetry breaking.

The simplest way to break spontaneously the symmetry SU(2)W ×U(1)Y is
to introduce a scalar field φ which is an isospin doublet:

φ =

(
φ+

φ0

)
=

(
φ1+iφ2√

2
φ3+iφ4√

2

)
(1.12)

where φi (i = 1, 2, 3, 4) are real fields and φ+ and φ0 are complex fields.
The simplest Lagrangian for the Higgs scalar field has the form:

LH = (Dµφ)†(Dµφ)− V (φ) (1.13)

where V (φ) is given by:

V (φ) = µ2φ†φ+ λ(φ†φ)2 (1.14)

and the covariant derivative Dµ is given by:

Dµ = ∂µ +
i

2
gWσjW

µ
j + igY Y Bµ (1.15)

where the sum symbol over the repeated index j = 1, 2, 3 is omitted, gW and
gY are respectively the coupling constants of the fermions to the fields Wµ

j and
Bµ, σj are the Pauli matrices and Y is the weak hypercharge.

The potential V (φ) depends on the parameters µ2 and λ. By requesting that
λ > 0 we ensure that the energy is bounded from below and therefore that there
exists a stable fundamental state. By requesting that µ2 < 0 the symmetry can
be spontaneously broken. In fact, in correspondence of:

φ†φ = −µ
2

2λ
=
v2

2
(1.16)

the potential V (φ) has a minimum, which implies that the field φ has a non
null expectation value on the vacuum 〈φ0〉 = v/

√
2.

In Fig. 1.1, we show the shape of the Higgs field potential V (φ) with µ2 < 0
in the (Re φ, Im φ) plane.
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Figure 1.1: Higgs field potential V (φ) with µ2 < 0 in the (Re φ, Im φ) plane.

We need to use perturbation theory to expand φ around its fundamental
state. This will have to be chosen between all the states that satisfy Eq. (1.16),
and each of these will break at least one symmetry of the Lagrangian. This
implies the assignment of a mass to each boson connected to a broken symmetry.

The electroweak Lagrangian has a SU(2)W × U(1)Y symmetry. To keep
the photon massless we need to choose a fundamental state that preserves the
symmetry U(1)Q of electric charge. From the Gell-Mann Nishijima relation:

Q = I3 +
Y

2
(1.17)

we obtain this by choosing a fundamental state φ0 which is an isospin doublet
with I = 1/2 and which is a hypercharge singlet with Y = 1:

φ0 =

(
0
v√
2

)
(1.18)

The field φ will then be an expansion around the fundamental state φ0:

φ(x) =

(
0

v+h(x)√
2

)
(1.19)

In this way the bosonic fields W± and Z acquire mass, while the photon
stays massless:

mW =
gW v

2
(1.20)

mZ =
v
√
g2
W + g2

Y

2
(1.21)

mγ = 0 (1.22)

The W and the Z bosons have been discovered at the UA1 experiment
at CERN, and their mass has been precisely measured at the Large Electron
Positron Collider (LEP), Tevatron and at the Large Hadron Collider (LHC).
The currents best values of their mass are mW = 80.379 ± 0.012 GeV, mZ =
91.1876± 0.0021 GeV.

In the theory we also obtain a physical particle, the Higgs boson, described
by the field h(x), with a mass given by:

mH =
√

2λv (1.23)
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The SM does not predict the value of the mass of the Higgs boson.

1.3 Higgs boson production and decay processes

At the CERN’s LHC, the highest Higgs boson production cross section is achieved
in the gluon gluon fusion (ggH), where the Higgs boson is produced through a
loop, created by two gluons, where there are mostly top quarks, since the cou-
pling of a fermion to the Higgs boson is proportional to the mass of the fermion,
and since the top is the heaviest of the fermions [5].

The second largest production process is vector boson fusion (VBF), where
two quarks emit a vector boson (a W or a Z) which fuse together in order to
produce a Higgs boson.

Other production processes with lower cross section are the Higgs-strahlung,
where two quarks go in a vector boson which subsequently emits a Higgs boson,
and the associated production with two top quarks (tt̄H), where two gluons emit
two top quarks and a Higgs boson.

In Fig. 1.2 we show the Higgs boson production cross sections at LHC as
a function of the Higgs boson mass MH , while in Fig. 1.3 we show the Higgs
boson production Feynman diagrams.

Figure 1.2: Higgs boson production cross sections at LHC at a center of mass
energy

√
s = 14 TeV as a function of the Higgs boson mass MH .

8



Figure 1.3: Higgs boson production Feynman diagrams: (a) ggH; (b) VBF; (c)
Higgs-strahlung, also known as associated WH and ZH productions; (d) tt̄H.

In Fig. 1.4 we show the Higgs boson decay branching ratios as a function of
MH .

Figure 1.4: Higgs boson decay branching ratios as a function of MH .

For mH ∼ 125 GeV, the highest Higgs boson branching ratio (BR) is
achieved in the bb̄ decay mode, as can be seen from Fig. 1.4, however this is
the most experimentally problematic channel, because of the large QCD back-
ground.

Then we have the H →WW and H → ZZ decay modes. The channels with
higher statistics are those where each W and Z decay to 2q. However, these
channels are problematic because of the presence of the QCD interactions given
by the quarks that hadronize in jets. Therefore we look at the decay channels of
the Z and of the W into leptons, which in a hadronic collider constitute the most
experimentally accessible decay modes. A very clean decay channel of the Higgs
boson is in ZZ → 4l. Another important decay mode is in WW → 2l2ν, which
is an experimentally challenging channel, because we do not fully reconstruct
the final state, since we can only obtain the sum of the four-momenta of the
two neutrinos.
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The γγ decay mode is rare, in fact it has a lower branching ratio (of about 2 ·
10−3 for mH ∼ 125 GeV) respect to the WW and ZZ decay channels. However,
its yield is comparable to the ones of the cleanest and most experimentally
accessible channels of the WW and ZZ decays into two or four leptons. In
fact, the full BRs are given by the product of the branching ratio of the Higgs
boson that goes into WW and ZZ and the branching ratio of the two vector
bosons that go into two or four leptons. The γγ process is also quite pure, since
there are few other processes in the SM that produce only two photons in the
final state. Furthermore, the region around mH = 125 GeV is where the γγ
branching ratio is higher, which makes this one of the most sensitive channels
for a Higgs boson of about mH = 125 GeV.

1.4 Higgs boson discovery at LHC

The ATLAS and CMS experiments at LHC announced in 2012 the discovery of
a boson of mass around 125 GeV and excluded the Higgs boson of the SM in all
the range up to 600 GeV except in a small window of mass around the observed
peak. Both experiments used about 5 fb−1 of data collected in 2011 at

√
s = 7

TeV at and about 20 fb−1 of data collected in 2012 at
√
s = 8 TeV.

ATLAS presented the results of the analysis of the ZZ,WW, bb̄ and τ+τ−

channels at
√
s = 7 TeV in 2011 combined with the analysis of the ZZ → 4l, γγ

and WW → eνeµνµ channels at
√
s = 8 TeV in 2012. ATLAS observed a

neutral boson of mass 126.0 ± 0.4(stat) ± 0.4(syst) GeV with a significance of
5.9 σ which corresponds to a probability of 1.82 · 10−9 that the signal observed
was due to a background fluctuation.

CMS presented the combined results between 2011 and 2012 of 5 decay
channels, given by γγ, ZZ,WW, τ+τ− and bb̄ and observed an excess of events
with a significance of 5.0 σ around 125 GeV which corresponds to a probability
of 2.87 ·10−7 that the signal observed was due to a background fluctuation. The
excess is more significant combining only the most sensitive channels which are
γγ and ZZ. A mass fit gives the result 125.3± 0.4(stat)± 0.5(syst) GeV.

The discovery by the ATLAS and CMS Collaborations of a Higgs boson
with a mass of about 125 GeV [6–8] has confirmed the predictions of the SM of
particle physics [1,2,4,9–11]. Since then, precise measurements have been made
of the cross section, the mass, the branching ratios in various decay channels,
including bb̄, τ+τ− and µ+µ−, with the Run2 at LHC, with a total integrated
luminosity of 156 fb−1.

1.5 CP violation

In addition to continuous gauge groups, there are a few discrete symmetries of
interest, for example parity P and charge conjugation C.

The parity operation transforms a system into its mirror image, so that a
particle with momentum ~p is transformed into a particle with momentum −~p
under parity. This symmetry is preserved under electromagnetic, strong and
gravity interactions, and was thus hypothesized to be conserved in every inter-
action. However in 1957 Wu, Ambler, Hayward, Hoppes and Hudson discovered
that parity is violated in 60Co β decays, and thus parity is not a fundamental
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symmetry of nature.
The charge conjugation is the operation that transforms a particle into its

anti-particle.
It was proposed that the combination of charge conjugation and parity,

namely the CP operation, might be a fundamental symmetry of nature. How-
ever in 1964 Christenson, Cronin, Fitch and Turlay discovered evidence that
CP might be violated in the kaon system. CP violation is further confirmed
by many collider experiments. It is also one of the necessary conditions for
the observed matter-antimatter asymmetry in the universe, as pointed out by
Sakharov. However the amount of CP violation discovered in the SM cannot
explain the large baryon anti-baryon asymmetry in the observable universe. Ad-
ditional sources of CP violation are needed, which makes the measurement of
CP properties especially interesting.

1.6 Anomalous Higgs boson couplings to vector
bosons

The CMS [12–18] and ATLAS [19–24] experiments have set constraints on the
spin-parity properties of the Higgs boson and anomalous HV V couplings, where
V stands for W , Z, and γ electroweak gauge bosons, finding its quantum num-
bers to be consistent with JPC = 0++, but leaving room for small anomalous
HV V couplings [25]. Anomalous stands in this case for an effect not predicted
by the SM. In theories beyond the SM (BSM), Higgs boson interactions may gen-
erate several of them, which lead to new tensor structures of interactions, both
CP -even and CP -odd. Possible CP violation effects in couplings to fermions,
Hff , had not been experimentally probed until recently, when the first con-
straints were reported by CMS [26] and ATLAS [27] in tt̄H production using
the H → γγ channel.

The scattering amplitude describing the interaction between a spin-zero H
and two spin-one gauge bosons V V , such as ZZ, Zγ, γγ, or WW , includes only
three independent invariant tensor structures with the coupling parameters aV Vi
that can have both real and imaginary parts and in general are form factors
which can depend on the squared Lorentz invariant four-momenta of V1 and V2,
q2
V1

and q2
V2

[14]. In the following, the terms up to q2
V are kept in the expansion

under the assumption of small contributions from anomalous couplings so that
the scattering amplitude becomes:

A(HV V ) ∼ [aV V1 +
kV V1 q2

V1
+ kV V2 q2

V2

(ΛV V1 )2
]m2

V1
ε∗V1

ε∗V2
+ (1.24)

+ aV V2 f∗(1)
µν f∗(2)µν + aV V3 f∗(1)

µν f̃∗(2)µν (1.25)

where f (i)µν = εµViq
ν
Vi
− ενViq

µ
Vi

is the field strength tensor of a gauge boson

with momentum qVi and polarization vector εVi , f̃
(i)
µν = (1/2)εµνρσf

(i)ρσ is the
dual field strength tensor defined with the aid of the Levi-Civita symbol in four
dimensions εµνρσ with ε0123 = −1 and totally antisymmetric with respect to all
pairs of indices, mV1

is the pole mass of the Z or W vector boson, and Λ1 is the
scale of BSM physics and is a free parameter of the model. A different coupling
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in the scattering amplitude in Eq. (1.24) and (1.25) typically leads to changes
of the kinematic distributions of the process.

In Eq. (1.24) and (1.25), V V stands for ZZ,Zγ, γγ, andWW . The tree-level
SM-like contribution corresponds to aZZ1 , aWW

1 6= 0, while there is no tree-level
coupling to massless gauge bosons, that is aV V1 = 0 for Zγ, and γγ. Small
values of the other couplings can be generated through loop effects in the SM.
The other terms can be ascribed to anomalous couplings which are related to
the vertices HZZ,HWW,HZγ, and Hγγ.

The couplings to which we are interested are the anomalous couplings of
the photons aγγ2 and aγγ3 . In the SM, aγγ2 and aγγ3 are very small. Therefore
measuring values significantly different from zero (of the order of the 10%) of
these anomalous couplings would constitute an indication of new physics. This
would mean that in the virtual loops in addition to SM particles there are also
new particles that have phases different from 0 that can generate CP violation.
The purpose of this thesis is to constrain a2 and a3 in the VBF production
V V → H and using the γγ final state. The anomalous couplings can be inferred
by the cross sections that we can experimentally measure.

Considerations of symmetry and gauge invariance require kZZ1 = kZZ2 =

−eiφ
ZZ
Λ1 , kγγ1 = kγγ2 = 0, kZγ1 = 0, and kZγ2 = −eiφ

Zγ
Λ1 . φV VΛ1

is the phase of the

anomalous coupling with ΛV V1 , which is either 0 or π for real couplings. In the
following, the ZZ labels for the ZZ interactions will be omitted, and therefore
the couplings a1, a2, a3, and Λ1 are not labeled explicitly with a ZZ superscript.

The parity-conserving interaction of a pseudoscalar (CP -odd state) corre-
sponds to the aV V3 terms, while the other terms describe the parity-conserving
interaction of a scalar (CP -even state). The aV V3 terms appear in the SM only
at a three-loop level and receive a small contribution. The aV V2 and ΛV V1 terms
appear in loop-induced processes and give small contributions O(10−3 − 10−2).
The dominant contributions to the SM expectation of the H → Zγ and γγ de-
cays are aZγ2 and aγγ2 , which are predicted to be aZγ2 ∼ −0.007 and aγγ2 ∼ 0.004.
Anomalous couplings may be enhanced with BSM contributions and generally
acquire a non-trivial dependence on Lorentz invariant quantities and become
complex. When the particles in the loops responsible for these couplings are
heavy in comparison to the Higgs boson mass parameters, the couplings are
real.

Under the assumption that the couplings are constant and real, the scat-
tering amplitude formulation is equivalent to an effective Lagrangian for the
HZZ,HWW,HZγ, and Hγγ interactions:
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L(HV V ) ∼ a1
m2
Z

2
HZµZµ −

k1

(Λ1)2
m2
ZHZµ2Z

µ − (1.26)

− 1

2
a2HZ

µνZµν −
1

2
a3HZ

µνZ̃µν + aWW
1 m2

WHW
+µW−µ −(1.27)

− 1

(ΛWW
1 )2

m2
WH(kWW

1 W−µ 2W+µ + kWW
2 W+

µ 2W−µ)− (1.28)

− aWW
2 HW+µνW−µν − aWW

3 HW+µνW̃−µν + (1.29)

+
kZγ2

(ΛZγ1 )2
m2
ZHZµ∂νF

µν − aZγ2 HFµνZµν − aZγ3 HFµνZ̃µν −(1.30)

− 1

2
aγγ2 HFµνFµν −

1

2
aγγ3 HFµν F̃µν (1.31)

where H is the Higgs field, Zµ is the Z field, Wµ is the W field, Fµ is the γ
field, Vµν = ∂µVν − ∂νVµ is the bosonic field strength, the dual field strengths

are Ṽµν = (1/2)εµνρσV
ρσ.

The scenarios are parametrized in terms of the effective fractional cross sec-
tions fai and their phases φai with respect to the two dominant tree-level cou-
plings a1 and aWW

1 in the H → V V → 4l and H → WW → lνllνl processes,
respectively.

The effective fractional ZZ cross sections fai and phases φai are defined as
follows:

fΛ1 =

σ̃Λ1

(Λ1)4

|a1|2σ1 + |a2|2σ2 + |a3|2σ3 +
σ̃Λ1

(Λ1)4 + . . .
, φΛ1 (1.32)

fa2
=

|a2|2σ2

|a1|2σ1 + |a2|2σ2 + |a3|2σ3 +
σ̃Λ1

(Λ1)4 + . . .
, φa2

= arg
a2

a1
(1.33)

fa3
=

|a3|2σ3

|a1|2σ1 + |a2|2σ2 + |a3|2σ3 +
σ̃Λ1

(Λ1)4 + . . .
, φa3

= arg
a3

a1
(1.34)

where σi is the cross section of the process corresponding to ai = 1, aj 6=i = 0,
while σ̃Λ1 is the effective cross section of the process corresponding to Λ1 = 1
TeV, given in units of fb · TeV4. The effective fractional WW and γγ cross
sections are defined in complete analogy with the definitions for ZZ as shown
in Eq. (1.32), (1.33) and (1.34). In Eq. (1.32), (1.33) and (1.34) the fai
parameters are bounded between 0 and 1.

Given the measured values of the effective fractions, it is possible to extract
the ratios of the coupling constants ai/a1 and the scale of BSM physics Λ1 as
follows:

|ai|
|a1|

=

√
fai
fa1

√
σ1

σi
(1.35)

Λ1 =
1√
|a1|

(
fa1

fΛ1

)
1
4 (
σ̃Λ1

σ1
)

1
4 (1.36)
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where the fraction fa1
= 1−fΛ1

−fa2
−fa3

− . . . corresponds to the effective
SM tree-level contribution, which is expected to dominate.

The signal Monte Carlo samples used in this thesis are generated with fixed
values of fai : one can cover the whole phase space with linear combinations of
these samples.
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Chapter 2

LHC and CMS

2.1 LHC

The LHC is an accelerator where beams of protons collide at a center of mass
energy

√
s up to 14 TeV. It is the largest and the most energetic accelerator

ever built up to now. It is built in a circular tunnel of about 27 km about 100
m underground, at the border between France and Switzerland, near Geneva.
The same ring in the past hosted the LEP.

The LHC injection complex is indicated in Fig. 2.1. After the production of
the protons, the Linear Accelerator 2 (LINAC2) accelerates them to 50 MeV,
then they are brought in the first ring, the Proton Synchrotron (PS) Booster,
at 1.4 GeV, then they are inserted in the Proton Synchrotron at 26 GeV and
in the Super Proton Synchrotron at 450 GeV. Finally they are injected in the
main ring where they can reach a center of mass energy up to 14 TeV (7 TeV
per beam), as of the design value that will be reached in the future. Until now,
there have been two Runs, at three different center of mass energies:

• Run1, in 2011, at 7 TeV;

• Run1, in 2012, at 8 TeV;

• Run2, from 2015 to 2018, at 13 TeV.

In March 2022 Run3 will begin, at a center of mass energy of 13.5 TeV.
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Figure 2.1: LHC injection complex.

Since the particles contained in the two colliding beams have electric charge
of the same sign, there must be two separate cavities and magnetic fields for
the beams circulating in opposite directions. LHC has 1232 superconducting
magnets made of Ni-Ti, which are 14.2 m long and are cooled to 1.9 K with
liquid He, in order to reach a magnetic field of 8.3 T. Tab. 2.1 shows the main
LHC characteristics.

Circumference 27 km
Number of magnet dipoles 1232

Dipolar magnetic field 8.3 T
Magnet temperature 1.9 K

Beam energy 7 TeV√
s 14 TeV
L 2 · 1034 cm−2 s−1

Number of protons per bunch 1.05 · 1011

Bunch length σz 75 mm
Bunch radius σx = σy 16 µm

Number of bunches 2808
Space - time between bunches 7.48 m - 25 ns

Table 2.1: Main design LHC characteristics.

Unlike electronic accelerators, such as LEP, a hadronic accelerator allows
to produce reactions at different energies. Since the interactions happen at
partonic level, the effective center of mass energy is that of the interacting
partons, and depends on their probability density functions. Therefore the
reactions happen at lower energies in the center of mass respect to the interacting
protons. However, 14 TeV are sufficient to reach the TeV energy scale.

At these energies, the contribution of the sea quarks becomes important,
therefore the collision schemes proton-proton and proton-antiproton are basi-
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cally equivalent.
In an electronic accelerator, the interacting energy is precisely known, and

the cross sections have low values, therefore precision measurements can be
made even with a small number of events. Instead, in a hadronic accelerator,
the cross sections are much higher, therefore it is necessary to collect a large
number of events in order to limit the background contribution. For this reason,
an important characteristic of LHC is the high value of the luminosity.

The main purpose of LHC was to study the electroweak spontaneous symme-
try breaking, looking for a Higgs boson compatible with the SM. Other aims are
to find evidences of physics BSM, like Supersymmetries or the extra-dimensions,
and to try to explain the nature of the dark matter and of the quark-gluon
plasm. Moreover LHC tests the SM with precision measurements and studies
the violation of the CP symmetry.

Four detectors study the LHC interactions, which are situated in the four
crossing points of the beams. CMS (Compact Muon Solenoid) and ATLAS (A
Toroidal LHC ApparatuS) are two general purpose experiments, which had as
aim the discovery of the Higgs boson and which research physics BSM. LHCb, an
experiment dedicated to the b quark physics, studies the CP symmetry violation
and rare phenomenons in the physics of beauty flavored hadrons. ALICE (A
Large Ion Collider Experiment) studies collisions between heavy ions Pb-Pb at
a center of mass energy of 2.76 TeV.

The luminosity of a circular accelerator is:

L =
N1N2fk

4πσxσy
(2.1)

where N1 and N2 are the number of protons in the two colliding bunches, f
is the revolution frequency of the protons in the ring, k is the number of bunches
circulating in the ring, σx and σy are the mean dispersions of the bunches in
the x and y directions perpendicular to the orbit.

The number of events is given by:

N = LintσppAε (2.2)

where Lint is the integrated luminosity, σpp is the cross section of the pp
collision process, A and ε are respectively the geometrical acceptance and the
efficiency of the detector.

The total cross section σtotpp is about 100 mb. Therefore there are about 20
proton-proton interactions per bunch crossing and 109 interactions per second,
which results in a large multiplicity of particles. Together with the crossing rate
of 25 ns, this puts very stringent requirements for the LHC detectors:

• a fine granularity, to resolve the large number of particles;

• a high response velocity, to minimize the pileup, which is the overlap of
the events;

• a rapid and efficient event selection and acquisition;

• a good radiation resistance;

• a high precision, in order to distinguish the single interaction vertices.
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The general purpose detectors such as ATLAS and CMS must have further
requirements to fully understand the events:

• hermeticity, which means they must cover the largest possible solid angle
to measure accurately the missing transverse energy;

• precise reconstruction of high energy leptons and photons;

• precise measurement of the momentum of the charged particles with a
tracking system;

• good reconstruction of the energy of the hadronic particles.

In Fig. 2.2 we show the plot of the total integrated luminosity collected in
Run1 and in Run2.

Figure 2.2: Total integrated luminosity collected in Run1 and in Run2 by LHC
and CMS.

For the purpose of this thesis, we used the data collected by CMS in 2017,
which correspond to an integrated luminosity of 41.5 fb−1.

2.2 CMS

The Compact Muon Solenoid (CMS) experiment was designed to discover the
Higgs boson, to search for evidences of new physics at LHC and to make precision
measurements of already known processes. To obtain these results at LHC, the
Collaboration had the following aims:

• an optimal system for the identification and the measurements of the
muons. This brought to the choice of a solenoidal superconducting magnet
able to produce a magnetic field of 4 T, where the muon detectors are in
the iron return yoke, which allows to have a compact muonic system,
precise in the tracks measurement and able to distinguish the sign of the
charge for muons of energy up to 1 TeV;
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• the best possible electromagnetic calorimeter for the measurements of elec-
trons and photons, which is compatible with the dimensions of the magnet;

• a central tracking system efficient and precise in the measurement of the
momentum and in the reconstruction of the vertices and the tracks of the
charged particles;

• an adequate hadronic calorimeter, highly hermetic in order to permit a
good measurement of the transverse missing energy due to neutrinos or
other non detectable particles with trackers and calorimeters (such as new
physics particles).

The structure of the CMS detector is shown in Fig. 2.3. It has a cylindrical
form, with a radius of 7.5 m, a length of 12 m, and it weighs about 12500 tons.
It is divided in a central region, the barrel, closed on both sides by two identical
endcaps. Inside it there is the superconducting magnet, which is 13 m long and
has a radius of 3 m. The magnet hosts inside of it the inner tracking system
and the calorimeters. Therefore the subdetectors are arranged in layers around
the axis of the cylinder.

Figure 2.3: The CMS detector.

The coordinate system adopted by CMS has the origin in the nominal inter-
action point of the beams and adopts the following convention:

• the x axis points radially towards the center of LHC;

• the y axis points upwards;

• the z axis coincides with the symmetry axis of CMS and points towards
the direction of the beams of protons.

Since CMS has a cylindrical symmetry, a cylindrical coordinate system
(r, η, φ) is adopted, where r is the radial distance from the origin, φ is the
azimuthal angle which is measured from the x axis in the xy plane, η is the
pseudorapidity which is defined as:

η = − ln tan
θ

2
(2.3)
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where θ is the polar angle, which is measured from the z axis. For high
energies, η it is a good approximation of the rapidity of a particle, defined as:

y =
1

2
ln
E + pL
E − pL

(2.4)

where pL is the longitudinal momentum, parallel to the beams. In Fig. 2.4
we show the values of the pseudorapidity η corresponding to some polar angles
θ.

Figure 2.4: Values of the pseudorapidity η corresponding to some polar angles
θ.

In the following we will denote with pT and ET respectively the momentum
and the energy in the transverse plane xy to the beams. The transverse energy
is defined as ET = E sin θ, where E is the energy deposited in a calorimetric
cell and θ is the polar angle of the position of the cell.

The angular distance in η − φ coordinates is defined as:

∆R =
√

∆η2 + ∆φ2 (2.5)

2.2.1 Magnet

In order to measure precisely high energy muons it is necessary to have a mag-
netic field able to curve them enough. In order to do this in a relatively compact
space a magnet was designed, which is made of a superconducting solenoid of
NiTi of 13 m of length and of 5.9 m of diameter. This magnet generates a
magnetic field of 3.8 T at the center, crossed by a current of 18 kA. The total
magnetic energy stored is 2.4 GJ. The return yoke of the magnet is made of iron
and also constitutes a part of the mechanical structure of the detector.

2.2.2 Inner tracking system

The inner tracking system reconstructs the tracks of the charged particles and
measures its momentum. It is composed by detectors made in silicon.
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Its main purpose is to reconstruct isolated electrons and muons with high
pT with efficiency greater than 95%, and tracks with high pT within jets with
efficiency greater than 90% in the pseudorapidity range |η| < 2.4. At the same
time there are constraints on the quantity of material to be used, in order
not to worsen too much the resolution on the momentum. This happens in a
highly radioactive environment with high particle multiplicity, as can be seen in
Tab. 2.2, where we report the fluxes of the expected particles for an integrated
luminosity of 500 fb−1 [28].

Radius (cm) Radiation dose (kGy) Flux of charged particles (cm−2s−1)
4 840 108

22 70 6 · 106

115 1.8 3 · 105

Table 2.2: Radiation dose and flux of charged particle expected for different
radiuses of the barrel of the CMS tracking system, for an integrated luminosity
of 500 fb−1.

Referring to Tab. 2.2, we can identify three regions exposed to different
radiation doses:

• near the interaction vertex (r < 20 cm), where the flux of particles is
higher, there are silicon pixel detectors, with dimensions of about 100 ×
150 µm2;

• in the intermediate region (20 < r < 55 cm), the flux is low enough to
allow the use of silicon microstrips, with cells with minimal dimensions of
10 cm × 80 µm;

• in the outer region (r > 55 cm), the flux is low enough to allow the use of
larger silicon strips, with cells with maximal dimensions of 25 cm × 180
µm.

In Fig. 2.5, we show a section of a quarter of the inner tracking system of
CMS.

Figure 2.5: Section of a quarter of the inner tracking system of CMS, with some
values of the pseudorapidity.

A section of the CMS inner tracking system is shown in Fig. 2.5. Near
the interaction vertex there are 3 layers of silicon pixels, respectively at radial
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distances of 4.4, 7.3 and 10.2 cm. In the barrel there are the silicon microstrips,
for r between 20 and 110 cm. The barrel microstrip region is separated in two
regions, one internal and one external, the internal one being shorter than the
external one. The internal region is made of four layers and covers the range
20 < r < 55 cm. The external region is made of six layers and it reaches
the radius r = 110 cm. The forward region has 2 pixel layers and 9 layers
of microstrips in each endcap. There are three additional layers, named inner
disks, in the space between the border of the internal region and the endcap, on
both sides of the barrel.

The inner tracking system has 66 million silicon pixels and 9.6 million silicon
strips. It covers up to |η| < 2.4. The quantity of material in unity of radiation
lengths is a function of η and it varies from a minimum of about 0.5 radiation
lengths (at the center of the barrel) to a maximum of 1.8 radiation lengths
(in the transition between barrel and endcap). Therefore it is frequent that a
photon produces an electron-positron pair or that an electron emits a photon
for bremsstrahlung inside the tracker. This must be held into account for a
correct reconstruction of the energy of photons and electrons.

The silicon pixels yield a measurement precision of 10 µm for the coordinates
in the transverse xy plane, and of 20 µm for the z coordinate. The microstrips
yield a resolution which depends on the width of the cell, which is better than
55 µm in the transverse plane.

2.2.3 Electromagnetic calorimeter

The electromagnetic calorimeter of CMS is a hermetic and homogeneous calorime-
ter, made by 61200 lead tungstate (PbWO4, PWO for short) crystals in the
barrel region and closed by 7324 crystals in each of the two endcaps. Its aim is
to measure with high precision the energy of the electromagnetic particles, other
than yield a reconstruction of the energy of the hadronic jets, in combination
with the hadronic calorimeter.

The electromagnetic calorimeter played a fundamental role in the research
of the Higgs boson, particularly in its decay modes H → γγ and H → ZZ∗ →
4e±/2e±2µ±. In the mass ranges where these channels were studied for its
discovery, the intrinsic width of the Higgs boson is small and therefore the
experimental resolution is dominant on the uncertainty on the measurement of
its mass.

The decay channel in two photons was used as a benchmark in the design
of the electromagnetic calorimeter of CMS. The Collaboration chose to use
an electromagnetic calorimeter with an excellent energy resolution and with
a fine granularity in order to maximize the resolution in the measurement of
the invariant mass of the two photons. For this reason it was chosen to use a
homogeneous calorimeter, with great precision, made of scintillating crystals.

PbWO4 crystals

The choice of the PWO was motivated by the compactness, the response rapidity
and the radiation resistance of this material.

The main characteristics of PWO, compared with those of other scintillating
crystals, are shown in Tab. 2.3.
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NaI (Tl) BGO CeF3 BaF2 PWO
X0 (cm) 2.57 1.12 1.68 2.05 0.89
ρ (g cm−2) 3.67 7.13 6.16 4.89 8.18

n 1.85 2.20 1.68 1.56 2.29
LY (a.u.) 1 0.15 0.10 0.05f 0.01

0.20s

τ (ns) 250 300 10f 0.7f 5f

30s 620s 15s

λ (nm) 410 480 310f 220f 440f

340s 310s 480s

Table 2.3: Main characteristics of the PWO crystals and comparison with other
scintillating crystals. The apices f and s correspond respectively to the compo-
nents of principal (fast) and secondary (slow) emission.

The radiation length X0 represents the longitudinal distance over which
an electron traversing a material loses in average 1/e of its energy through
scattering processes. The electromagnetic calorimeter must ensure the complete
containment of the electromagnetic shower until energies of about 1 TeV. For
these energies the 98% of the longitudinal development of the shower is contained
in 25 X0.

The Molière radius RM is used in the description of the transversal devel-
opment of the shower. It is defined as:

RM =
21.2 MeV X0

EC(MeV)
(2.6)

where EC is the critical energy and it represents the energy at which the
mean energy loss for ionization equals the mean energy loss for bremsstrahlung.
In average, 90% of the energy of an electromagnetic shower is deposited in a
cylinder of radius equal to RM constructed around the axis of the shower.

The main scintillation characteristics of a crystal used for calorimeters are
the light yield, the quantity of scintillation light emitted, and the emission time
τ . The light yield LY is usually measured as the number of emitted photons per
MeV of energy deposited inside the crystal. In Tab. 2.3 is reported the light
yield normalized to that of sodium iodide doped with thallium NaI (Tl). For
completeness, in the Tab. are reported the density ρ, the refraction index n and
the wavelength of the light emission λ.

The PWO was chosen for the following reasons:

• the short radiation length of 0.89 cm allows the construction of an ex-
tremely compact calorimeter, in fact crystals of 23 cm of length corre-
spond to 25.8 X0, which ensures an optimal longitudinal containment of
the showers up to large energies;

• the small Molière radius allows an effective lateral containment of the
showers and at the same time a good granularity;

• the high response rapidity allows to collect large part of the scintillation
light between two subsequent crossings (80% of the light is emitted within
25 ns), minimizing the effects of the pileup.
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• Its good radiation resistance makes it usable for decades of activity at
LHC at high luminosity.

The PWO is insensitive to the neutron radiation, but the photon irradiation
induces the formation of color centers in the crystal which can degrade the trans-
parency, and therefore the light yield. A correlation has been found between
the radiation resistance and the optical transmission of the crystals. Moreover
it has been observed that a Nb doping optimizes the transmission spectrum and
at the same time maximizes the radiation resistance of the crystal.

However the PWO has some inconvenients. A large amount of the energy
stored in the crystals is dissipated in thermal emissions by the crystal lattice.
Therefore the light yield is very low (about 30 photons/MeV), therefore it is nec-
essary to use photodetectors with an amplification system. CMS uses avalanche
photodiodes (APD) in the barrel and vacuum phototriodes (VPT) in the end-
caps. The choice of these amplificators was motivated by their good quantum
efficiency for wavelengths in the region of the emission of the PWO, by their
insensitivity to the magnetic field and by their compactness.

Another problem connected to the thermal dissipation of the absorbed en-
ergy is the dependence of the light yield on the temperature of the crystal. The
PWO has a percentage variation of −2%/◦C at 18◦C. To ensure a constant
and reliable reaction of the detector it is necessary to keep its temperature con-
stant, which motivated the construction of a hydraulic cooling system able to
guarantee an operative temperature of (18.00± 0.05)◦C.

Photodetectors

In the barrel the photodetectors are APDs with inverted structure (with the sil-
icon of type n behind the p−n junction) developed by the Hamamatsu company
specifically for the CMS calorimeter.

The scintillation photons produced in the crystal enter the photodiode from
the p++ layer and they are absorbed in the successive p+ layer, creating an
electron-hole pair. The created electron is accelerated by the strong electric
field produced by the p− n junction, freeing other electrons by ionization. The
freed electrons migrate towards the n++ layer where they are collected.

The motivations that led to the choice of the Hamamatsu APDs are the
following:

• high internal gain, adjustable up to 200 (the working value is 50);

• good quantum efficiency;

• low capacity and low reverse saturation current;

• sufficient radiation resistance in order to work in the central region of the
electromagnetic calorimeter (ECAL);

• compactness;

• insensitivity to the magnetic field;

• reduced response to charged particle thanks to the thin width of the mul-
tiplication region (∼ 5 µm).
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The APDs have an active area of 5×5 mm2. To enhance the light collection
two APDs have been sticked on the bottom face of each crystal of the barrel.

The radiation resistance of the APDs has been studied, particularly in the
case of the neutron irradiation. No remarkable variation in the gain has been
observed up to neutron fluxes of about 1013 neutrons/cm2, while a linear increase
of the dark current has been observed up to values of some µA for the maximum
doses expected.

In the endcaps the photodetectors have to operate in a highly radioactive
environment and in presence of a strong axial magnetic field. In fact the quantity
of radiation is remarkably higher than that of the barrel: the flux of neutrons
can reach values of about 1015 neutrons/cm2 in the regions closest to the beams.
For this reason the APDs can not be used.

It was decided to use VPTs. A phototriode is made by a photocathode made
of radiation resistant glass, an anode grid distant 4-5 mm from the photocath-
ode, and a dynode distant 2-3 mm from the anode. Typically the photocathode
is grounded, the anode is put at a voltage of about 1000 V and the dynode is
put at a voltage of about 800 V.

The scintillating photons coming from the crystal hit the photocathode,
where they are converted in photoelectrons by photoelectric effect. The photo-
electrons are accelerated by the strong electric field towards the anode. A large
amount of them crosses the grid of the anode and hits the dynode, where many
secondary electrons are produced (the secondary emission factor can reach 20).
The secondary electrons created are accelerated towards the anode, where a
large fraction of them is collected.

Geometry

The electromagnetic calorimeter has a cylindrical structure. The central part
of the cylinder, named barrel, covers a pseudorapidity region of |η| < 1.479;
the barrel is closed at both its sides by two lateral identical structures, named
endcaps, that reach |η| = 3. In front of almost all the fiducial region of the
endcaps (for 1.653 < |η| < 2.6) there is a preshower, that studies the transversal
development of the shower. Fig. 2.6 shows a perspective of the structure of the
ECAL, and a section of a quarter of the ECAL.

(a)

(b)

Figure 2.6: (a) Perspective of the structure of the ECAL; (b) section of a quarter
of the ECAL, with some values of the pseudorapidity.
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The barrel has an internal radius of 129 cm. It is made of 61200 crystals,
correspondent to a granularity of 360 crystals in φ and of 2 × 85 crystals in η.
The crystals have a truncated pyramid shape and are built in a quasi projective
geometry so that their axes form an angle of 3◦ with the line joining them to
the nominal interaction vertex. A single crystal corresponds approximately to
a step of 0.0174× 0.0174 in the η − φ plane (where φ is measured in radiants),
corresponding to 22 × 22 mm2 in the front side and to 26 × 26 mm2 in the
bottom side. They are 23 cm long, which corresponds to 25.8 X0.

A crystal and the two APDs sticked in its bottom face constitute a subunit.
The subunits are assembled in honeycomb structures made of thin foils of glass
fiber, named submodules, made by five pairs of subunits. The submodules are
assembled to make modules, and four modules form a supermodule. The barrel
is made by 36 identical supermodules, where each of them covers half of its
length.

The endcaps are placed at a longitudinal distance of 3144 mm from the
interaction point, holding into account the displacement of about 2.6 cm towards
the center caused by the magnetic field. They are made of identical crystals,
where the front face has dimensions 28.62 × 28.62 mm2, length equal to 220
mm (correspondent to 24.7 X0), and the bottom face has dimensions 30 × 30
mm2. The crystals are grouped in mechanical units of 5 × 5 crystals, named
supercrystals, made with a honeycomb structure in carbon fiber.

For |η| > 2.5, the radiation level and the high particle multiplicity forbid
precision measurements. The crystals nearer to the beams are only used to
measure the transverse energy of the event and to reconstruct the jets together
with the hadronic calorimeter.

In the range 1.653 < |η| < 2.6 a preshower is used, which has a circular
crown shape of inner radius equal to 45.7 cm and outer radius of 1.23 m. It is a
sampling calorimeter with two layers, which uses a lead sampler and a detector
with silicon strips. The lead layers (of 2 and 1 X0) cause the development
of electromagnetic showers by the incoming electrons and photons, and the
detectors made of silicons strips placed between the lead layers measure the
deposited energy and the lateral profile of the showers.

The main aim of the preshower detector is the distinction between photons
and neutral pions. In fact the π0 decay rapidly in pair of photons which at high
energies can be very close to each other and therefore they are hard to separate.
Moreover the preshower is useful in the separation of electrons and particles at
the minimum of ionization, and its granularity which is superior respect to that
of the endcap crystals allows to determinate with greater precision the position
of electrons and photons.

Energy resolution

The energy resolution of the electromagnetic calorimeter can be parametrized
as:

σ

E
=

S√
E
⊕ N

E
⊕ C (2.7)

where S is the stochastic term, N is the noise term and C is the constant
term. The stochastic term depends on the fluctuations in the number of scin-
tillating photons detected and in the number of processes through which the
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particles lose their energy in the crystals. The noise term comes from the elec-
tronic noise and from the pileup. The constant term has different causes: losses
due to failures in the longitudinal containment, non uniformity in the light col-
lection, intercalibration between crystals and geometrical imperfections.

The parameters that appear in Eq. (2.7) have been measured with test
beams, and are estimated as:

S = 2.8% GeV
1
2 (2.8)

N = 124 MeV (2.9)

C = 0.3% (2.10)

for electrons that collide in the center of a crystal.

2.2.4 Hadronic calorimeter

The hadronic calorimeter of CMS measures the energies and the directions of
the particles within the hadronic jets and estimates, together with the elec-
tromagnetic calorimeter, the missing energy of the events. For these reasons
the two fundamental requirements are a good hermeticity and a good trans-
verse granularity. It is also important to have a good energy resolution and a
sufficient longitudinal containment of the hadronic showers.

The hadronic calorimeter is made by a central calorimeter (|η| < 3), and
by two calorimeters for high pseudorapidities (3 < |η| < 5). It was chosen to
use a sampling calorimeter which uses layers of copper as absorbers and plastic
scintillators as active material. It has a tile structure, where the tiles are parallel
to the beam axis. It is divided in a central cylindrical structure (|η| < 1.3) and
in two endcaps (1.3 < |η| < 3), for a total of 2593 trigger towers without
longitudinal segmentation. It has a granularity of ∆η × ∆φ = 0.087 × 0.087,
which corresponds to the granularity of the trigger towers of the ECAL.

The central calorimeter has a depth of about 7 interaction lengths λI and
has an energy resolution given by:

σ

E
=

100%√
E(GeV)

⊕ 8% (2.11)

A depth of 7 λI is not enough to have a complete longitudinal containment
of the hadronic showers. Therefore a further layer was inserted behind the
solenoid, which gives 3 more λI and improves of 10% the energy resolution for
pions of 300 GeV.

The calorimeters for high values of the pseudorapidity, placed in an envi-
ronment with high doses of radiation and with high multiplicity, are sampling
calorimeters made in iron and in quartz fibers. The fibers come in two different
lengths: the longer start from the frontal face of the calorimeter, the shorter
start 22 cm from the longer ones. In this way the electromagnetic component
of the shower, which is deposited in the initial part of the calorimeter, can be
obtained by subtraction. The calorimeters are made by a total of 1728 trigger
towers and have a granularity of ∆η ×∆φ = 0.175× 0.175.
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2.2.5 Muon detector

The muon detector identifies and measures the muons, the only charged particles
that are able to cross the calorimeters without being absorbed in them. The
presence of muons in the final state is a characteristic of many physical processes.
The most stringent requirements for the performance of the muon detector come
from the decay channel of the Higgs boson H → ZZ∗ → 4µ.

The muon detector is placed outside the magnet and covers the pseudora-
pidity region |η| < 2.4. It is divided in a barrel and in two endcaps. Both in the
barrel and in the endcaps, the system is made by four measurement stations,
interspaced with the iron return yoke of the magnet. Fig. 2.7 shows a scheme
of the muon system of CMS.

Figure 2.7: Scheme of the muon detector of CMS.

The barrel region is made of planes of drift tubes. Each station is made
of a chamber made with 12 planes of tubes, for a total of 195000 tubes. In
the endcaps there are cathodic strip chambers (CSC) in order to have precision
measurements even in presence of a strong magnetic field and of a high particle
multiplicity. The CSCs are multiwire proportional chambers where the cathodic
plane is segmented in strips. They are organized in modules made of six layers.

Moreover, both in the barrel and in the endcaps, there are resistive plate
chambers (RPC) which play the role of trigger. The RPCs are gas chambers
with parallel planes that combine a discrete spatial resolution with an excellent
time resolution (3 ns), comparable with that of a scintillator. They constitute a
fast trigger system, able to identify candidate muons with high efficiency. They
are organized in six stations in the barrel and in four stations in each endcap,
for a total of 612 chambers.

The reconstruction efficiency for the muon tracks improves of the 90% for
muons up to 100 GeV, and the assignment of the charge is correct with a
confidence of 99%.

2.2.6 Trigger system

At the nominal luminosity of LHC the event rate is equal to 109 Hz. Since the
typical dimension of an event is about 1 MB, it is not possible to store all the
events in real time. On the other hand it is not very useful to do so, since a
large part of the events are of QCD only, and are not interesting for the Higgs
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boson and new physics researches. Fig. 2.8 shows the pp cross sections as a
function of the energy in the center of mass: at the LHC energies we see that
the electroweak processes (with W and Z) have a cross section about six orders
of magnitude smaller than the total one, and the production of a SM Higgs
boson of 120 GeV of mass has a cross section about ten orders of magnitude
smaller than the total one.

Figure 2.8: Proton-proton cross section as a function of the energy in the center
of mass.

Therefore a trigger system is necessary to lower the event rate that must be
stored, in order to work with an event rate that can be handled by the storage
system (about 100 Hz). This is achieved with a two-level trigger system: a
level-1 trigger (L1) and a high-level trigger (HLT). The system L1 is made by
a series of hardware processors built for this task, while the HLT is a software
system made by a farm of about a thousand of common processors.

Trigger L1

The first level trigger reduces the rate from 1 GHz to about 50-100 kHz. The
data are stored in queues waiting for the trigger decision, which must be taken
in 3.2 µs. If L1 accepts the bunch crossing the data are sent to the HLT: the
time is not enough to read the informations of all the detectors, therefore L1
uses only the informations of the calorimeters and of the muon chambers. The
L1 trigger is divided in:

• calorimetric trigger, based of tower triggers, which are 5×5 matrices of the
ECAL crystals which correspond to the cell of the hadronic calorimeter
(HCAL). The tower triggers are grouped in 4×4 squares. The calorimetric
trigger identifies the candidates photons, electrons, jets and τ ;

• muonic trigger, which uses the detectors of the muon system.
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The informations of the two systems are sent to the global trigger which takes
the decision considering both the single objects reconstructed by the detectors
and their combination.

High level trigger

The high level trigger brings the final event rate to about 100 Hz. It is a
software trigger made by a set of algorithms names paths, designed to select
different topologies of events. It reconstructs the parts of the event near to
the objects already reconstructed by the L1 trigger. Avoiding reconstructing
the entire event the decision time is diminished. Moreover the non interesting
events are eliminated as soon as possible in order to free the processor from
non useful jobs which would slow down the jobs of the successive events. The
high level trigger is divided in three sublevels: the first accesses only the data
of calorimeters and muon system, the second adds the pixels, the third reads
the informations of the entire event.

30



Chapter 3

Event selection

3.1 Signal characteristics

We focus our attention on the Higgs boson produced through VBF and its decay
in two photons. This means that we look for a signal with a final state made of
two photons, coming from the Higgs boson decay, and of two jets, coming from
the quarks that hadronize after the VBF scattering.

We inherited the standard photon preselection used for the H → γγ analysis,
and which will be discussed in the following. For this thesis we worked on
ROOT files, where ROOT is an open-source data analysis framework developed
at CERN that was used to analyze both Monte Carlo (MC) and data events.
The JHUGen [29] MC program was used to simulate all anomalous couplings
in the H boson production. The SM production of the Higgs boson through
VBF was simulated using POWHEG [30] at next-to-leading order in QCD and
AMCATNLO at next-to-leading order in QCD [31].

The H → γγ decay channel was studied in Run1 and Run2 at LHC by CMS,
which measured its differential cross sections. The results are reported in [32].

Being the Higgs boson neutral, it cannot be directly coupled to the photon.
However, the coupling of the Higgs boson to a particle is proportional to the
mass of the particle, thus the Higgs boson can decay in two photons through
loops of heavy charged particles, like W bosons and top quarks. In Fig. 3.1 we
show the Feynman diagrams for the Higgs boson decay in two photons.

Figure 3.1: Feynman diagrams for the Higgs boson decay in two photons: (left)
loop of W bosons; (right) loop of t quarks.
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Since its mass was measured to be about 125 GeV, the Higgs boson will
decay in two photons, each with energy E ≥ mH/2 ∼ 60 GeV, where the lower
limit of about 60 GeV is reached when the Higgs boson is produced at rest.
Thus we look for events with two photons with high transverse energy ET .

We request that the two photons are identified as isolated in the ECAL,
where they form a tight cluster shape in η, and also that they are far from jets.
The protons, however, are not elementary particles: the processes that lead to
the production of the Higgs boson imply the presence of additional activity in
the detector, which originates from their breaking. In some cases, this activity
can have a typical and easily distinguishable conformation. For example, in the
VBF, there are two jets produced at large pseudorapidities in the final state.
When the Higgs boson is produced in association to other particles, such as
W and Z in the Higgs-strahlung, we can study the decay products of these
particles, which can enhance the selection efficiency.

The most striking characteristic of the signal in VBF production is the pres-
ence of a resonant Breit-Wigner peak in the invariant mass distribution of the
pairs of reconstructed photons and of two forward, very energetic and with large
pseudorapidity gap jets.

3.2 Backgrounds

Any event with two deposits of energy in the ECAL could in principle be con-
sidered as background for the γγ channel. Processes with two real photons in
the final state with high transverse energy, which do not come from a Higgs
boson and thus emulate the signal, are irreducible background, while events
where at least one jet in the final state is interpreted as a photon are reducible
background.

In proton-proton collisions, two photons can be produced through the an-
nihilation of a quark-antiquark pair or through fusion of two gluons. The pro-
duction of two photons through quark-antiquark annihilation is usually named
Born, while the fermion loop in the Feynman diagram of the gluon fusion at-
tributes to the process the name box.

In Fig. 3.2 we report the Feynman diagram for the Born and the box pro-
cesses.

Figure 3.2: Production of two photons in proton-proton collisions: (a) Born
process; (b) box process.

The topology of these events is identical to what we expect from the signal.
In fact, both for the signal and for the background we have two isolated photons
with high transverse energy. However, in the two background cases the diphoton
production is non resonant. To discriminate between these and H → γγ events,
we can study many discriminating kinematic variables of the events, which for
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example involve the diphoton invariant mass, the transverse energy and the
angular distributions of the photons and the jets in the final state.

Events where at least one jet in the final state is interpreted as a photon can
be of two kinds: events from multijet production (pp → jets) and events with
production of a photon and at least one jet (pp→ γ + jets).

In Fig. 3.3 we show the Feynman diagrams of the production of γ + 1 jet
and of 2 jets in proton-proton collisions.

(a) (b)

Figure 3.3: (a) Feynman diagram of the production of γ + 1 jet in proton-
proton collisions: (left) gluon Compton scattering; (right) quark-antiquark an-
nihilation; (b) Feynman diagram of the production of 2 jets in proton-proton
collisions.

To constitute a source of background, the jets must deposit a large amount of
energy in the ECAL, simulating the electromagnetic shower of a signal photon.
Therefore they must contain a particle which can produce such a deposit, which
can be a photon, an electron, or a hadron that decays electromagnetically (such
as π0, η, η′, ρ, ω). In any case, the candidate photon is part of a jet, and thus
is not isolated. Typically in these kind of events, we should find some activity
nearby the candidate photon, which can be tracks reconstructed in the inner
tracker, other deposits in the ECAL or in the HCAL.

There is also the background relative to the process pp→ γγ + jets, where
the two photons can be non resonant or may have low transverse energy.

Another kind of reducible background are the Drell Yan events, where a
quark-antiquark pair annihilates in a photon or in a Z boson, which then decays
in a positron-electron pair (qq̄ → γ/Z∗ → e+e−). This kind of process forms two
deposits of energy in the ECAL and thus can constitute a source of background
if the tracks of the electrons are not correctly reconstructed.

3.3 Measurement of the mass of the Higgs boson

Once we have defined the selection criteria, we will have events with pairs of
candidate photons. The photons coming from the Higgs boson decay will have
an invariant mass distribution peaked around 125 GeV, with a width given by
the experimental resolution on the invariant mass, since the intrinsic width of
the Higgs boson is negligible. Instead the candidate background photons will
have a decreasing invariant mass distribution.

Being the photon massless, the invariant mass of a diphoton pair is given
by:

mγγ =
√

2E1E2(1− cosα) (3.1)
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where E1, E2 are the energies of the two photons and α is the angle between
them. If, as we will se in the following, the uncertainty in the measurement of
the direction of the photons is of the order of the ◦, the angular resolution is
negligible with respect to the energy resolution.

The discovery of the Higgs boson in the decay channel in two photons yielded
a peak in the invariant mass spectrum of the selected pair of photons. In order
not to attribute such a peak to a statistical fluctuation of the background, the
background contribution b under the peak was calculated by performing a fit to
the observed distribution in its sidebands. The contribution of the signal s was
obtained by subtraction.

Assuming a Poisson distribution of the statistical fluctuations in the number
of events, the significance σ of the signal is defined as:

σ =
s√
b

(3.2)

When this number is greater than 5 the probability that the relative peak
was due to a casual fluctuation of the background is less than 5.7 · 10−5. For
a significance σ > 5 a discovery is announced. For a significance σ > 3, the
probability of a casual fluctuation of the background is of the order of 10−3,
and an evidence is announced.

From Eq. (3.1), we see that the resolution on the invariant mass depends on
the resolution of the energy two photons and on the resolution of their relative
angle.

The bunches of protons accelerated at LHC have a negligible section in the
plane transverse to the beams, but have a standard deviation of about 7.5 cm in
the direction z, which results in a longitudinal dispersion of about 5.3 cm in the
distribution of the interaction vertices. Assuming that the photon is produced
in the nominal interaction vertex (the origin of the CMS coordinates) can thus
correspond to an error of the order of the cm, which, for a photon that collides
in the center of the barrel (at η ∼ 0), corresponds to an error of the order of
the ◦ in the measurement of its direction.

In order to have a good resolution in the angle, and thus in the invariant
mass, it is important to measure the position of the interaction vertex, which
is the Higgs boson decay vertex. Since the photons are not charged particles,
they do not leave tracks, however we can study the tracks of the other parti-
cles produced in the proton-proton collisions to localize the Higgs boson decay
vertex.

3.4 Photon reconstruction in the ECAL

A photon releases all its energy in the crystals of the ECAL. Therefore, a can-
didate photon is an energy deposit in the ECAL, which can extend on several
crystals, thus an algorithm is needed to reconstruct all the deposited energy.

The transversal dimension of the ECAL PWO crystals was chosen to be
equal to the Molière radius of the PWO, so a photon colliding in the center of a
crystal’s frontal face will deposit 90% of its energy in it. To fully reconstruct the
energy of the photon it is necessary to group together several adjacent crystals
and sum up the energy contained in them. The set of these crystals is called
cluster, while the grouping procedure is called clustering algorithm.
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The energy deposit of an electromagnetic shower produced in the ECAL is
made of a local energy maximum embedded in a region of lower energy deposits
(bump). The reconstruction process therefore must find the crystals (seeds)
where there is a larger energy deposit than the deposit in the other adjacent
crystals, and it must include the nearby crystals, trying to recover the maximum
fraction of the energy of the shower. However the clustering process must not
include the deposits relative to other particles or the noise of the detector.

To reduce the influence of the fluctuations of the noise, a procedure is fol-
lowed, named zero suppression, which consists in hiding the contribution of the
crystals that register an energy within three standard deviations from the mean
value of the noise. The hiding implies that the value of the energy of these
crystals is put equal to zero.

In the case of a photon or an electron/positron colliding in the ECAL, the
bump should reproduce the cluster shape of the shower. However, at the border
of it, where the energy deposits are comparable with the noise, there is the risk
that part of the energy that belongs to the shower gets ignored during the zero
suppression, or there is the risk that a large fluctuation of the noise simulates
the presence of a second bump.

To avoid these problems, we can choose to open matrices of fixed dimensions
around the seed. In fact, this kind of procedure tends to have less problems of
this type respect to a bump research procedure. About the 94% of the energy
of the photon is deposited in a 3× 3 matrix around the seed, while the 97% in
a 5× 5 matrix.

While traversing the tracker material in front of the ECAL, the photons can
convert in positron-electron pairs, and the electrons can irradiate photons by
bremsstrahlung. The deposits are thus spread in regions of the ECAL which
can be more extended respect to the characteristic regions of a single shower.
This brings to elaborate more complex and flexible clustering algorithms.

3.4.1 Superclustering in the ECAL

Energy deposits in several ECAL channels are clustered assuming that each
local maximum above 1 GeV corresponds to a single particle incident on the
detector [33]. An ECAL energy deposit can be shared between overlapping
clusters, and a Gaussian shower profile is used to determine the fraction of the
energy deposit to be assigned to each of the clusters. Since electrons and photons
have a significant probability of showering when traversing the CMS tracker,
by the time the particle reaches the ECAL, the original object can consist of
several electrons and/or photons produced from bremsstrahlung and/or pair
production. The multiple ECAL clusters need to be combined into a single
supercluster (SC) that contains the energy of the original electron/photon. This
step is known as superclustering, and the combining process uses two algorithms:

• the “mustache” algorithm starts from a cluster above a given threshold,
called seed cluster. Additional clusters are added if they fall into a zone,
whose shape is similar to a mustache in the transverse plane. The name
mustache is used because the distribution of ∆η = ηseed−cluster − ηcluster
vs ∆φ = φseed−cluster−φcluster is slightly bended because of the solenoidal
structure of the CMS magnetic field, which tends to spread this radiated
energy along φ, rather than along η. The size of the mustache region de-
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pends on ET , since the tracks of particles with larger transverse momenta
get less bent by the magnetic field. The mustache SCs are used to seed
electrons and photons;

• the “refined” algorithm uses tracking information to extrapolate bremsstrahlung
tangents and conversion tracks to decide whether a cluster should belong
to a SC. It uses mustache SCs as starting points, but is also capable of cre-
ating its own SCs. The refined SCs are used to determine all ECAL-based
quantities of electrons and photons.

3.4.2 Energy corrections

For a correct energy reconstruction of a photon or an electron in the ECAL
it is necessary to take into account the effects depending on the energy scale
and on the pseudorapidity. The energy scale corrections depend on residual non
linearities in the calorimeter, due to the non complete containment of the shower
and to the effects of the light collection in the crystals. The dependence on the
pseudorapidity comes from the structure of the detector, which has a quantity
of crossed material which varies in η (it is maximum near the junctions between
barrel and endcap). The quantity of crossed material influences the energy
fraction lost by the electrons by bremsstrahlung and the probability of e+e−

conversion for the photons, therefore it results in a downgrade in the energy
reconstruction.

The energy deposited by electrons and photons in the ECAL and collected
by the superclustering algorithm is subject to losses for several reasons. Elec-
tromagnetic shower energy in the ECAL can be lost through lateral and lon-
gitudinal shower leakage, or in intermodule gaps or dead crystals. There are
also pileup interactions that produce photons/electrons that end up in the same
supercluster. The shower energy can also be smaller than the initial electron
energy because of the energy lost in the tracker.

These losses result in systematic variations of the energy measured in the
ECAL. Without any corrections, this would lead to a degradation of the energy
resolution for reconstructed electrons and photons. To improve the resolution, a
multivariate technique is used to correct the energy estimation for these effects.

A set of regression fits based on boosted decision trees (BDT) is applied to
correct the energy of e/γ. The minimum ET for electrons (photons) considered
for the BDT training is 1 (5) GeV at the simulation level. Each of these energy
regressions is built as follows. The regression target y is the ratio between
the true energy of an e/γ and its reconstructed energy, thus the regression
prediction for the target is the correction factor to be applied to the measured
energy to obtain the best estimate of the true energy. The regression input
variables, represented by the vector ~x, includes the object and event parameters
most strongly correlated with the target. The regression is implemented as a
gradient-BDT, and a log-likelihood function is employed:

L = −
∑

MC e/γ objects

ln p(y|~x) (3.3)

where p(y|~x) is the estimated probability for an object to have the observed
value y, given the input variables ~x, and the sum runs over all objects in a
simulated sample in which the true values of the object energies are known.
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The probability density function used in this regression algorithm is a double-
sided crystal ball function that has a Gaussian core with power law tails on both
sides.

After applying the previous corrections, small differences remain between
data and simulation in both the electron and photon energy scales and resolu-
tions.

An additional spreading needs to be applied to the photon and electron
energy resolutions in simulation to match that observed in data. The electron
and photon energy scales are corrected by varying the scale in the data to match
that observed in simulated events. The magnitude of the final correction is up
to 1.5% with a total uncertainty estimated to be smaller than 0.1 (0.3)% in the
barrel (endcap). In Fig. 3.4 we show the ratio of the true to the reconstructed
electron energy.

Figure 3.4: Ratio of the true to the reconstructed electron energy in the pT range
15–30 GeV with and without regression corrections, with a DSCB function fit
overlaid, in 2016 MC samples for barrel (left) and endcap (right) electrons.
Vertical bars on the markers represent the statistical uncertainties of the MC
samples.

3.4.3 Reconstruction of converted photons

Between 48% and 50% of the photons produced from the Higgs boson decay
converts in a positron-electron pair, while traversing the material of the internal
tracker.

The positron and the electron produced in the conversion are deviated in
opposite directions from the magnetic field and thus can be absorbed in the
ECAL in positions very distant from each other, such that they are not embed-
ded in the same supercluster. Even if the two cluster are close together, the
form of the energy deposit of a converted photon is different from that of a non
converted photon.

Respect to an unconverted photon, a photon that converts in an electron-
positron pair in the tracker has an additional information, which is given by
the tracks left by the charged particles in the tracker, that can be studied in
order to find the original direction of the photon. This procedure improves the
angular resolution and therefore the invariant mass resolution of the photons,
as we can see from Eq. (3.1). Even in the case of unconverted photons, the
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study of the tracks of the charged particles produced in the primary vertex in
association with the photons help in finding the direction of the photons.

3.5 Reconstruction and identification of jets

Hadronic jets are clustered from their reconstructed particles using the infrared
and collinear safe anti-kT algorithm [34, 35] with a distance parameter of 0.4.
Jet momentum is determined as the vectorial sum of all particle momenta in the
jet, and is found from simulation to be, on average, within 5% to 10% of the true
momentum over the whole pT spectrum and detector acceptance. Additional
proton-proton interactions within the same or nearby bunch crossings (pileup)
can yield additional tracks and calorimetric energy depositions to the jet mo-
mentum. To mitigate this effect, charged particles identified to be originating
from pileup vertices are discarded and an offset correction is applied to correct
for remaining contributions. Jet energy corrections are derived from simulation
to bring the measured response of jets to that of particle level jets on average.

In the VBF case, the final state jets will be characterized by high values
of their invariant mass mjj , of their transverse momentum (pT )j and of the
difference of their pseudorapidities (∆η)jj .

3.6 Kinematic variables

Several MC simulations have been done for different hypotheses of signal, such
as VBF for SM, CP -even, CP -odd, and for backgrounds, like γγ + jets and γ
+ jets. Different hypotheses can yield different distributions.

While typically ggH is considered as signal, in our case we will consider it
as background, since we are only interested in the V V H couplings, which enter
the VBF production mode even if they do not enter in the decay process in the
H → γγ channel (which occurs via quark loops). ggH constitutes in this case
an irreducible background, since it contributes to the resonant invariant mass
peak of the pairs of photons.

The final state jets of the VBF production come from the hadronization
of the partons originating from the high center of mass energy proton proton
collisions, that scatter with high longitudinal momentum and that continue
almost in the original direction of the beam. This is not true for the background
processes, thus the distributions of mjj , (pT )j and (∆η)jj are expected to be
different from the VBF case. Moreover, as said before, the invariant mass
distribution of the pair of photons for the Higgs boson signal will be resonant,
with a peak around 125 GeV, while the background will have a non resonant
decreasing exponential invariant mass distribution.

In the ggH case, the final state jets are the ones of the initial state radiation.
Therefore they have low pT , and their spectrum is characterized by a decreasing
exponential distribution.

Differences between the SM and the anomalous VBF samples can be found
in the angular distributions of photons and jets. The anomalous samples include
different CP hypotheses which have a different spin-parity with respect to a pure
SM scalar Higgs boson, and also contributions of BSM particles with a mass
scale of Λ1. In this category we are grouping the contributions of particles that
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enter in a virtual way in the loops, that can have a mass even larger than that
of the Higgs boson and that are short lived. In fact, in the loops the energy is
not conserved, and they can receive contributions from virtual particles related
to physics BSM, which can have a mass scale of order Λ1. We expect that
the angular variables that can be reconstructed, such as ∆η and ∆φ between
pairs of photons and jets, are different between the SM and the anomalous
samples, since for the conservation of angular momentum different spin-parity
hypotheses will yield non-flat angular distributions that will depend from the
type of interaction considered. Therefore the angular combinations that can be
built from the photons and the jets in the final state are useful in discriminating
between different hypotheses.

As said before, a discriminating variable that can be considered is the trans-
verse momentum of the photons and the jets. In this case, the new physics
anomalous samples will have a harder spectrum respect to the SM sample, es-
pecially the one with the large new physics scale Λ1.

All these differences in the distributions are useful in discriminating between
different hypotheses of Higgs boson signal and between signal and background
(i.e. between VBF and ggH, γγ + jets, γ + jets).

A set of simple selections on kinematic variables is applied to reject most
of the backgrounds and enhance the VBF phase space: in the following we
will call this set of cuts VBF preselection. These cuts are chosen in order to
maximize the discrimination between signal and background, and are given by
the following conditions:

• |ηγ1 | < 2.5, |ηγ2 | < 2.5, |ηγ1 | < 1.44 or |ηγ1 | > 1.57, |ηγ2 | < 1.44 or
|ηγ2
| > 1.57;

• 100 GeV < mγγ < 180 GeV;

• (pT )γ1/mγγ > 0.333, (pT )γ2/mγγ > 0.25;

• |∆η|jj > 0.0, |ηj1 | < 4.7, |ηj2 | < 4.7, min(∆Rjet γ) > 0.4;

• (pT )j1 > 40 GeV, (pT )j2 > 30 GeV;

• mjj > 250 GeV;

• MVAIDγ1
> 0.5, MVAIDγ2

> 0.5.

The cuts in the acceptance of the photons |ηγ | < 2.5 consider the photons
that travel in regions within the acceptance of the tracker, even if the ECAL
covers up to |η| = 3. In fact, in the regions beyond the borders of the tracker, the
photons have a worse energy resolution, and there is a greater contribution from
jets, because one cannot require that the photons are isolated in the tracker.

The photons coming from the decay of the Higgs boson have a Jacobian
peak around 60 GeV in their pT distribution. A cut on (pT )γ would alterate
the invariant mass distribution of the photons. Instead, we choose to apply a
cut to (pT )γ/mγγ , which does not modify the invariant mass distribution, and
which yields a smoothly decreasing exponential distribution in (pT )γ for the
background.

As jet acceptance we require |ηj | < 4.7. Beyond that the contribution of
noise and pileup energy in the hadronic calorimeters is too high. With the
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min(∆Rjet γ) > 0.4 cut, we require that the jets are far from the photons to
avoid photons coming from jets.

A BDT was trained using as inputs some photon identification variables
that exploit the cluster shape of the photons, whose output is called MVAIDγ .

A cut in MVAIDγ > 0.5 is used to reject the fake photons, which can be charged
or neutral hadrons (eg. kaons or pions), which typically yield different cluster
shapes. This cut is particularly efficient in suppressing the pp → 2 jets, γ +
1 jet and γ + 2 jets events. Regarding the γ + 1 jet sample, by cutting on
the MVAIDγ of the two reconstructed photons, one of them will pass with high
efficiency, the other with low efficiency. Since we do not know which one of
them is the fake photon, we put the same requirement on both reconstructed
photons.

In Fig. 3.5, 3.6 and 3.7, we show the histograms normalized to their area of
some discriminating variables for some MC samples for the events that pass the
VBF preselection in Eq. 3.6.
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Figure 3.5: MC simulation of mγγ for different hypotheses.
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Figure 3.6: (a) MC simulation of mjj for different hypotheses; (b) MC simula-
tion of |∆η|jj for different hypotheses.
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Figure 3.7: (a) MC simulation of (pT )j1 for different hypotheses; (b) MC simu-
lation of (∆φ)jj for different hypotheses.

As we can see from Fig. 3.5, the invariant mass of the pairs of photons for the
different signals does not depend on the coupling. The difference between the
SM and BSM samples does not lie in the shape of mγγ , but in the normalization,
which comes from the differences in the cross section and in the preselection
efficiency for the different samples. In Sec. 6.2 we will use this variable to extract
the signal, by statistically subtracting the non-resonant background with a fit:
at that point we will remain with the sum of the VBF and the ggH contributions.

In Fig. 3.6 we show mjj and |∆η|jj , the typical variables used in the VBF
context.

As we can see from Fig. 3.7, the anomalous VBF samples show a harder
(pT )j spectrum respect to the SM VBF and ggH.
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Chapter 4

Multivariate analysis

4.1 MVA selection based on SM-only hypothesis

A multivariate analysis (MVA) is a statistical procedure for data analysis which
involves the simultaneous study of many variables and which can produce a
single output as a result. The output for each hypothesis class can be interpreted
as the probability that the event under test is a signal or a background event.
In particular, a BDT was trained for the measurement of the cross section of
the SM Higgs boson in the γγ decay channel, and it discriminates between 3
classes, namely SM VBF, SM ggH and non resonating background [32].

In the study done for this thesis, contrary to what was done in the measure-
ment of the cross section, we consider also some anomalous VBF signals. In
Fig. 4.1 and 4.2, we show the histograms normalized to their area of the three
MVA outputs for some MC samples, including SM and BSM cases.
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Figure 4.1: (a) (MVA V BF )jj for different MC samples; (b) (MVA ggH)jj
for different MC samples.
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Figure 4.2: (MVA bkg)jj for different MC samples.

In [32] a selection on the three outputs of the BDT was used to discriminate
the SM signal from the background: in the paper, some cuts in the MVA outputs
were chosen, given by the following conditions:

• (MVA V BF )jj > 0.379;

• (MVA ggH)jj < 0.565;

• (MVA)γγ > 0.800.

Applying the VBF preselection in Eq. 3.6 and the MVA cuts in Eq. 4.1, we
obtain the Tab. 4.1 of the selection efficiencies for the single cut with respect
to the previous one and the Tab. 4.2 of the expected events in the 2017 data
sample with 41.5 fb−1.

γγ + jets γ + jets ggH VBF Λ1 VBF CP odd VBF CP even VBF SM
|ηγ | 0.99 0.99 0.99 0.99 0.99 0.99 0.99
mγγ 0.50 1.00 1.00 0.98 0.98 0.98 0.99

(pT /M)γ 0.85 0.83 0.93 0.95 0.94 0.93 0.90
|∆η|jj 0.28 0.09 0.20 0.84 0.91 0.91 0.56
(pT )j 0.57 0.25 0.46 0.90 0.95 0.95 0.77
mjj 0.36 0.26 0.33 0.91 0.84 0.85 0.79

MVAIDγ 0.65 0.10 0.72 0.70 0.74 0.73 0.73

(MVA V BF )jj 0.10 0.12 0.17 0.16 0.18 0.22 0.59
(MVA ggH)jj 0.10 0.12 0.17 0.16 0.18 0.22 0.59

(MVA)γγ 0.09 0.05 0.17 0.16 0.18 0.21 0.57

Table 4.1: Selection efficiencies for the single cut with respect to the previous
one for different hypotheses, with the VBF preselection and the MVA cuts.
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γγ + jets γ + jets ggH VBF Λ1 VBF CP odd VBF CP even VBF SM
|ηγ | 608055 474253 2079 228 184 198 167
mγγ 302929 472854 2070 223 180 194 165

(pT /M)γ 256841 394648 1927 212 169 180 149
|∆η|jj 72142 35391 378 179 154 164 83
(pT )j 41207 8963 173 162 147 156 64
mjj 15024 2327 57 147 123 132 50

MVAIDγ 9802 241 41 103 91 96 37

(MVA V BF )jj 965 30 7 17 16 21 22
(MVA ggH)jj 965 30 7 17 16 21 22

(MVA)γγ 848 13 7 17 16 21 21

Table 4.2: Number of expected events in 41.5 fb−1 for different hypotheses, with
the VBF preselection and the MVA cuts.

The number of events is given by:

N = Lintσε (4.1)

where Lint is the integrated luminosity, which for the 2017 samples studied
in this thesis is equal to 41.5 fb−1, σ is the cross section and ε is the efficiency.

From Tab. 4.2, we can see that few signal events pass the selection given by
the cut in the (MVA V BF )jj variable, especially for the anomalous signals, so
in the process we are rejecting most of the signal, identifying it as background.
It is therefore necessary to find a new set of discriminators in order to select
more VBF events as signal and in order to not discard them as background.

To this end, a deep neural network (DNN) training was performed. This
produced a new set of variables, analogous to the MVA ones, which were used to
select efficiently the VBF events as signal and to treat the other contributions as
background. In addition to the SM samples, this time the DNN considered was
trained also on the anomalous signals samples, which show different kinematics
respect to the SM.

4.2 DNN training

Deep learning is a class of machine learning algorithms, which are computer
algorithms that can improve automatically through experience and using data
[36]. These algorithms build a model based on sample data, known as training
data, in order to make predictions without being explicitly programmed to do
so.

A DNN is an artificial neural network (ANN), that consists of a collection of
simulated neurons. Each neuron is a node, connected to other nodes via links.
Each link has a weight, which determines the strength of a node’s influence on
another.

ANNs are composed of artificial neurons conceptually derived from biological
neurons. Each artificial neuron has inputs and produces a single output which
can be sent to many other neurons. The inputs can be the feature values of a
sample of external data, or can be the outputs of other neurons. The outputs
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of the final output neurons of the neural net accomplish the particular task in
question.

The output of the neuron is given by the weighted sum of all the inputs,
weighted by the weights of the connections from the inputs to the neuron. A
bias term is added to the sum. The sum is called activation, and is passed to a
non-linear activation function to produce the output. Therefore the activation
function defines how the weighted sum of the input is transformed into an output
from the nodes in a layer of the network. The initial inputs are external data,
while the ultimate outputs accomplish the particular task in question.

The network consists of connections. Each connection provides the output of
a neuron as an input to another neuron, and is assigned a weight that represents
its relative importance. A given neuron can have multiple input and output
connections.

The neurons are typically organized into multiple layers, especially in deep
learning. A DNN is an ANN with multiple layers between the input and output
layers. Neurons of one layer connect only to neurons of the immediately pre-
ceding and immediately following layers. The layer that receives the external
data is the input layer. The layer that produces the result is the output layer.
In between there can be zero or more hidden layers.

A hyperparameter is a constant parameter whose value is set before the
learning process begins. Examples of hyperparameters include the number of
layers, the batch size, the number of epochs, the number of nodes.

Learning is the adaptation of the network to better handle a task by consid-
ering sample observations. It involves adjusting the weights of the network to
improve the accuracy of the result, by minimizing the observed errors. Learning
is complete when examining additional observations does not usefully reduce the
error rate. It is possible to define a loss function that is evaluated periodically
during learning. As long as its output continues to decline, learning continues.
The outputs are numbers, so when the error is low, the difference between the
output and the correct answer is small. Learning attempts to reduce the total
of the differences across the observations.

For our DNN a classification algorithm was considered.
Many discriminating variables were used as input for our DNN training,

such as mjj , the transverse momentum and the angular distributions already
discussed in Sec. 3.6. We do not use mγγ as input of the DNN training: in Sec.
6.1 we will use this variable in the fit procedure performed to extract the signal
as a peak over a decreasing non-resonating background.

The DNN was trained to discriminate between 3 classes of events:

• ggH, the SM contribution only;

• γγ + jets, which constitutes the main source of background, since γ +
jets has low statistics;

• VBF production.

The training was done with two VBF configurations: in the first we con-
sidered the SM only; in the second we considered the SM and the anomalous
signals, which include CP -even, CP -odd, Λ1, Zγ samples and their fractions
(for example 50% CP -even) and their combinations (for example 50% Λ1 and
50% Zγ).
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As a result, for each of the three classes the DNN gave an output between 0
and 1, which is analogous to a MVA output and can be viewed as the probability
that a given contribution is correctly interpreted as belonging to a given class.

In Fig. 4.3 and 4.4, we show the histogram normalized to their areas of the
three DNN variables for different MC samples and for the three classes VBF,
ggH and background.
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Figure 4.3: (a) DNN V BF for different MC samples; (b) DNN ggH for dif-
ferent MC samples.
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Figure 4.4: (a) DNN bkg for different MC samples; (b) ROC curve, signal
efficiency vs background efficiency.

The ROC curve in Fig. 4.4, where ROC stands for receiver operating char-
acteristic, is a plot that shows the performance of a classification model at all
classification thresholds. Thus each point of the ROC curve will indicate a clas-
sification threshold. The threshold is a three-dimensional selection on the three
output variables. This curve plots two parameters, the true positive rate TPR
and the false positive rate FPR, defined respectively as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN
(4.2)
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where TP, TN,FP, FN stand respectively for true positives, true negatives,
false positives and false negatives.

In order for the ROC curve to be a good discriminant, it has to stay as far
as possible from the diagonal.

The area under the ROC curve is a measure of the quality of the model’s
predictions across all possible classification thresholds, and it can be interpreted
as the probability that the classification model ranks a random positive example
more highly than a random negative example. It ranges from 0 to 1: a model
whose predictions are 100% wrong has an area equal to 0, while a model whose
predictions are 100% correct has an area equal to 1.

The software library Tensorflow was used to train the DNN [37]. The pro-
cess maximized the accuracy and at the same time minimized the categorical
crossentropy. The accuracy and the categorical crossentropy are metrics, func-
tions used to judge the performance of a model. The accuracy calculates how
often the prediction equals the input data, and is the fraction of predictions our
model got right. It can be defined as follows:

accuracy =
number of correct predictions

total number of predictions
=

TP + TN

TP + TN + FP + FN
(4.3)

The categorical crossentropy is a loss function, and it computes the crossen-
tropy metric between the input data and the predictions. It is a measure of the
difference between the two distributions.

For the training of our DNN, we used 19 nodes as the input layer, equal
to 19 discriminating variables, then 10 nodes in the hidden layer, and then 3
nodes as the output layer, equal to the 3 output classes. In Fig. 4.5 we show
the training convergence plot.
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Figure 4.5: Training convergence plot.

In the training convergence plot, the batch size, which is equal to 1000, rep-
resents the number of training samples used in one iteration, while the number
of epochs or iterations, which is also equal to 1000, represents the number of
times the learning algorithm runs through the entire training dataset. As we
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can see, both the test accuracy and the train accuracy roughly converge to a
constant for large number of iterations. We then decided to stop the training
there.

4.3 Event selection optimization

After the training, we obtained three DNN variables relative to the classes VBF,
ggH and background, which were used to optimize the event selection. This was
done in the following way. For each sample of signal and of background, we
filled a three-dimensional histogram with the cut on the VBF variable in the x
axis, with the cut on the ggH variable in the y axis and with the cut on the
background variable in the z axis. We filled the histogram with the statistical
significance computed with the number of events that pass the VBF preselection
in Eq. 3.6 expected in 41.5 fb−1, adding a selection 120 < mγγ < 130 GeV,
i.e. that mγγ is within 5 σ with respect to the expected peak. We add this
cut on mγγ since, as will be shown in Sec. 6.1, we will extract the signal with
a fit to the invariant mass of the pairs of photons: in this case, the statistical
significance is determined by the amounts of signal and background present in
a region where most of the signal is found.

For a fixed triplet of cuts (xmin, ymax, zmax), we defined the number of events
in a histogram of a particular sample as the following integral:

Nsample =

∫ 1

xmin

dx

∫ ymax

0

dy

∫ zmax

0

dz Nsample(x, y, z) (4.4)

where along x we integrated from xmin to 1, since the selection on the VBF
probability is prob(V BF ) > x, while along y and along z we integrated from 0
to ymax and from 0 to zmax respectively, since for the ggH and bkg outputs we
require an upper limit, prob(ggH) < y and prob(bkg) < z.

Then we defined the statistical significance in the following way:

statistical significance =
s√
s+ b

(4.5)

where s and b are the number of events, calculated with Eq. (4.4), for the
samples “signal” and “background”, as described below:

s = s1 + s2 (4.6)

s1 = f ·NV BF SM (4.7)

s2 = (1− f) ·NV BF CP odd (4.8)

b = b1 + b2 + b3 (4.9)

where b1, b2 and b3 are the number of ggH, γ + jets and γγ + jets events,
respectively, normalized to 41.5 fb−1, and the value of the fraction f = 90% was
chosen since we expect a small contribution from BSM couplings, and we used
a fraction of 10% of CP odd signal, as an example.

Then we looped over the triplet of cuts (x, y, z), each from 0 to 1, in steps of
1% probability of each category, and we found the maximum of the statistical
significance given in Eq. (4.5).
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In correspondence of the maximum of the significance, we found the optimal
values of the cuts for the three DNN variables:

• DNN V BF > 0.29;

• DNN ggH < 0.71;

• DNN background < 0.09.

To show graphically the procedure of the event selection optimization, a two-
dimensional scan of the statistical significance was performed. This was done
keeping fixed one of the cuts on the DNN outputs at a time, namely fixing one
of the cuts of the triplet (x, y, z) at a time in correspondence of the value that
maximized the statistical significance, and performing a two-dimensional scan
on the other two cuts.

For example, fixing the cut on DNN V BF means that in the integral in Eq.
(4.4) we integrate in dx from the x that maximizes the statistical significance,
X, to 1, and we leave the rest unchanged, so that the number of events becomes:

x−maxed Nsample =

∫ 1

X

dx

∫ ymax

0

dy

∫ zmax

0

dz Nsample(x, y, z) (4.10)

At this point, we define a two-dimensional histogram, filled with the value of
the statistical significance which corresponds to the DNN ggH and DNN bkg
cuts. The statistical significance is calculated from Eq. (4.5), using the values
of s and b in Eq. (4.6), (4.7), (4.8) and (4.9), calculated using this time the
x-maxed number of events in Eq. (4.10). Thus we obtain the two-dimensional
histogram in Fig. 4.6.
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Figure 4.6: Two-dimensional histogram of the statistical significance, fixing the
cut on DNN V BF .

We proceed in a similar way for the cuts on DNN ggH and DNN bkg.
Thus we obtain the two-dimensional histograms in Fig. 4.7.
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Figure 4.7: (a) Two-dimensional histogram of the statistical significance, fixing
the cut on DNN ggH; (b) two-dimensional histogram of the statistical signifi-
cance, fixing the cut on DNN bkg.

We then constructed the Tab. of the selection efficiencies 4.3, and the Tab.
of the number of the expected events 4.4, using the VBF preselection of Eq. 3.6
and the DNN cuts of Eq. 4.3.

VBF Λ1 VBF CP odd VBF CP even VBF SM ggH γ + jets γγ + jets
|ηγ | 0.99 0.99 0.99 0.99 0.99 0.99 0.99
mγγ 0.98 0.98 0.98 0.99 1.00 1.00 0.50

(pT /M)γ 0.95 0.94 0.93 0.90 0.93 0.83 0.85
|∆η|jj 0.84 0.91 0.91 0.56 0.20 0.09 0.28
(pT )j 0.90 0.95 0.95 0.77 0.46 0.25 0.57
mjj 0.91 0.84 0.85 0.79 0.33 0.26 0.36

MVAIDγ 0.70 0.74 0.73 0.73 0.72 0.10 0.65

DNN V BF 0.90 0.86 0.77 0.53 0.34 0.04 0.11
DNN ggH 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DNN bkg 0.80 0.73 0.62 0.61 0.56 0.00 0.17

Table 4.3: Selection efficiencies of the single cut respect to the previous one for
different hypotheses, with the VBF preselection and the DNN cuts.
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VBF Λ1 VBF CP odd VBF CP even VBF SM ggH γ + jets γγ + jets
|ηγ | 228 184 198 167 2079 474253 608055
mγγ 223 180 194 165 2070 472854 302929

(pT /M)γ 212 169 180 149 1927 394648 256841
|∆η|jj 179 154 164 83 378 35391 72142
(pT )j 162 147 156 64 173 8963 41207
mjj 147 123 132 50 57 2327 15024

MVAIDγ 103 91 96 37 41 241 9802

DNN V BF 93 78 74 20 14 10 1099
DNN ggH 93 78 74 20 14 10 1099
DNN bkg 75 57 46 12 8 0 191

Table 4.4: Number of events expected in 41.5 fb−1 for different hypotheses, with
the VBF preselection and the DNN cuts.

From Tab. 4.4, we can see that more signal events pass the whole selection
respect to Tab. 4.2 which was made using the selection optimized for the SM
analysis, especially for the anomalous signals. We therefore conclude that the
DNN was trained correctly and that the event selection was optimized in order to
select correctly the VBF events as signal and the other samples as background.

4.4 DNN variables

For the next steps of this thesis, we do not use the cuts in the DNN variables in
Eq. 4.3 in our event selection, since even if they are more efficient than the SM
MVAs on the anomalous coupling samples, they still reduce of about 40% the
number of SM VBF events, obtaining only 12 events at the end of the selection
for the case of an integrated luminosity of 41.5 fb−1, as we can see from Tab.
4.3 and 4.4. Instead, we will use the shape of the DNN variables to perform a
statistical check using the sPlots technique, as we will see in Sec. 6.2.
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Chapter 5

Comparison between data
and Monte Carlo

5.1 Diphoton loose control sample

We can compare the data sample collected by CMS in 2017 and the different
MC samples at our disposal in the case of the diphoton events. In order to do
this, we choose a loose preselection, which differs from the VBF preselection in
Eq. 3.6 by the following cuts:

• MVAIDγ2
> −0.2;

• mjj > 100 GeV;

• (pT )j1 > 30 GeV.

This preselection also lacks the acceptance cuts of the photons in |ηγ | that
were present for the VBF preselection. As we can see, this preselection is looser
than the VBF preselection. In fact, for the comparison between data and MC
we are less interested in having the highest purity for the Higgs boson signal,
but we are interested in having the highest statistics of diphoton events in a
similar phase space of the signal, in order to have enough precision to compare
the kinematic and photon identification (ID) variables.

The number of expected events that pass the preselection in Eq. 5.1 is given
in Tab. 5.1.

VBF CP odd VBF CP even VBF SM ggH γ + jets γγ + jets Data
Loose preselection 118 125 51 114 1739 27448 47549

Table 5.1: Number of expected events in 41.5 fb−1 for different MC samples
and for the data, for the loose preselection.

We do not apply any correction to the shape of the variables or to the
efficiencies of photons or jets.

As we can see from Tab. 5.1, the γ + jets and the γγ + jets events are
respectively one and two orders of magnitude larger than the VBF events, so we
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will neglect its contribution in this control region in what follows. We notice that
the number of data events is roughly two times the γγ + jets events. Therefore
there is a different normalization between the data and the MC samples of γ
+ jets and γγ + jets. We can adjust it by performing a two-component fit
procedure to one of the discriminating variables at our disposal for the γ +
jets and γγ + jets samples, in order to find a scale factor that we will apply
to the MC samples, so that the number of events of data and MC will become
comparable, and we can then compare the shapes of the kinematic variables
between the data and the simulation.

To this end, we choose |∆η|jj , which is the most discriminating variable
between the γ + jets and the γγ + jets samples. This is best seen from the plot
of the histograms normalized to their area for the two samples in Fig. 5.1.
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Figure 5.1: Normalized histograms of |∆η|jj for the γγ + jets and γ + jets
samples.

The fit procedure is articulated in the following steps:

1) fit the distribution of |∆η|jj for the γ + jets sample, using the Probability
Density Function (PDF):

fγj = C1G1 + (1− C1)G2 (5.1)

2) fit the distribution of |∆η|jj for the γγ + jets sample, using the PDF:

fγγj = C2G3 + (1− C2)G4 (5.2)

3) fit the distribution of |∆η|jj for the data sample, using the PDF:

f = Nfγj + (1−N)fγγj (5.3)

The fits of |∆η|jj for the γ + jets and γγ + jets samples are used to find
the functional form respectively of fγj and fγγj , which are continuous functions
that can be used to fit the data sample.

For steps 1) and 2), we use both for the PDF fγj in Eq. (5.1) and fγγj
in Eq. (5.2) the sum of two Gaussians Gi to fit the shape of the respective

53



MC distribution, with a normalization parameter Ci that takes into account
the fraction of one Gaussian respect to the other in the sum.

In Fig. 5.2 we show the plots of the fits.
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Figure 5.2: (a) Fit to the |∆η|jj distribution for the γ + jets sample; (b) fit to
the |∆η|jj distribution for the γγ + jets sample.

Each of the two fits yields the means and the standard deviations of the
two Gaussians and the normalization parameters Ci. These parameters are left
floating and the fit procedure adjusts them in order to better fit the shape of
the MC distributions.

For step 3) we use the total PDF f in Eq. (5.3), which fits the distribution
of the data, obtaining the plot shown in Fig. 5.3.
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Figure 5.3: Fit to the |∆η|jj distribution for the data sample.

The fit yields the value of the normalization parameter N , which is left
floating and which the fit procedure adjusts in order to better fit the shape of
the data distribution.

Now we can compare the data and the MC samples, by scaling the γ + jets
and the γγ + jets samples respectively by the following factors:
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scale(γ + jets) =
Integral(data) ·N
Integral(γ + jets)

(5.4)

scale(γγ + jets) =
Integral(data) · (1−N)

Integral(γγ + jets)
(5.5)

Using these scales, we can now plot in Fig. 5.4, 5.5 and 5.6 the distributions
of some variables for the stack of γ + jets + γγ + jets and of the data.
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Figure 5.4: (a) Scaled histograms for |∆η|jj for the data and for the stack of γ
+ jets and γγ + jets; scaled histograms for mjj for the data and for the stack
of γ + jets and γγ + jets.
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Figure 5.5: (a) Scaled histograms for (pT )j1 for the data and for the stack of
γ + jets and γγ + jets; (b) scaled histograms for ηj1 for the data and for the
stack of γ + jets and γγ + jets.
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Figure 5.6: Scaled histogram for ∆φjj for the data and for the stack of γ + jets
and γγ + jets.

As we can see from the previous plots, the difference in the normalization
that was present in Tab. 5.1 between the background samples γ + jets and
γγ + jets and the data sample has been significantly reduced by scaling the
histograms with the normalization factors obtained from the fit procedure, and
a fair agreement was obtained in the shape of the variables interesting for our
selection of the events between the data and the stacked MC samples.

After the normalizations of the components are adjusted by the fit, there
are still some discrepancies in the |∆η|jj distribution in Fig. 5.4 between data
and MC samples. This may be due to different reasons. Either the shape of γ
+ jets is not entirely correct, or with the loose preselection in Eq. 5.1 used in
this context there are other components which can give a relevant contribution,
such as Z + jets, W + jets, tt̄.

Both the MC for γ + jets and γγ + jets are simulation at leading order in
QCD, where there is no hard emission of gluons and therefore of jets. For this
reason, the simulation of pT in Fig. 5.5 is slightly shifted respect to the data.

5.2 Z → e+e− + 2 jets control sample

In order to study the performances of the selections on a sample that presents
characteristics similar to that of the signal, it is possible to select a control
sample with large statistics, high purity and free of bias using the Tag & Probe
technique, by studying the decay of the Z boson into e+e−.

We use the Z → e+e− events to build a sample with isolated electrons. Using
the approximation where a reconstructed electron approximates a reconstructed
photon, apart from the presence of a track, the electrons can be used in the
analysis of the photons to probe the identification performances and to study
the discrepancies between the efficiencies of the data and of the MC simulations.
The electron/photon approximation is precise and moreover it is justified by the
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fact that both are reconstructed with the same algorithms. Both are particles
that are completely absorbed by the ECAL, where the behaviour of a 45 GeV
electron originating from the decay of a Z boson is similar to the behaviour of
a 60 GeV photon originating from the decay of a Higgs boson.

The Z → e+e− events are selected by the following requirements:

• we require that an electron (tag) passes a very tight selection. This selec-
tion, in order to identify the electrons, uses variables that exploit the geo-
metrical correspondence and the energy compatibility between the ECAL
energy deposits and the tracks in the tracker, and the ratio between the
ECAL and the HCAL energy deposits. It also applies cuts on the isolation
variables;

• the other electron (probe) is selected requiring that the combined mass of
the tag-probe system is within a range around the mass of the Z boson.

In this way, the probe electrons constitute a pure and bias free sample, and
they are given in input to the photon identification system in order to study its
performances.

In the event selection, we require that the two electrons are well recon-
structed and identified with an invariant mass near to the mass of the Z boson.

We can distinguish three cases, depending on the ECAL region where the
two electrons are identified:

• both electrons are in the barrel (both |η| < 1.479);

• one electron is in the barrel (|η| < 1.479) and the other is in the endcap
(|η| > 1.479);

• both electrons are in the endcaps (both |η| > 1.479).

For both electrons in the barrel, the event selection used is the following:

• |ηe1 | < 2.5, |ηe2 | < 2.5, |ηe1 | < 1.44 or |ηe1 | > 1.57, |ηe2 | < 1.44 or
|ηe2 | > 1.57;

• 80 < mee < 100 GeV;

• (pT )e1/mee > 0.3, (pT )e2/mee > 0.3;

• MVAIDe1 > 0.5, MVAIDe2 > 0.5;

• |∆η|jj > 0.0, |ηj1 | < 4.7, |ηj2 | < 4.7, min(∆Rjet e) > 0.4;

• (pT )j1 > 40 GeV, (pT )j2 > 30 GeV;

• mjj > 250 GeV;

• |ηe1 | < 1.479, |ηe2 | < 1.479.

The cut in mee means that we select the pairs of electrons with an invariant
mass centered around the peak of the Z boson. As we said for the VBF pres-
election in Eq. 3.6, the cut in (pT )e/mee is applied in order not to modify the
invariant mass distribution of the electrons for the background. Moreover, the
cut in MVAIDe is applied in order to reduce the events with multijets, tt̄ and

57



single t production that yield fake electrons. The previous cuts assume that the
electrons are in the barrel; for electrons in the endcaps, we have |ηe| > 1.479.

In the previous event selection we also specified some cuts for the jets, whose
experimental effects are the same both for the Higgs boson and for the Z boson
events. Therefore, we can check the agreement between data and MC samples
of both electrons and jets variables, using the cuts in Eq. 5.2. In Fig. 5.7, 5.8
and 5.9 we report some histograms normalized to their area.
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Figure 5.7: (a) Normalized histogram for |ηe1 | for the data and for the MC
samples, for both electrons in the barrel; (b) normalized histogram for |ηe1 | for
the data and for the MC samples, for both electrons in the endcaps.

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

E
ve

nt
s 

/ i
nt

eg
ra

l

MC

Data

0 0.5 1 1.5 2 2.5 3

jj
)φ∆(

0.8

1

1.2

R
at

io
 d

at
a 

/ M
C

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

E
ve

nt
s 

/ i
nt

eg
ra

l

MC

Data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
|

j1
η|

0.8

1

1.2

R
at

io
 d

at
a 

/ M
C

(b)

Figure 5.8: (a) Normalized histogram for (∆φ)jj for the data and for the MC
samples, for both electrons in the barrel; (b) normalized histogram for |ηj1 | for
the data and for the MC samples, for both electrons in the barrel.
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Figure 5.9: Normalized histogram for (cos ∆φ)ee for the data and for the MC
samples, for both electrons in the barrel.

We can see that there is a fair agreement between data and MC samples.
The ECAL and the HCAL both cover up to |η| = 3. The forward jets

that travel between 3 < |η| < 3.5 are reconstructed with the HF, a forward
hadronic calorimeter made with scintillating fibers, which resists at high levels
of radiation at high |η|. The fall that we can see in |ηj1 | in Fig. 5.8 at |η| = 3 is
an acceptance hole that corresponds to the transition region between the HCAL
and the HF, where we measure less events.

We can also make a comparison between data and MC for the calorimetric
variables of the electrons, using an event selection similar to the one in Eq. 5.2,
apart from the fact that we do not apply cuts in the jets variables; we also put
a constraint in MVAID only on the leading electron, the tight one (MVAIDe1 >
0.5), and we assume that only the subleading electron, the probe one, is in the
barrel (|ηe2 | < 1.479). Using this new event selection, we can compare data and
MC samples in the histograms in Fig. 5.10 and 5.11 normalized to their area
for the probe electron.
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Figure 5.10: (a) Normalized histogram for MVAIDe2 for the data and for the MC
samples, for the subleading electron in the barrel; (b) normalized histogram for
HOEe2 for the data and for the MC samples, for the subleading electron in the
barrel.
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Figure 5.11: Normalized histogram for R9e2 for the data and for the MC sam-
ples, for the subleading electron in the barrel.

HOE stands for the ratio of the energy deposited in the HCAL and the
energy of the supercluster in the ECAL. For electrons and photons, HOE is
approximately 0, whereas for jets HOE would have a large distribution. There-
fore HOE could be used as a discriminating variable between electromagnetic
particles, such as electrons/photons, and hadronic objects, such as jets. In Fig.
5.10, we can see that most of the events of HOEe2 are peaked around 0, as
we expect for the probe electron. We can also note that there is a small bump
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around 1.5%, which is due to the energy associated to the pileup. In this case,
the electron is absorbed in the ECAL, and the hadrons coming from the pileup
end up in the HCAL. Moreover there is some noise in the detector: some towers
of the HCAL are over the threshold and present an energy greater than 0. This
means that HOE is not exactly equal to 0. Both the MC and the data show
the effects of the noise of the detector and of the pileup. However, the two
components are difficult to describe in the MC. In fact, the MC is usually done
at the beginning of the Run: at a later time, the radiation damage and the age-
ing of the photodetectors yield noise in the detector, which will give a different
response respect to the MC in the data. These are the sources of discrepancies
between data and MC.

R9 is defined as the ratio of the energy in the 3× 3 matrix around the seed
and the energy of the whole supercluster:

R9 =
E3×3

ESC
(5.6)

and it is used to separate the converted photons from the photons that did
not interact. The side of the crystals of the ECAL was chosen to be approxi-
mately equal to the Molière radius of the PWO. Therefore the lateral develop-
ment of the cluster in the shower is contained in the central seed crystal and in a
crown made of a 3×3 matrix of crystals around it, as said before in Sec. 3.4. In
fact the PWO was chosen for this reason, in a way that a 3×3 matrix of crystals
around the central crystal contains almost all the energy of a photon/electron
colliding in the seed. In Fig. 5.11 we see that there is a peak around 1, therefore
for R9 we find the behaviour that we expect for the electrons. For the jets R9

is a small quantity. In fact, the distribution of the particles in a jet is quite
scattered, and is usually not fully contained in a 3× 3 matrix.

The data and MC samples show a similar behaviour. Therefore, we assume
that the MC describes well all these variables also for photons.

It is possible to use the ratio between data and MC in the case of the
Z → e+e− distributions to correct the MC distributions of the H → γγ case.
In fact, the calorimetric variables of the electrons originating from the Z decay
have a similar behaviour to those of the photons originating from the H decay.
For example, we can apply the corrections obtained from theHOE ratio between
data and MC of the Z → e+e− case to modify the MC distribution of the same
variable in the H → γγ case. For the purpose of this thesis, this correction was
not done, and we only checked that the comparison between data and MC gave
good results for the case of the Z.

61



Chapter 6

Statistical signal extraction

6.1 Invariant mass fit

In Chap. 4, we performed the DNN training and the event selection optimization
without using the invariant mass of the pairs of photons. Now we are ready to
extract the signal from the peak of mγγ above a smoothly falling background,
by parametrizing the signal and the background with different PDFs.

We know that both VBF SM and ggH samples show a resonant peak in the
mγγ distribution. We can ask ourselves if the same argument is valid for the
anomalous VBF samples. As we saw in Fig. 3.5, the anomalous VBF signals
have the same shape of the VBF SM, therefore the anomalous couplings do not
modify the invariant mass distribution of the pairs of photons.

We can also check quantitatively that the signal shape does not depend on
the Higgs boson coupling by fitting two signal samples, VBF SM and VBF Λ1,
for the invariant mass of the pairs of photons passing the VBF preselection
in Eq. 3.6, in order to extract the resonant signal above the smoothly falling
background. To fit the two MC distributions, we use in both cases the sum of
three Gaussians Gi: one is needed to emulate the tail which is present in both
distributions for low invariant masses; the other two are needed to emulate the
resonant peak. Therefore for both distributions we use the following PDF:

f = C1G1 + C2G2 + (1− C1 − C2)G3 (6.1)

We leave as free parameters the means and the standard deviations of the
three Gaussians, and also the relative fractions of each Gaussian respect to the
others in the sum Ci: the fits adjust all the parameters in order to better fit the
shape of the distributions.

The histograms of mγγ on which we perform the fit procedure are obtained
by applying the VBF preselection in Eq. 3.6 with the tighter request 115 <
mγγ < 135 GeV.

For the VBF SM sample, we obtain the plot in Fig. 6.1.
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Figure 6.1: Fit to the distribution of mγγ for the VBF SM sample.

For the VBF Λ1 sample, we obtain the plot in Fig. 6.2.
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Figure 6.2: Fit to the distribution of mγγ for the VBF Λ1 sample.

In Tab. 6.1 we report the means and the standard deviations of the three
Gaussians Gi with their errors for the VBF SM and VBF Λ1 samples.

VBF SM VBF Λ1

Mean G1 (GeV) 122.8 ± 6.6 123.2 ± 8.0
Mean G2 (GeV) 124.6 ± 7.2 124.5 ± 6.0
Mean G3 (GeV) 124.9 ± 4.1 124.9 ± 3.7

Standard deviation G1 (GeV) 3.6 ± 1.4 3.6 ± 1.5
Standard deviation G2 (GeV) 1.9 ± 1.5 1.8 ± 1.3
Standard deviation G3 (GeV) 1.1 ± 1.2 1.1 ± 1.1

Table 6.1: Means and standard deviations of the three Gaussians Gi with their
errors for the VBF SM and VBF Λ1 samples.

As we can see from Tab. 6.1, the means and the standard deviations of each
of the three Gaussians are consistent between VBF SM and VBF Λ1 samples
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within one standard deviation from each other. We therefore conclude that we
can use the same PDF for all the VBF signals (both SM and BSM) and for ggH.

To find the PDF of the inclusive background, we do not rely at all on the
MC, because we have shown in Sec. 5.1 that it does not describe well the
variables for the main backgrounds. Thus we fit directly the data distribution
blinding the signal region between 120 and 130 GeV (which means that we do
not consider the region where we expect to find the signal), in order to find the
parameters of the PDF of the background, which we choose to be a second order
polynomial which decreases with mγγ :

g = 1 +Amγγ +Bm2
γγ (6.2)

We do not care about the contributions of γ + jets and γγ + jets to the
total background: we assume that everything that is not resonant is smooth.
The result is shown in Fig. 6.3.

Figure 6.3: Fit to the distribution of mγγ for the data sample, blinding the
region between 120 and 130 GeV.

Also in this case the histogram of mγγ on which we performed the fit pro-
cedure was obtained by applying the VBF preselection in Eq. 3.6.

We can now fit the data sample in the whole range 100 < mγγ < 180 GeV,
unblinding the signal region between 120 and 130 GeV. In order to do this, we
choose the following PDF:

h = Nsigf +Nbkgg (6.3)

where this time for f , which is given in Eq. (6.1), we choose to use a unique
mean for the two Gaussians that model the resonant peak, and we leave this
parameter floating in the fit; g is given in Eq. (6.2). We also leave as free
parameters the fractions Nsig and Nbkg respectively of the signal and of the
background in Eq. (6.3). All these parameters are yielded by the fit procedure,
which was done with an extended likelihood with a Poissonian number of events:

Poisson(data|Nsig +Nbkg) =
∏
i

(Nsig,i +Nbkg,i)
ni

ni!
e−Nsig,i−Nbkg,i (6.4)

64



which is a product of Poisson probabilities to observe ni events in bins i.
When the bin size is infinitely small, an unbinned likelihood is used for the data
sample with k events:

k−1
∏
i

[Nsigf(mγγ,i) +Nbkgg(mγγ,i)]e
−Nsig−Nbkg (6.5)

We choose to extract the signal with such an unbinned maximum likelihood
fit to use the information of the single event, which is the optimal approach
with finite statistics.

The result is shown in Fig. 6.4.
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Figure 6.4: Fit to the distribution of mγγ for the data sample.

We neglect the systematic uncertainties associated to the parametrization
of the background as a decreasing polynomial and to the parametrization of
the signal with a sum of Gaussians. In fact, regarding the signal, there are
systematic uncertainties in the energy scale that can shift the position of the
peak and in the energy resolution that may change the width of the peak. We
did not consider these systematic uncertainties. A more detailed analysis on
this topic can be found in [32].

The number of signal events Nsig and its error σ(Nsig) that we obtain from
the fit are given by:

Nsig ± σ(Nsig) = 48± 37(stat) (6.6)

We now compare the number of signal events obtained from the fit in Eq.
(6.6) to the sum of the number of expected events from ggH and different VBF
processes after the VBF preselection in Eq. 3.6. This is shown in Tab. 6.2.
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ggH VBF Λ1 VBF CP odd VBF SM Fit result
VBF preselection 41 103 91 37 48 ± 37

Table 6.2

Without looking at any angular distribution or at other variables, we can
directly see from the expected and measured number of events that the fit yields
a result which is in good agreement with the sum of ggH and VBF SM, consistent
with it within one σ, while the sum of ggH and other VBF samples are more
than two σ away from the result of the fit.

In addition to comparing the expected and measured number of events,
we can also compare the angular distributions and other variables for the MC
samples and for the data, using a particular statistical background subtraction
technique.

6.2 Statistical results with sPlots

We know that the Higgs boson signal can be viewed as a resonant peak in the
invariant mass distribution over a decreasing background. However, we do not
know the shape of the signal for variables that differ from the invariant mass.

In order to find these shapes, we can use the sPlot technique [38]. This
procedure is used to statistically subtract the background from the data: what
remains is the distribution of the signal only, that uses informations contained
in the covariance matrix of the fit.

In order to do this procedure, we first perform a fit to the invariant mass
distribution. This fit yields the sWeights, which are quantities proportional to
the probability that an event is a signal event. When we plot the distribution
of a variable weighting it with the sWeights, we obtain the sPlot, which is the
distribution of that variable for the signal only. Furthermore, the integral of the
sPlot, by construction, equals the number of signal events.

The invariant mass fit to get the sWeights is the one described in Sec. 6.1.
In Fig. 6.5, 6.6 and 6.7 we show the sPlots of some variables, compared with
the MC samples with expected events in 41.5 fb−1 of the sum of different VBF
hypotheses and ggH.
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Figure 6.5: (a) sPlot and MC with expected events in 41.5 fb−1 of different
VBF hypotheses + ggH of |∆η|jj ; (b) sPlot and MC with expected events in
41.5 fb−1 of different VBF hypotheses + ggH of (∆φ)jj .
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Figure 6.6: (a) sPlot and MC with expected events in 41.5 fb−1 of different
VBF hypotheses + ggH of mjj ; (b) sPlot and MC with expected events in 41.5
fb−1 of different VBF hypotheses + ggH of (∆φ)γγ
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Figure 6.7: (a) sPlot and MC with expected events in 41.5 fb−1 of different VBF
hypotheses + ggH of DNN V BF ; (b) sPlot and MC with expected events in
41.5 fb−1 of different VBF hypotheses + ggH of DNN ggH.
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We plot the sum of different VBF hypotheses and ggH, because the resonant
peak of the Higgs boson receives contribution not only from the VBF events but
also from the ggH events.

The yield of the fit is more in agreement with the SM respect to the alter-
native hypotheses, as can be seen from Tab. 6.2. Moreover, the distributions
of the single variables in Fig. 6.5, 6.6 and 6.7 are all in better agreement with
the SM respect to the anomalous hypotheses: this is particularly evident in the
distribution of DNN V BF in Fig. 6.7, which combines all the discriminating
variables in an optimal way.

In a qualitative way, this excludes the hypotheses Λ1 and CP odd. However,
a more refined fit and all the data of Run2 are necessary in order to find the
exclusion limits for the anomalous couplings fractions fa2

, fa3
, while here we

have shown only the cases where all the Higgs boson VBF cross sections are due
to a given anomalous coupling, i.e. fa2

, fa3
, fΛ1

.
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Conclusions

The CMS and ATLAS experiments at LHC have set constraints on the spin-
parity properties of the Higgs boson and anomalous HV V couplings, where V
stands for W , Z, and γ electroweak gauge bosons, finding its quantum numbers
to be consistent with JPC = 0++, but leaving room for small anomalous HV V
couplings. In theories BSM, Higgs boson interactions may generate several
of them, which lead to new tensor structures of interactions, both CP -even
and CP -odd. The couplings to which we are interested are the anomalous
couplings of the photons a2 and a3, which in the SM are very small. Therefore
measuring values significantly different from zero (of the order of the 10%) of
these anomalous couplings would constitute an indication of new physics. This
would mean that in the virtual loops in addition to SM particles there are also
new particles that have phases different from 0 that can generate CP violation.
The purpose of this thesis is to constrain a2 and a3 in the VBF production
V V → H and using the γγ decay channel. The anomalous couplings can be
inferred by the cross sections that we can experimentally measure.

We look for a signal with a final state made of two photons, coming from
the Higgs boson decay, and of two jets, coming from the quarks that hadronize
after the VBF scattering. To this end, several MC samples of VBF signal and of
background were studied, where the VBF signal includes both SM and anoma-
lous samples, and the background includes gluon gluon fusion, γ + jets and γγ
+ jets production. A comparison was made between the distributions of several
discriminating variables. A deep neural network was trained in order to enhance
the discrimination between signal and background samples. A comparison of
different nature was made between the distributions of MC samples and of the
data sample collected by CMS in 2017, which corresponds to an integrated lu-
minosity of 41.5 fb−1, by using γγ + jets and γ + jets events and the Z → e+e−

control sample. An invariant mass fit was performed to the distribution of the
γγ invariant mass in the data sample to extract the H → γγ signal from the
large non-resonating background. From the results of the fit, the sPlots were
constructed in order to statistically subtract the background from the data. Fi-
nally, the sPlots were inspected in order to establish whether the results of the
fit are compatible with the SM or the anomalous hypotheses. We have found
that the data are in agreement with the SM and a 100% BSM production is
qualitatively excluded.
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M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth,
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