IFAE – Catania, 30 marzo-2 aprile 2005

MISURE DIRETTE DELLA MASSA DEL NEUTRINO con decadimenti beta a basso Q-valore

Universita' di Milano – Bicocca INFN – Sezione di Milano

PERCHE' MISURARE LA MASSA DEL NEUTRINO?

Recenti risultati di esperimenti con: NEUTRINI ATMOSFERICI e NEUTRINI SOLARI

STUDIO DELLE MASSE DEI NEUTRINI

IL DECADIMENTO BETA

SPETTRO BETA: KURIE PLOT

CONVENIENTE LINEARIZZAZIONE DELLO SPETTRO BETA

DUE APPROCCI SPERIMENTALI COMPLEMENTARI

SORGENTE SEPARATA DAL RIVELATORE (la sorgente è sempre Trizio)

- SPETTROMETRI MAGNETICI ED ELETTROSTATICI
- Determina l'energia dell'elettrone per mezzo di una selezione degli elettroni beta operata attraverso opportuni campi elettrici e magnetici
- Misura l'energia degli elettroni fuori dalla sorgente
- Sensibilità attuale raggiunta: ~ 2 eV

SORGENTE COINCIDENTE CON IL RIVELATORE (approccio calorimetrico)

BOLOMETRI

- **Determina tutta l'energia "visibile" del decadimento con alta risoluzione**
- Misura l'energia del neutrino
- Sensibilità attuale raggiunta: ~ 15 eV

INCERTEZZE SISTEMATICHE COMPLETAMENTE DIFFERENTI

IL DECADIMENTO B DEL TRIZIO

- Semplice configurazione delle shell elettroniche di ³H ed ³He⁺
 - → minime correzioni dovute a stati finali elettronici
 - Transizione nucleare super-permessa

→ non sono necessarie correzioni per l'elemento di matrice nucleare M (non dipende dall'energia dell'elettrone)

LA SORGENTE DI TRIZIO

Alta attività specifica

Basso auto-assorbimento e scattering inelastico

Controllo degli stati eccitati \rightarrow uso di molecole di trizio T₂

<u>QCTS</u>

<u>RICHIESTE</u>

<u>WGTS</u>

SORGENTE T ₂ SOLIDA	SORGENTE T ₂ GASSOSA
Bassa probabilità di scattering inelastico	😊 Attività specifica più alta
🙂 Sorgente omogenea	[©] Minore probabilità di scattering inelastico
	© No caricamento della sorgente
😕 Backscattering dai substrati	© No backscattering
😕 Effetti di eccitazione dello stato solido	🙂 Omogeneità della sorgente
😕 Caricamento della sorgente	🕲 Calibrazione con gas radioattivi
😕 Irruvidimento della sorgente	
	😕 Stabilità dell'intensità di sorgente

DEGLI STUDI Di Milano Bi cocca

Spettroscopia beta con spettrometri elettrostatici e magnetici

Procedura sperimentale

- lo spettro del T è misurato a step selezionando l'energia da E_{min} a Q
- $E_{max} > Q$ per monitorare il fondo
- Per ogni E_e step, l'aquisizione dura un certo tempo Δt , con Δt crescente con E_e

Stabilità nel tempo di sorgente e spettrometro - eccellente controllo del tempo vivo

MAINZ E TROITSK: i risultati

<u>MAINZ</u> sorgente T₂ solida (QCTS)

Rapporto segnale su fondo: MIGLIORATO

• Riduzione del fondo

• Massimizzazione dell'intensita della sorgente Irruvidimento della sorgente:

(che induce dispersione nelle perdite di energia) è stato ridotto dal raffreddamento del film di T₂ sotto 1.2 K.

Caricamento della sorgente:

Insieme al relativo profilo del potenziale è stato modellizzato ed incluso nell'analisi. <u>Perdita di energia nella sorgente:</u>

Studiata con differenti spessori di sorgente

$$\begin{split} m(v_e)^2 &= (-1.6 \pm 2.5_{stat} \pm 2.1_{sys}) \ eV^2 \\ m(v_e) &\leq 2.2 \ eV \quad (95\% \ C.L.) \end{split}$$

TROITSK sorgente T₂ gassosa (WGTS)

Funzione di risposta del rivelatore:

Misure accurate senza T_2 gassoso e con T_2 gassoso a diverse pressioni

<u>Anomalia:</u>

I dati raccolti presentano una anomalia non ancora ben spiegata nello spettro integrale nella regione dell'end-point

$$\begin{split} m(v_e)^2 &= (-1.0 \pm 3.0_{stat} \pm 2.5_{sys}) \text{ eV}^2 \\ m(v_e) &\leq 2.2 \text{ eV} \quad (95\% \text{ C.L.}) \end{split}$$

I risultati di Mainz e Troitsk rappresentano attualmente la migliore sensibilita' al mondo sulla massa del neutrino in un esperimento di misura diretta.

L'ESPERIMENTO KATRIN: <u>Ka</u>rlsruhe <u>Tr</u>itium <u>N</u>eutrino

IL DECADIMENTO & DEL 187Re

I BOLOMETRI : rivelatori termici

L'ESPERIMENTO MIBETA: i rivelatori

Schiere di microrivelatori bolometrici operanti a bassissime temperature (~ 100 mK; criostato a diluizione He3-He4 - L.A.S.A – SEGRATE - MI)

MIBETA: la calibrazione

PERIODICA ESPOSIZIONE DEI RIVELATORIA RAGGI X DI FLUORESCENZA DI VARI ELEMENTI

MIBETA: la calibrazione

PRESA DATI: 25 min calibrazione, 2 ore acquisizione β

Picchi di fluorescenza: Al, Cl, Ca, Ti

Energie (keV) delle righe dello spettro di raggi X di calibrazione

IFAE - Catania, 30 Marzo - 2 Aprile 2005

Dip. Fisica Università Milano-Bicocca

Dr.ssa Francesca Capozzi,

MIBETA: i risultati

MIBETA: il futuro

STRATEGIA: CONTINUARE A SVILUPPARE LA TECNICA BOLOMETRICA

- AUMENTARE IL NUMERO DI CANALI
- MIGLIORARE LA RISOLUZIONE ENERGETICA
- **RIDURRE IL RISE TIME**
- RIDURRE IL FONDO E MODELLIZZARLO

© RAGGIUNGERE LA SENSIBILITA' DI 2 eV PRIMA DELLA FINE DI <u>KATRIN</u>

RICHIESTE SPERIMENTALI:

- 200 rivelatori
- $m(AgReO_4) \sim 450 \ \mu g/riv$
- attività β (¹⁸⁷Re) = 0.25 Bq/riv
- $\Delta E_{FWHM} = 10-15 \text{ eV}$
- risoluzione temporale = $100-200 \ \mu s$

(start 2007)

- fondo < 100 cont/keV/anno/riv
- 3 anni di misura

© RAGGIUNGERE UNA SENSIBILITA' < eV COME <u>KATRIN</u>

IMPORTANTE ESPERIMENTO COMPLEMENTARE A KATRIN

NTD Ge

▶ Si impiantato

FASE I

L'ESPERIMENTO MANU2 (Genova)

3

be

Tecnica simile a MIBETA

- Singolo rivelatore
- cristallo di Re metallico (1.5 mg)
- sensore NTD
- $\Delta E_{FWHM} = 96 \text{ eV}$
- $Q = 2470 \pm 1 \pm 4 \text{ eV}$
- $t \frac{1}{2} = 41.2 \pm 0.02 \pm 0.11$ Gy

M_v < 26 eV (95 % c.l.)

Obiettivi futuri

CONCLUSIONI

I limiti più stringenti sulla massa del neutrino ottenuti con misura diretta arrivano dagli esperimenti con gli spettrometri MAINZ e TROITSK m (v_e) < 2.2 eV

Misure indirette della massa del neutrino indicano una sensibilità m (v_e) < eV

NECESSARIE NUOVE MISURE DIRETTE DELLA MASSA DEL NEUTRINO

Il futuro esperimento KATRIN con spettrometri magnetici ha come obiettivo una sensibilità sulla massa del neutrino inferiore all' eV

L'APPROCCIO CALORIMETRICO dell'esperimento MIBETA con rivelatori termici a bassa temperatura è un potente *METODO COMPLEMENTARE* con differenti incertezze sistematiche che parallelamente agli spettrometri punta ad una sensibilità sotto l'eV.

Esperimenti con spettrometri elettrostatici

IL BEFS: Beta Environmental Fine Structure

► Modulazione della probabilità di emissione dell'elettrone dovuta alla presenza di atomi e molecole circostanti il nucleo che decade.

Effetto dovuto alla interferenza quantistica tra la funzione d'onda uscente dell'elettrone emesso dall'atomo che decade e la funzione d'onda entrante dell'elettrone scatterato dagli atomi vicini.

E' una possibile sorgente di errore sistematico

2° - MIBETA (Mi) AgReO₄ - meno evidente

FASE I - R & D: test di nuovi termistori

I DUE METODI A CONFRONTO

Decadimento β del ³ H con spettrometri	<u>Decadimento β del ¹⁸⁷Re con bolometri</u>
VANTAGGI ☺ Moderata vita media del ³ H → alta statistica ☺ Alta risoluzione energetica	 VANTAGGI [©] Il ¹⁸⁷Re ha il Q-valore più piccolo in natura !!! [©] Il ¹⁸⁷Re ha una elevata abbondanza isotopica [©] Sorgente = rivelarore → massima efficienza [©] No backscattering [©] Misura l'energia di diseccitazione di eventuali decadimenti su stati eccitati [©] Buona risoluzione energetica
SVANTAGGI Sistematiche dovute ad effetti di sorgente - backscattering - perdita di energia nella sorgente Sistematiche dovute a dec. su stati eccitati Fondo incontrollato	SVANTAGGI Alta vita media del ¹⁸⁷ Re → limitata statistica Sistematiche dovute ad effetti di pile-up Fondo dipendente dall'energia

► I DUE METODI SONO COMPLEMENTARI

Spettrometri elettrostatici con collimatore adiabatico magnetico

MAC-E-filter

Alto campo magnetico **B**_{max} alla sorgente e al rivelatore. Basso campo **B**_{min} al centro.

Tutti gli elettroni emessi in avanti Spiraleggiano dalla sorgente al rivelatore

Nel limite adiabatico $\mathbf{E}_{\mathbf{k}\perp} / \mathbf{B} = \mathbf{costante}$

 $E_{k\perp}(\text{centro}) = E_{k\perp}(\text{sorgente}) (B_{\min}/B_{\max})$

 $E_e = E_{k\perp} + E_{k\parallel} = \text{costante}$

Efficiente effetto di collimazione al centro

Il campo elettrico ritardante al centro ha massimo potenziale U_0 e ammette elettroni con

$$E_{k \parallel} > eU_0$$

SPETTROMETRO INTEGRALE

Potere risolvente:

 $\Delta E \approx 4 \text{ eV}$ at $E \approx 18 \text{ keV}$

