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Università di Roma “La Sapienza” and INFN Roma

September 25, 2009

Abstract

We study the 2008 data sample with a maximum likelihood analysis, estimating the
confidence level intervals on the number of signal events and on the branching ratio of
the μ+ → e+γ decay using a Bayesian approach. We find BR(μ+ → e+γ)< 2.8×10−11

@90 % C.L. where systematic effects have not been included. We cross-check our result
computing the upper limit using a frequentistic technique with a Feldman-Cousins
ordering and we find consistent results.
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1 Introduction

We describe here the likelihood analysis of the 2008 data sample. The discriminating vari-
ables used in the analysis are the photon and positron energy (Eγ , Ee+) , the relative
photon-positron time and angle (Te+γ, θe+γ). The likelihood function for signal and back-
ground is built from a combination of studies on data and on full simulation. The result on
the μ+ → e+γ branching ratio is obtained with a Bayesian analysis. A frequentistic interpre-
tation with a Feldman Cousins ordering is also used as a cross-check. Section 2 describes the
selection and the data sample used and section 3 describes the likelihood function. Section 5
quotes the results of a likelihood fit to the data (the likelihood is minimized through the
RooFit interface). Section 5 and 6 report the upper limit on the branching fraction from
the Bayesian and frequentistic analysis, respectively.

2 Data sample and selection

We use the 2008 data with the Standard selection reported in [1] , with the exception of the
cut on the track T0. We apply:

• track quality cuts:

– number of hits in the DCH >=7

– χ2 of the fitted track, normalized to the number of degrees of freedom, <=12

– uncertainty on the positron energy <= 0.7 MeV

– uncertainty on the polar angle <=0.6 deg

– uncertainty on the azimuthal angle <=1.5 deg

– |dR (=difference of the track projection at the TC and TC measurement in the
radial coordinate)+2.2cm| <3 cm

– |dZ (=difference of the track projection at the TC and TC measurement in the
longitudinal coordinate)+0.1cm| <6 cm

– number of chambers >3

– chamber span>4

– number of multi-hit chambers > 1

– TCIter variable >0.

• requirements on beam and target spots: Target ellipse y axis < 2.8 cm, target ellipse
z axis <8.24 cm, beam ellipse y axis <2.8 cm, beam ellipse z axis <7.5 cm, beam y
displacement <-0.26 cm, beam z displacement <-1.5 cm. The best rank ghost is chosen
after all the above cuts are applied.

• XEC cuts: |u|<71 cm, |v|<25 cm, pile-up requirements (npeakid>1 or xectimefit.time-
chisq0<3), cosmic rejection (ratio of the charge of inner over outer PMTs >0.3).
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• additional pile-up cut, described in [2].

We define as analysis region, where we perform the likelihood fit, with the following cuts
in the four discriminating variables: 46 < Eγ < 60 MeV, 50 < Ee+ < 56 MeV ,−1 <
Te+γ < 1 ns, |θe+γ| > 174.68 deg. We also consider the left and right sideband regions
in the Te+γ variable with −3.5 < Te+γ < −1.5 ns and 1.5 < Te+γ < 3.5 ns, respectively.
We use the algorithm XECEnergyP ileUpEliminated for the photon energy measurement
and the T imeFit algorithm for the photon time measurement. To cross-check the result,
we use also alternative algorithms for both the photon energy and time, TRGEnergy and
T imeWeightedAverage.

3 Likelihood analysis

We implement the likelihood analysis in a RooFit-based stand-alone package. Minuit min-
imization algorithms are used. The extended likelihood function L is written as:

L(Nsig, NRD, NBG) =
NNobsexp−N

Nobs!

Nobs∏

i=1

[
Nsig

N
S +

NRD

N
RD +

NB

N
B], (1)

where NS is the number of signal events, NRD is the number of radiative decay events,
NB is the number of accidental background events, S, RD, B are the probability density
functions (pdfs) for the three components, respectively, N=NS+NB+NRD and Nobs is the
number of observed events in the analysis region. For each component the pdf is written as
the product of the pdfs of the individual analysis variables, assuming that the correlations
are negligible. The pdfs are described below.

1. Signal

• Eγ pdf: response function as extracted from the CEX runs reported in [3] for
XECEnergyP ilupEliminated. The TRGEnergy pdf is extracted from a com-
bination of data Eγ sideband and of MC simulation by fitting the endpoint of the
background photon energy distribution.

• Ee+ pdf: sum of three Gaussian functions as measured from Michel events[4].

• Te+γ pdf: single Gaussian function with σ=147.7 ps as measured from the radia-
tive decay peak outside the Eγ signal region.

• θe+γ pdf: it is built with a toy Monte Carlo (MC) technique using the polar and
azimuthal angle resolution from a study of full simulated MC signal events taking
into account the various correlations. The polar angle resolution for the positron
has been enlarged by summing (in quadrature) 15 mrad to take into account
differences from data [5].

2. Radiative decay
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• joint Eγ , Ee+ , θe+γ pdf: it is obtained from the Kuno-Okada theoretical spectrum[6]
weighted with the acceptance and smeared with the experimental resolutions. The
acceptance for the positron is taken from the analysis of the Michel spectrum re-
ported in[4] while the trigger acceptance for the photon is parametrized with

the same function but with different parameters (the function is (1+erf(x))
2

where
erf(x) is an error function; the parameters used for the photon are μ =39.2 MeV
and σ = 2.3 MeV). The same resolutions as for the signal are used.

• Te+γ pdf: same as the signal.

3. Accidental background

• θe+γ and Te+γ pdfs: they are a 2nd-order polynomial and a constant function
respectively, fitted on data sidebands.

• Ee+ pdf: it is the theoretical Michel spectrum multiplied by the acceptance and
convoluted with the resolution, fitted in the sideband region.

• Eγ pdf: it is an empirical function fitted in the sidebands. The function is a
polynomial before a fitted threshold and an exponential above (which describes
the residual pile-up).

Figure 1 shows the pdf for signal and accidental background events from a toy MC simu-
lation. In order to verify the fitting procedure we perform toy MC studies. We generate
sets of experiments with a given number of signal and background events using our likeli-
hood function and we fit them. Of particular interest is the pull distribution of a variable
computed as the difference of the fitted and the generated value divided for the error that
the fit returns. If no bias on the fitted variable is introduced and if the errors are correctly
estimated the pull distribution must be a Gaussian, with μ = 0 and σ = 1. We consider two
cases:

• Nsig(gen)=32, NRD(gen)=32, NB(gen)=970. Figure 2 shows the pull distribution for
the number of signal and of radiative decay events. Even if we do not expect such a
large number of signals events this test is useful to debug the fitting code, in particular
to check the likelihood normalization.

• Nsig(gen)=0, NRD(gen)=32, NB(gen)=970. Figure 3 shows the pull distribution for the
number of signal and of radiative decay events.

As it can be seen, the pull distribution for the number of signal and radiative decay events
has no significant bias and correct sigma in the case of sizeable signal, while in the case of
null signal the pull distribution for the number of signal events become non-Gaussian, as
expected. This means that the fit result and error for Nsig do not have a correct statistical
meaning in our case, since a small number of signal events is expected. We then use the full
likelihood function as explained in the next sections. It should be noted that we do not apply
any constraint to the fitted parameters and thus the minimum of the likelihood function can
be in correspondence of a negative number of signal events. This is not a problem in the
Bayesian interpretation of the likelihood where the a-priori pdf is zero outside the physical
region.
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Figure 1: pdfs for signal and accidental background events for the various discriminating
variables. The red curve shows the pdfs for signal, the blue curve shows the pdf for accidental
background. The dots are the sum of the two (from a toy MC generation with an arbitrary
normalization).
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Figure 2: Left plot: pull distribution for Nsig. Right plot: pull distribution for NRD. In this
toy MC study Nsig(gen)=32, NRD(gen)=32, NB(gen)=970.
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Figure 3: Left plot: pull distribution for Nsig. Right plot: pull distribution for NRD. In this
toy MC study Nsig(gen)=0, NRD(gen)=32, NB(gen)=970.

4 Fit results on data

With the selection described in section 2 we select 1007 events in the analysis region, 1004
events in the left sideband and 1059 events in the right sideband region. The result of the
maximum likelihood unbinned fit in the analysis region is:

Nsig = 5 ± 4, NRD = 32 ± 16, NB = 969 ± 34, (2)

where the HESSE errors (i.e. calculated by inverting the full-second derivative matrix) are
quoted. Figure 4 shows the data in the analysis region with the pdf projection superimposed.
As a cross-check, we performed the fit to the Te+γ variable only and we find a consistent
result:

Nsig + NRD = 40 ± 30, NB = 940 ± 40. (3)

4.1 Fit results in sideband regions

On the left Te+γ sideband we find:

Nsig = −33 ± 2, NRD = −11 ± 2, NB = 1048 ± 33, (4)

while on the right data sideband we find:

Nsig = −9 ± 1, NRD = −14 ± 2, NB = 1082 ± 33. (5)

4.2 Fit results using TRGEnergy and TimeWeightedAverage

As explained in section 2 we use also alternative algorithms for the XEC energy ans time.
We find a consistent result:

Nsig = 7 ± 5, NRD = 27 ± 10, NB = 1070 ± 40, (6)
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Figure 4: Fit result in the analysis region. The dots are the data in the various analysis
variables. Pdf projections are superimposed. The red curve is the signal pdf, the green curve
is the radiative decay pdf and the violet curve is the accidental background component.
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where the higher number of selected events is probably due to the fact that the TRGEnergy
algorithm has an higher pile-up contamination with respect to XECEnergyPilepEliminated
(which uses the DRS digitizer).

5 Bayesian analysis

We use a Bayesian interpretation of the likelihood to derive the a-posteriori probability
density function of the unknown μ+ → e+γ branching ratio (BR). The Bayes theorem allows
to update the a-priori probability of the BR, P(BR), producing an a-posteriori pdf:

P (BR|data) = P (data|BR) × P (BR) = L(data|Nsig = k × BR) × P(k) × P(BR), (7)

where L is the likelihood function, k is a normalization factor and P(k) its pdf. The symbol
′′|′′ indicates the conditional probability. The procedure is the following:

1. we extract a value for the branching ratio BRtest between 0 and a maximum value
(chosen to be 0.5×10−10) according to a uniform distribution (this is the a-priori pdf).
It should be noted that the choice of the maximum value of the BR has no impact
on the result, since it has been chosen so that the likelihood value is practically zero
beyond. The choice of a flat prior is somehow arbitrary.

2. we extract a value of the normalization factor according to a Gaussian distribution
with μ=4.7×1011 and a σ of 10%.

3. we compute the number of signal events Nsig,test as the product of the two numbers
above.

4. we generate a number of radiative decay events and a number of accidental background
events according to a uniform distribution in a range of [0,+5σ] and ±5σ, respectively,
of the value fitted on data (see eq. 4) using the HESSE error as σ.

5. we compute the weight to be assigned to the corresponding branching ratio as:

w = exp−(−logL + minlogL), (8)

where the experimental likelihood described in section 3 is computed using the values
of Nsig,test, NRD, Nacc obtained as described in point 3 and 4.

6. the procedure above is repeated 100 times and the a-posteriori distribution of the
branching ratio is obtained by weighting each BRtest for the corresponding w.

In order to obtain the a-posteriori bi-dimensional distribution of Nsig, NRD a similar proce-
dure is applied but in this case Nsig,test is generated with a uniform distribution between 0
and 30. Figure 5 shows the bi-dimensional a-posteriori 68% and 90% regions for Nsig and
NRD, while figure 6 shows the a-posteriori distributions for Nsig (obtained by projecting the

8



sigN
5 10 15 20 25 30

R
D

N

0

10

20

30

40

50

60

70

80

90

100

Figure 5: A-posteriori distribution of Nsig, NRD obtained with the Bayesian technique de-
scribed in the text. The red area is the region at 68%C.L. level, while the green area is at
90% C.L.

bi-dimensional pdf) and for BR(μ+ → e+γ). We can set the following upper limits @90%
C.L. 1:

Nsig < 12.75 @90%C.L., BR(μ+ → e+γ) < 2.8 × 10−11 @90%C.L. (9)

5.1 Results in sideband regions

With the same procedure, we obtain

Nsig < 2.8 @90%C.L., BR(μ+ → e+γ) < 5.5 × 10−12 @90%C.L (10)

on the left sideband and

Nsig < 2.8 @90%C.L., BR(μ+ → e+γ) < 6 × 10−12 @90%C.L (11)

on the right sideband.

5.2 Expected upper limit from a toy MC study

In order to estimate the expected upper limit on our data if no signal is present, we perform
a toy MC study with 100 experiments with Nsig,gen=0, NRD,gen=32, NB,gen=970 (as from the
data fit results). We find the distribution of the upper limits in figure 7. As it can be seen,
the upper limit we find on data is on the tail of the distribution meaning that we have been
unlucky or that the experiment starts to see some signal. On the basis of this toy MC study
the probability of having a limit worse than what we got is ∼ 2%.

1In the case of a Bayesian analysis, the term “probability level” would be more correct than “confidence
level”.
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Figure 6: A-posteriori distribution of Nsig (left) and BR(μ+ → e+γ) (right) obtained with
the Bayesian technique described in the text. The red area is the region at 68%C.L. level,
while the green area is at 90% C.L.
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Figure 7: Distribution of Upper Limits obtained in a toy MC simulation with Nsig,gen=0,
NRD,gen=32, NB,gen=970.
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6 Cross-check with Feldman Cousins approach

In order to cross-check our result we re-compute the upper limit using a frequentistic method
with a Feldman Cousins ordering [7]:

• we perform a loop on the possible number of signal events (Nsig,test) from 0 to 20 in
steps of 1 event.

• for each Nsig,test, We perform a loop over the possible number of radiative decay events
(NRD,test) from 0 to 75 in steps of 5 events.

• for each pair (Nsig,test,NRD,test) we compute the ratio R(data):

R(data) =
L(Nsig,test, NRD,test, NB,fit)

L(max)
, (12)

where L(max) is the maximum value of the likelihood from the fit to the data. Note
that here and in what follows a lower limit at 0 to the number of fitted signal events
is applied in performing the fit (as opposed to what we do in the Bayesian method).
NB,fit is the value from the fit to the data.

• also, for each pair (Nsig,test,NRD,test) we generate several toy MC experiments where
the number of signal, radiative decay and accidental background events are extracted
according to a Poisson distribution with μ= Nsig,test, NRD,test, NB,fit respectively.

• for each toy experiment the ratio R(MC) is computed as:

R(MC) =
LMC(Nsig,test, NRD,test, NB,fit)

LMC(max)
. (13)

The confidence level contour, for example at 90% C.L. is built calculating the fraction of
experiments, for a given pair Nsig,test,NRD,test, for which R(MC) is below R(data): if the
fraction of experiment for which R(MC)<R(DATA) is at least 10% of the cases, then the
sample point belongs to the contour. Figure 8 shows the 68% and 90% confidence level
contours in Nsig, NRD. Figure 9 shows the result of the procedure above where no scan over
the number of radiative decay events is performed; the number of NRD,test is fixed to 35
since it can be seen from figure 8 that the most conservative limit on the number of signal
events is obtained in this case. There is not a standard way to project a bi-dimensional
distribution into a one-dimensional one in the frequentistic approach: the way we chose is
somehow arbitrary and the 90% coverage is not guaranteed. The black curve represents
the data, the red curve represents the average from a set of toy MC experiments and the
yellow region shows the 68% region for these experiments. The dashed curve represents the
limit of the 90% level contour from the toy MC, i.e. the R-value for which the fraction of
experiments with R greater than this value is 90%. We can set the limit:

Nsig < 17 @90%C.L., (14)
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Figure 8: 68% and 90% confidence level contours in Nsig, NRD obtained with the Feldman
Cousins apprach described in the text.
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L(Nsig)
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) as a function of the number of signal events for NRD = 35 and

NB=970. The black curve represents the data, the red curve represent the average from a set
of toy MC experiments and the yellow region shows the 68% region for these experiments.
The dashed curve represents the limit of the 90% level contour from the toy MC.
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7 Conclusions

We have analyzed the MEG 2008 data with an unbinned maximum likelihood technique and
we interpreted the result both in a Bayesian and in a frequentistic (a-la Feldman Cousins)
framework. We find:

Nsig < 12.75 @90%C.L., BR(μ+ → e+γ) < 2.8 × 10−11 @90%C.L, (15)

with a Bayesian approach and:

Nsig < 17 @90%C.L., (16)

with a Feldman Cousins approach.
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