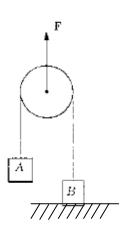

Esercitazioni 14-15 – 22/02/2007

→ Problemi introduttivi di dinamica del punto materiale

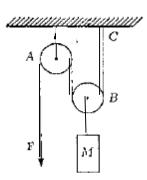
(1) Sistema di due masse; forza peso e tensione del filo


Un blocco di massa m_A =4.00kg poggia su di un piano orizzontale privo di attrito. Esso è trascinato dal blocco di massa m_B =2.00kg ad esso collegato per mezzo di una fune inestensibile e di peso trascurabile (vedi figura).

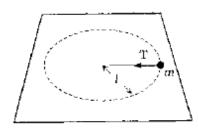
Determinare l'accelerazione a con cui si muove il blocco A e la tensione T della fune.

Si aggiunga una massa m alla massa m_B . Se l'insieme delle sue masse (mB+m), partendo da fermo, scende di un tratto h=5.00m in 1.20s, si calcoli il valore di m.

(2) Masse e carrucola



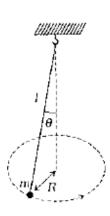
La forza \vec{F} agisce sulla carrucola. Carrucola e corda sono di massa trascurabile. All'estremità della corda sono appesi due oggetti, di massa $m_A=1.2kg$ e $m_B=1.9kg$; m_2 è appoggiato al suolo. Qual è il massimo valore F_{max} della forza \vec{F} per cui m_A rimane a contatto con il suolo?


Nel caco $F > F_{max}$ discutere il moto del sistema e calcolare le accelerazioni a_A e a_B . Considerare poi il moto nel riferimento S', solidale con la carrucola, e calcolare le accelerazioni a'_A e a'_B e l'accelerazione della carrucola (accelerazione di trascinamento).

(3) Masse e carrucole – macchine semplici

Due carrucole A e B sono disposte come in figura. La carrucola A può ruotare senza attrito intorno a un asse orizzontale fisso; l'asse della carrucola B è libero di muoversi. Una fune di massa trascurabile fissata ad un estremo nel punto C passa nelle due carrucole. Se all'asse della carrucola B viene appesa una massa m=50.0kg, quale forza $|\vec{F}|$ occorre applicare per mantenere in equilibrio la massa m?

(4) Forza centripeta; tensione del filo

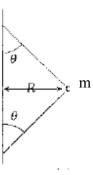


Un corpo di massa m=500g, attaccato a un cavo inestensibile e di massa trascurabile, viene fatto ruotare con velocità costante $|\vec{\mathbf{v}}|=5.00m/s$ su un piano orizzontale privo di attrito. Il cavo, di lunghezza l=50.0cm, è fissato al piano all'estremità opposta. Calcolare la tensione $|\vec{\mathbf{T}}|$ del cavo.

(5) Curva sopraelevata – Forza centripeta; reazione vincolare

Un'automobile percorre una pista circolare la cui superficie è inclinata di un angolo $\theta = \pi/4$ rispetto al piano orizzontale. Calcolare la velocità $|\vec{v}|$ dell'automobile sapendo che percorre la pista con moto circolare uniforme di raggio r = 50m.

(6) Pendolo conico – Forza centripeta; tensione del filo



Un corpo di massa m=400g è appeso a una fune di lunghezza l=50.0cm che forma un angolo $\theta=\pi/6$ con la verticale. Il punto materiale percorre una traiettoria circolare con velocità uniforme. Calcolare il periodo τ del moto.

(7) Forza centripeta; tensione del filo

Un corpo di massa m=4.00kg è legato mediante due cavi ad un asse verticale, come mostrato in figura; R=1m; $\theta=\pi/4$. Calcolare:

- (a) la velocità angolare ω affinché la tensione del cavo superiore sia $\left|\overrightarrow{T_1}\right|$ =100.0N
- (b) la tensione $\left|\overrightarrow{T_2}\right|$ del cavo inferiore.

→ Teorema dell'impulso e teorema dell'energia cinetica

(8) Moto circolare; forza frenante

Un punto materiale di massa m=0.1kg si muove lungo una guida orizzontale circolare di raggio R=30cm, lungo la quale subisce una forza frenante di modulo costante pari a F=0.5N. Al tempo t=0 la velocità ha il valore v_0 . se il punto compie n=10 giri prima di fermarsi, calcolare il valore v_0 e il tempo impiegato per arrivare alla quiete.