Esercizio n.1 [12 punti]

Nel piano (x,y) sono fissate due cariche elettriche puntiformi: Q_1 nel punto $P_1(a,0)$ e Q_2 nel punto $P_2(b,0)$, essendo $Q_1 = -\beta \cdot Q_2$ e $\beta = \sqrt{(a/b)}$.

- 1) Scrivere l'espressione del potenziale elettrostatico in un punto generico $P(x,y)=P(r,\theta)$. Si consiglia di utilizzare le coordinate polari (r,θ) .
- 2) Si trovi il luogo dei punti del piano in cui il potenziale elettrostatico V=0.
- 3) Supponendo che sia b=2a , si calcoli il valore del campo \bar{E} (modulo e verso) nel punto $P_0(x,y) \equiv (\sqrt{ab}, 0)$.

Dati: $Q_2 = 2$ nC, a = 2 cm.

Soluzione

1) Il potenziale in P è la somma dei potenziali creati dalle due cariche Q1 e Q2:

creati dalle due
$$\frac{1}{R_2} - \frac{\beta}{R_1}$$

$$\frac{1}{R_2} - \frac{\beta}{R_1}$$

$$\frac{1}{R_2} - \frac{\beta}{R_1}$$

$$\frac{1}{R_1} - \frac{\beta}{R_2}$$

$$\frac{1}{R_1} - \frac{\beta}{R_1}$$

$$V(r,\theta) = V(Q_1) + V(Q_2) = \frac{kQ1}{R_1} + \frac{kQ2}{R_2} = kQ_2 \left(\frac{1}{R_2} - \frac{\beta}{R_1}\right)$$

Essendo $k=1/4\pi\epsilon_0$

Le relazioni fra
$$R_{1,2}$$
, a, b, (x,y) , (r,θ) sono: $R_1^2 = y^2 + (x-a)^2 = a^2 + r^2 - 2ar\cos\theta$ (1)

e:
$$R_2^2 = y^2 + (x - b)^2 = b^2 + r^2 - 2br\cos\theta$$
 (1')

2) Il potenziale V sarà nullo dove V=0, cioè per
$$\frac{1}{R_2} = \frac{\beta}{R_1}$$
 o $R_2 = \frac{R_1}{\beta}$ (2)

Le (1), inserite nella (2)al quadrato: $R_2^2 = \frac{R_1^2}{\beta^2} = R_1^2 \frac{b}{a}$ danno, utilizzando le coordinate polari:

$$b^2+r^2-2br\cos\theta=(a^2+r^2-2ar\cos\theta)\frac{b}{a},\quad \text{semplificando: }b^2+r^2=a\,b+r^2\frac{b}{a}\text{ da cui:}$$

 $r^2 = ab$ quindi: $r = \sqrt{ab} = costante$. Che rappresenta una circonferenza di raggio r.

3) Il campo E sull'asse delle x, in un punto intermedio fra Q_1 e Q_2 , può essere calcolato semplicemente come somma dei campi generati dalle due cariche, d ed f essendo la distanza fra le cariche Q_1 , Q_2 , ed il punto (\sqrt{ab} , 0):

$$E(x) = E(Q_1) + E(Q_2) = -\frac{k|Q_1|}{d^2} - \frac{k|Q_2|}{f^2} = -\frac{k|Q_1|}{\left(a(\sqrt{2} - 1)\right)^2} - \frac{k|Q_2|}{\left(a(2 - \sqrt{2})\right)^2} =$$

$$= -\frac{kQ_2}{a^2} \frac{1 + \sqrt{2}}{2(\sqrt{2} - 1)^2} \cong -\frac{kQ_2}{a^2} \cdot 7 = -\frac{9 \cdot 10^9 \cdot 2 \cdot 10^{-9}}{4 \cdot 10^{-4}} \cdot 7 \cong -3.1 \cdot 10^5 \text{ V/m}$$

In alternativa il campo può essere calcolato dal potenziale $V(r,\theta)$ utilizzando la definizione: $\overline{E} = -\overline{\nabla}V$ che, in coordinate polari (r,θ) , ha componenti:

$$E_r = -\frac{\partial V}{\partial r}$$
; $E_\theta = -\frac{1}{r}\frac{\partial V}{\partial \theta}$ che dovranno essere calcolati nel punto $(r,\theta) = (\sqrt{ab}, 0)$.

tenendo conto che b=2a e quindi $\beta=1/\sqrt{2}$, il potenziale si scrive come:

Prova scritta di Fisica 2 12.6.2012

$$V(r,\theta) = kQ_2 \left(\frac{1}{R^2} - \frac{1}{\sqrt{2}R^2} \right) = kQ_2 \left(\frac{1}{\sqrt{4a^2 + r^2 - 4ar\cos\theta}} - \frac{1}{\sqrt{2}\sqrt{a^2 + r^2 - 2ar\cos\theta}} \right)$$

La componente θ del campo E sarà:

$$E_{\theta} = -\frac{1}{r} \frac{\partial V}{\partial \theta} = \frac{kQ_2}{2r} \left[(4a^2 + r^2 - 4ar\cos\theta)^{-\frac{3}{2}} (4ar\sin\theta) - (2a^2 + 2r^2 - 4ar\cos\theta)^{-\frac{3}{2}} (4ar\sin\theta) \right]$$

che per $\theta=0$ vale 0, quindi: $\mathbf{E}_{\theta}=\mathbf{0}$, come ci si doveva aspettare.

La componente r del campo E sarà:

$$E_r = -\frac{\partial V}{\partial r} = \frac{kQ_2}{2} \Big[(4a^2 + r^2 - 4ar\cos\theta)^{-\frac{3}{2}} (2r - 4a\cos\theta) - (2a^2 + 2r^2 - 4ar\cos\theta)^{-3/2} (4r - 4a\cos\theta) \Big], \text{ che per } \theta = 0 \text{ e } r = a\sqrt{2} \text{ diventa:}$$

$$E_r = kQ_2 \left[\left(4a^2 + 2a^2 - 4a^2\sqrt{2} \right)^{-3/2} \cdot \left(a\sqrt{2} - 2a \right) - \left(2a^2 + 4a^2 - 4a^2\sqrt{2} \right)^{-3/2} \cdot \left(2\sqrt{2}a - 2a \right) \right]$$

$$= kQ_2 \left[\left(6a^2 - 4a^2\sqrt{2} \right)^{-3/2} \cdot \left(a\sqrt{2} - 2\sqrt{2}a \right) \right] = -\frac{kQ_2}{a^3} \left(6 - 4\sqrt{2} \right)^{-3/2} \cdot \left(a\sqrt{2} \right)$$

quindi
$$E_r=-rac{kQ_2}{a^2}rac{\sqrt{2}}{\sqrt{\left(6-4\sqrt{2}
ight)^3}}\cong -rac{kQ_2}{a^2}\cdot 7\cong -3$$
, $1\cdot 10^5$ V/m

Esercizio n.2 [8 punti]

Un filo conduttore indefinito è disposto lungo l'asse di una superficie cilindrica infinitamente lunga, non conduttrice, su cui è distribuita una carica positiva con densità superficiale σ .

Il raggio della superficie cilindrica è R=1cm. E' noto che alla distanza r_0 =2cm dall'asse del sistema il campo elettrostatico vale $E(r_0)$ =1.5 ·10⁴ V/m.

Determinare la densità di carica σ e l'intensità di corrente i_0 che deve scorrere nel filo affinché delle particelle cariche lanciate parallelamente all'asse del sistema a distanza r>R e con velocità v=c/2 non vengano deflesse.

Soluzione

Per il teorema di Gauss applicato ad una superficie cilindrica di lunghezza l e raggio r>R si ha:

$$2\pi r l E(r) = 2\pi R l \sigma / \varepsilon_0$$

Da cui $E(r)=R/r \cdot \sigma/\epsilon_0$

Quindi, noto il campo alla distanza $r = r_0$, troviamo:

$$\sigma = \frac{r_0 E(r_0) \varepsilon_0}{R} = \frac{2 \cdot 1.5 \cdot 10^4 \cdot 8.85 \cdot 10^{-12}}{1} \approx 2.7 \cdot 10^{-7} \quad C/m^2$$

Prova scritta di Fisica 2 12.6.2012

Quando nel filo disposto lungo l'asse della superficie cilindrica scorre una corrente i_0 a distanza r, si ha, oltre al campo elettrostatico E(r), un campo magnetico di intensità B(r)= $\mu_0 i_0/2\pi r$.

In queste condizioni una carica puntiforme a distanza r dal filo sentirà l'effetto di entrambi i campi.

Assumendo che la velocità delle cariche sia concorde alla corrente i₀ si ha:

 $\overline{F} = q(\overline{E} + \overline{v} \times \overline{B}) = 0$ da cui, imponendo F=0, risulta:

$$i_0 = \frac{2\pi R\sigma}{v \, \varepsilon_0 \, \mu_0} = \frac{2 \cdot 2\pi R\sigma \cdot c^2}{c} = 4\pi R\sigma \cdot c = 4 \cdot 3{,}14 \, 10^{-2} \cdot 2{,}7 \, 10^{-7} \cdot 3 \, 10^8 \cong 9{,}8 \, A$$

Esercizio n.3 [8 punti]

Una sbarra conduttrice di lunghezza L ruota nel piano x,y in senso orario intorno all'asse z con velocità angolare $\omega = 2$ rad/s. Nella regione di spazio in cui avviene la rotazione è presente un campo di induzione magnetica $\overline{B} = \beta \times r \hat{z}$, in cui $r = \sqrt{x^2 + y^2}$, diretto lungo z.

- 1) Se la sbarretta è incernierata su un estremo, quanto vale la ddp tra tale estremo e il bordo esterno della sbarretta?
- 2) Ricavare inoltre la ddp tra il centro e gli estremi nel caso in cui la sbarretta sia incernierata al centro.

Dati: L=2 m, $\beta = 1.10^{-2}$ T/m

Soluzione

1) All'equilibrio la forza di Lorentz totale agente sugli elettroni del metallo deve essere nulla:

$$\bar{F} = q(\bar{E} + \bar{v} \times \bar{B}) = 0$$
 quindi deve essere: $\bar{E} = -\bar{v} \times \bar{B}$

Assumendo l'asse delle x diretto secondo la sbarra, in un punto generico x sulla sbarra si ha, ricordando che $\bar{v} = \overline{\omega} \times \bar{x}$, e che $B(x) = \beta x$

$$E_x(x) = \omega x B(x) = \omega \beta x^2$$
.

Quindi nel primo caso:

$$V(0) - V(L) = \int_{0}^{L} E_{x}(x) dx = \frac{\omega \beta L^{3}}{3} = \frac{2 \cdot 10^{-2} \cdot 8}{3} \approx 53 \text{ mV}$$

(in cui l'integrale si estende su tutta la lunghezza L della sbarretta).

2) Mentre nel secondo caso:

$$V(0) - V(L/2) = \int_0^{L/2} E_x(x) dx = \frac{\omega \beta L^3}{24} = \frac{2 \cdot 10^{-2} \cdot 8}{24} \approx 6.6 \text{ mV}$$

(in cui l'integrale è esteso da 0 a L/2).