
INTRODUCTION TO MONTE CARLO METHODSD.J.C. MACKAYDepartment of Physics, Cambridge University.Cavendish Laboratory, Madingley Road,Cambridge, CB3 0HE. United Kingdom.ABSTRACTThis chapter describes a sequence of Monte Carlo methods: impor-tance sampling, rejection sampling, theMetropolis method, andGibbs sampling. For each method, we discuss whether the method isexpected to be useful for high{dimensional problems such as arise in in-ference with graphical models. After the methods have been described,the terminology of Markov chain Monte Carlo methods is presented.The chapter concludes with a discussion of advanced methods, includ-ing methods for reducing random walk behaviour.For details of Monte Carlo methods, theorems and proofs and a fulllist of references, the reader is directed to Neal (1993), Gilks, Richardsonand Spiegelhalter (1996), and Tanner (1996).1. The problems to be solvedThe aims of Monte Carlo methods are to solve one or both of the followingproblems.Problem 1: to generate samples fx(r)gRr=1 from a given probability distri-bution P (x).1Problem 2: to estimate expectations of functions under this distribution,for example � = h�(x)i � Z dNx P (x)�(x): (1)1Please note that I will use the word \sample" in the following sense: a sample froma distribution P (x) is a single realization x whose probability distribution is P (x). Thiscontrasts with the alternative usage in statistics, where \sample" refers to a collection ofrealizations fxg.



2 D.J.C. MACKAYThe probability distribution P (x), which we will call the target density,might be a distribution from statistical physics or a conditional distributionarising in data modelling | for example, the posterior probability of amodel's parameters given some observed data. We will generally assumethat x is an N{dimensional vector with real components xn, but we willsometimes consider discrete spaces also.We will concentrate on the �rst problem (sampling), because if we havesolved it, then we can solve the second problem by using the random sam-ples fx(r)gRr=1 to give the estimator�̂ � 1RXr �(x(r)): (2)Clearly if the vectors fx(r)gRr=1 are generated from P (x) then the expecta-tion of �̂ is �. Also, as the number of samples R increases, the variance of�̂ will decrease as �2R , where �2 is the variance of �,�2 = Z dNx P (x)(�(x)� �)2: (3)This is one of the important properties of Monte Carlo methods.The accuracy of the Monte Carlo estimate (equation (2)) isindependent of the dimensionality of the space sampled. To beprecise, the variance of �̂ goes as �2R . So regardless of the dimensionalityof x, it may be that as few as a dozen independent samples fx(r)g su�ceto estimate � satisfactorily.We will �nd later, however, that high dimensionality can cause other dif-�culties for Monte Carlo methods. Obtaining independent samples from agiven distribution P (x) is often not easy.1.1. WHY IS SAMPLING FROM P (x) HARD?We will assume that the density from which we wish to draw samples, P (x),can be evaluated, at least to within a multiplicative constant; that is, wecan evaluate a function P �(x) such thatP (x) = P �(x)=Z: (4)If we can evaluate P �(x), why can we not easily solve problem 1? Why is itin general di�cult to obtain samples from P (x)? There are two di�culties.The �rst is that we typically do not know the normalizing constantZ = Z dNx P �(x): (5)
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Figure 1. (a) The function P �(x) = exp �0:4(x� 0:4)2 � 0:08x4�. How to draw samplesfrom this density? (b) The function P �(x) evaluated at a discrete set of uniformly spacedpoints fxig. How to draw samples from this discrete distribution?The second is that, even if we did know Z, the problem of drawing samplesfrom P (x) is still a challenging one, especially in high{dimensional spaces.There are only a few high{dimensional densities from which it is easy todraw samples, for example the Gaussian distribution.2Let us start from a simple one{dimensional example. Imagine that wewish to draw samples from the density P (x) = P �(x)=Z whereP �(x) = exp h0:4(x� 0:4)2 � 0:08x4i ; x 2 (�1;1): (6)We can plot this function (�gure 1a). But that does not mean we can drawsamples from it. To give ourselves a simpler problem, we could discretizethe variable x and ask for samples from the discrete probability distributionover a set of uniformly spaced points fxig (�gure 1b). How could we solvethis problem? If we evaluate p�i = P �(xi) at each point xi, we can computeZ =Xi p�i (7)and pi = p�i =Z (8)and we can then sample from the probability distribution fpig using variousmethods based on a source of random bits. But what is the cost of thisprocedure, and how does it scale with the dimensionality of the space,2A sample from a univariate Gaussian can be generated by computingcos(2�u1)p2 log(1=u2), where u1 and u2 are uniformly distributed in (0; 1).



4 D.J.C. MACKAYN? Let us concentrate on the initial cost of evaluating Z. To computeZ (equation (7)) we have to visit every point in the space. In �gure 1bthere are 50 uniformly spaced points in one dimension. If our system hadN dimensions, N = 1000 say, then the corresponding number of pointswould be 501000, an unimaginable number of evaluations of P �. Even if eachcomponent xn only took two discrete values, the number of evaluations ofP � would be 21000, a number that is still horribly huge, equal to the fourthpower of the number of particles in the universe.One system with 21000 states is a collection of 1000 spins, for example,a 30� 30 fragment of an Ising model (or `Boltzmann machine' or `Markov�eld') (Yeomans 1992) whose probability distribution is proportional toP �(x) = exp [��E(x)] (9)where xn 2 f�1g andE(x) = � "12Xm;n Jmnxmxn +Xn Hnxn# : (10)The energy function E(x) is readily evaluated for any x. But if we wish toevaluate this function at all states x, the computer time required would be21000 function evaluations.The Ising model is a simple model which has been around for a long time,but the task of generating samples from the distribution P (x) = P �(x)=Z isstill an active research area as evidenced by the work of Propp and Wilson(1996).1.2. UNIFORM SAMPLINGHaving agreed that we cannot visit every location x in the state space, wemight consider trying to solve the second problem (estimating the expec-tation of a function �(x)) by drawing random samples fx(r)gRr=1 uniformlyfrom the state space and evaluating P �(x) at those points. Then we couldintroduce ZR, de�ned by ZR = RXr=1P �(x(r)); (11)and estimate � = R dNx �(x)P (x) by�̂ = RXr=1�(x(r))P �(x(r))ZR : (12)



MONTE CARLO METHODS 5Is anything wrong with this strategy?Well, it depends on the functions �(x)and P �(x). Let us assume that �(x) is a benign, smoothly varying functionand concentrate on the nature of P �(x). A high{dimensional distributionis often concentrated in a small region of the state space known as itstypical set T , whose volume is given by jT j ' 2H(X), where H(X) is theShannon{Gibbs entropy of the probability distribution P (x),H(X) =Xx P (x) log2 1P (x) : (13)If almost all the probability mass is located in the typical set and �(x)is a benign function, the value of � = R dNx �(x)P (x) will be principallydetermined by the values that �(x) takes on in the typical set. So uniformsampling will only stand a chance of giving a good estimate of � if wemake the number of samples R su�ciently large that we are likely to hitthe typical set a number of times. So, how many samples are required? Letus take the case of the Ising model again. The total size of the state spaceis 2N states, and the typical set has size 2H . So each sample has a chanceof 2H=2N of falling in the typical set. The number of samples required tohit the typical set once is thus of orderRmin ' 2N�H : (14)So, what is H? At high temperatures, the probability distribution of anIsing model tends to a uniform distribution and the entropy tends toHmax = N bits, so Rmin is of order 1. Under these conditions, uniformsampling may well be a satisfactory technique for estimating �. But hightemperatures are not of great interest. Considerably more interesting areintermediate temperatures such as the critical temperature at which theIsing model melts from an ordered phase to a disordered phase. At thistemperature the entropy of an Ising model is roughly N=2 bits. For thisprobability distribution the number of samples required simply to hit thetypical set once is of orderRmin ' 2N�N=2 = 2N=2 (15)which forN = 1000 is about 10150. This is roughly the square of the numberof particles in the universe. Thus uniform sampling is utterly useless forthe study of Ising models of modest size. And in most high{dimensionalproblems, if the distribution P (x) is not actually uniform, uniform samplingis unlikely to be useful.1.3. OVERVIEWHaving established that drawing samples from a high{dimensional distri-bution P (x) = P �(x)=Z is di�cult even if P �(x) is easy to evaluate, we will
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Figure 2. Functions involved in importance sampling. We wish to estimate the expecta-tion of �(x) under P (x) / P �(x). We can generate samples from the simpler distributionQ(x) / Q�(x). We can evaluate Q� and P � at any point.now study a sequence of Monte Carlo methods: importance sampling,rejection sampling, the Metropolis method, and Gibbs sampling.2. Importance samplingImportance sampling is not a method for generating samples from P (x)(problem 1); it is just a method for estimating the expectation of a func-tion �(x) (problem 2). It can be viewed as a generalization of the uniformsampling method.For illustrative purposes, let us imagine that the target distribution isa one{dimensional density P (x). It is assumed that we are able to evalu-ate this density, at least to within a multiplicative constant; thus we canevaluate a function P �(x) such thatP (x) = P �(x)=Z: (16)But P (x) is too complicated a function for us to be able to sample fromit directly. We now assume that we have a simpler density Q(x) which wecan evaluate to within a multiplicative constant (that is, we can evaluateQ�(x), where Q(x) = Q�(x)=ZQ), and from which we can generate samples.An example of the functions P �, Q� and � is shown in �gure 2. We call Qthe sampler density.In importance sampling, we generate R samples fx(r)gRr=1 from Q(x).If these points were samples from P (x) then we could estimate � by equa-tion (2). But when we generate samples from Q, values of x where Q(x)is greater than P (x) will be over{represented in this estimator, and points
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10 100 1000 10000 100000 1000000Figure 3. Importance sampling in action: a) using a Gaussian sampler density; b) using aCauchy sampler density. Horizontal axis shows number of samples on a log scale. Verticalaxis shows the estimate �̂. The horizontal line indicates the true value of �.where Q(x) is less than P (x) will be under{represented. To take into ac-count the fact that we have sampled from the wrong distribution, we in-troduce `weights' wr � P �(x(r))Q�(x(r)) (17)which we use to adjust the `importance' of each point in our estimator thus:�̂ � Pr wr�(x(r))Pr wr : (18)If Q(x) is non{zero for all x where P (x) is non{zero, it can be proved thatthe estimator �̂ converges to �, the mean value of �(x), as R increases.A practical di�culty with importance sampling is that it is hard toestimate how reliable the estimator �̂ is. The variance of �̂ is hard toestimate, because the empirical variances of the quantities wr and wr�(x(r))are not necessarily a good guide to the true variances of the numerator anddenominator in equation (18). If the proposal density Q(x) is small in aregion where j�(x)P �(x)j is large then it is quite possible, even after manypoints x(r) have been generated, that none of them will have fallen in thatregion. This leads to an estimate of � that is drastically wrong, and noindication in the empirical variance that the true variance of the estimator�̂ is large.



8 D.J.C. MACKAY2.1. CAUTIONARY ILLUSTRATION OF IMPORTANCE SAMPLINGIn a toy problem related to the modelling of amino acid probability distribu-tions with a one{dimensional variable x I evaluated a quantity of interestusing importance sampling. The results using a Gaussian sampler and aCauchy sampler are shown in �gure 3. The horizontal axis shows the num-ber of samples on a log scale. In the case of the Gaussian sampler, afterabout 500 samples had been evaluated one might be tempted to call a halt;but evidently there are infrequent samples that make a huge contributionto �̂, and the value of the estimate at 500 samples is wrong. Even aftera million samples have been taken, the estimate has still not settled downclose to the true value. In contrast, the Cauchy sampler does not su�er fromglitches and converges (on the scale shown here) after about 5000 samples.This example illustrates the fact that an importance sampler shouldhave heavy tails.2.2. IMPORTANCE SAMPLING IN MANY DIMENSIONSWe have already observed that care is needed in one{dimensional impor-tance sampling problems. Is importance sampling a useful technique inspaces of higher dimensionality, say N = 1000?Consider a simple case{study where the target density P (x) is a uniformdistribution inside a sphere,P �(x) = � 1 0 � �(x) � RP0 �(x) > RP ; (19)where �(x) � (Pi x2i )1=2, and the proposal density is a Gaussian centredon the origin, Q(x) =Yi Normal(xi; 0; �2): (20)An importance sampling method will be in trouble if the estimator �̂ isdominated by a few large weights wr. What will be the typical range ofvalues of the weights wr? By the central limit theorem, if � is the distancefrom the origin of a sample from Q, the quantity �2 has a roughly Gaussiandistribution with mean and standard deviation:�2 � N�2 �p2N�2: (21)Thus almost all samples from Q lie in a `typical set' with distance from theorigin very close to pN�. Let us assume that � is chosen such that thetypical set of Q lies inside the sphere of radius RP . [If it does not, then thelaw of large numbers implies that almost all the samples generated from Q



MONTE CARLO METHODS 9will fall outside RP and will have weight zero.] Then we know that mostsamples from Q will have a value of Q that lies in the range1(2��2)N=2 exp �N2 � p2N2 ! : (22)Thus the weights wr = P �=Q will typically have values in the range(2��2)N=2 exp N2 � p2N2 ! : (23)So if we draw a hundred samples, what will the typical range of weightsbe? We can roughly estimate the ratio of the largest weight to the medianweight by doubling the standard deviation in equation (23). The largestweight and the median weight will typically be in the ratio:wmaxrwmedr = exp �p2N� : (24)In N = 1000 dimensions therefore, the largest weight after one hundredsamples is likely to be roughly 1019 times greater than the median weight.Thus an importance sampling estimate for a high{dimensional problem willvery likely be utterly dominated by a few samples with huge weights.In conclusion, importance sampling in high dimensions often su�ersfrom two di�culties. First, we clearly need to obtain samples that lie inthe typical set of P , and this may take a long time unless Q is a goodapproximation to P . Second, even if we obtain samples in the typical set,the weights associated with those samples are likely to vary by large factors,because the probabilities of points in a typical set, although similar to eachother, still di�er by factors of order exp(pN).3. Rejection samplingWe assume again a one{dimensional density P (x) = P �(x)=Z that is toocomplicated a function for us to be able to sample from it directly. Weassume that we have a simpler proposal density Q(x) which we can evaluate(within a multiplicative factor ZQ, as before), and which we can generatesamples from. We further assume that we know the value of a constant csuch that for all x, cQ�(x) > P �(x): (25)A schematic picture of the two functions is shown in �gure 4a.We generate two random numbers. The �rst, x, is generated from theproposal density Q(x). We then evaluate cQ�(x) and generate a uniformly
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P*(x)Figure 4. Rejection sampling. a) The functions involved in rejection sampling. We desiresamples from P (x) / P �(x). We are able to draw samples from Q(x) / Q�(x), and weknow a value c such that cQ�(x) > P �(x) for all x. b) A point (x;u) is generated atrandom in the lightly shaded area under the curve cQ�(x). If this point also lies belowP �(x) then it is accepted.distributed random variable u from the interval [0; cQ�(x)]. These two ran-dom numbers can be viewed as selecting a point in the two{dimensionalplane as shown in �gure 4b.We now evaluate P �(x) and accept or reject the sample x by comparingthe value of u with the value of P �(x). If u > P �(x) then x is rejected;otherwise it is accepted, which means that we add x to our set of samplesfx(r)g. The value of u is discarded.Why does this procedure generate samples from P (x)? The proposedpoint (x; u) comes with uniform probability from the lightly shaded areaunderneath the curve cQ�(x) as shown in �gure 4b. The rejection rulerejects all the points that lie above the curve P �(x). So the points (x; u)that are accepted are uniformly distributed in the heavily shaded area underP �(x). This implies that the probability density of the x{coordinates of theaccepted points must be proportional to P �(x), so the samples must beindependent samples from P (x).Rejection sampling will work best if Q is a good approximation to P . IfQ is very di�erent from P then c will necessarily have to be large and thefrequency of rejection will be large.3.1. REJECTION SAMPLING IN MANY DIMENSIONSIn a high{dimensional problem it is very likely that the requirement thatcQ� be an upper bound for P � will force c to be so huge that acceptanceswill be very rare indeed. Finding such a value of c may be di�cult too,since in many problems we don't know beforehand where the modes of P �are located or how high they are.
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Figure 5. A Gaussian P (x) and a slightly broader Gaussian Q(x) scaled up by a factorc such that cQ(x) � P (x).As a case study, consider a pair of N{dimensional Gaussian distribu-tions with mean zero (�gure 5). Imagine generating samples from one withstandard deviation �Q and using rejection sampling to obtain samples fromthe other whose standard deviation is �P . Let us assume that these twostandard deviations are close in value | say, �Q is one percent larger than�P . [�Q must be larger than �P because if this is not the case, there isno c such that cQ upper{bounds P for all x.] So, what is the value of cif the dimensionality is N = 1000? The density of Q(x) at the origin is1=(2��2Q)N=2, so for cQ to upper{bound P we need to setc = (2��2Q)N=2(2��2P )N=2 = exp�N log �Q�P � : (26)With N = 1000 and �Q�P = 1:01, we �nd c = exp(10) ' 20; 000. What willthe rejection rate be for this value of c? The answer is immediate: sincethe acceptance rate is the ratio of the volume under the curve P (x) to thevolume under cQ(x), the fact that P and Q are normalized implies that theacceptance rate will be 1=c. For our case study, this is 1=20; 000. In general,c grows exponentially with the dimensionality N .Rejection sampling, therefore, whilst a useful method for one{dimensionalproblems, is not a practical technique for generating samples from high{dimensional distributions P (x).4. The Metropolis methodImportance sampling and rejection sampling only work well if the proposaldensity Q(x) is similar to P (x). In large and complex problems it is di�cultto create a single density Q(x) that has this property.



12 D.J.C. MACKAYxx(1)Q(x; x(1)) P �(x) xx(2)Q(x; x(2))P �(x)Figure 6. Metropolis method in one dimension. The proposal distribution Q(x0;x) ishere shown as having a shape that changes as x changes, though this is not typical ofthe proposal densities used in practice.The Metropolis algorithm instead makes use of a proposal density Qwhich depends on the current state x(t). The density Q(x0; x(t)) might inthe simplest case be a simple distribution such as a Gaussian centred onthe current x(t). The proposal density Q(x0; x) can be any �xed density. Itis not necessary for Q(x0; x(t)) to look at all similar to P (x). An exampleof a proposal density is shown in �gure 6; this �gure shows the densityQ(x0; x(t)) for two di�erent states x(1) and x(2).As before, we assume that we can evaluate P �(x) for any x. A tentativenew state x0 is generated from the proposal density Q(x0; x(t)). To decidewhether to accept the new state, we compute the quantitya = P �(x0)P �(x(t))Q(x(t); x0)Q(x0; x(t)) : (27)If a � 1 then the new state is accepted.Otherwise, the new state is accepted with probability a. (28)If the step is accepted, we set x(t+1) = x0. If the step is rejected, then weset x(t+1) = x(t). Note the di�erence from rejection sampling: in rejectionsampling, rejected points are discarded and have no in
uence on the list ofsamples fx(r)g that we collected. Here, a rejection causes the current stateto be written onto the list of points another time.Notation: I have used the superscript r = 1 : : :R to label points thatare independent samples from a distribution, and the superscript t = 1 : : :Tto label the sequence of states in a Markov chain. It is important to note thata Metropolis simulation of T iterations does not produce T independentsamples from the target distribution P . The samples are correlated.To compute the acceptance probability we need to be able to computethe probability ratios P (x0)=P (x(t)) and Q(x(t); x0)=Q(x0; x(t)). If the pro-posal density is a simple symmetrical density such as a Gaussian centredon the current point, then the latter factor is unity, and the Metropolis



MONTE CARLO METHODS 13x(1)Q(x;x(1)) P �(x)L�
Figure 7. Metropolis method in two dimensions, showing a traditional proposal densitythat has a su�ciently small step size � that the acceptance frequency will be about 0.5.method simply involves comparing the value of the target density at thetwo points. The general algorithm for asymmetric Q, given above, is oftencalled the Metropolis{Hastings algorithm.It can be shown that for any positive Q (that is, any Q such thatQ(x0; x) > 0 for all x; x0), as t ! 1, the probability distribution of x(t)tends to P (x) = P �(x)=Z. [This statement should not be seen as implyingthat Q has to assign positive probability to every point x0 | we will discussexamples later where Q(x0; x) = 0 for some x; x0; notice also that we havesaid nothing about how rapidly the convergence to P (x) takes place.]The Metropolis method is an example of a `Markov chain MonteCarlo' method (abbreviated MCMC). In contrast to rejection samplingwhere the accepted points fx(r)g are independent samples from the desireddistribution, Markov chain Monte Carlo methods involve a Markov processin which a sequence of states fx(t)g is generated, each sample x(t) havinga probability distribution that depends on the previous value, x(t�1). Sincesuccessive samples are correlated with each other, the Markov chain mayhave to be run for a considerable time in order to generate samples thatare e�ectively independent samples from P .Just as it was di�cult to estimate the variance of an importance sam-pling estimator, so it is di�cult to assess whether a Markov chain MonteCarlo method has `converged', and to quantify how long one has to wait toobtain samples that are e�ectively independent samples from P .



14 D.J.C. MACKAY4.1. DEMONSTRATION OF THE METROPOLIS METHODThe Metropolis method is widely used for high{dimensional problems. Manyimplementations of the Metropolis method employ a proposal distributionwith a length scale � that is short relative to the length scale L of the prob-able region (�gure 7). A reason for choosing a small length scale is that formost high{dimensional problems, a large random step from a typical point(that is, a sample from P (x)) is very likely to end in a state which has verylow probability; such steps are unlikely to be accepted. If � is large, move-ment around the state space will only occur when a transition to a statewhich has very low probability is actually accepted, or when a large randomstep chances to land in another probable state. So the rate of progress willbe slow, unless small steps are used.The disadvantage of small steps, on the other hand, is that the Metropo-lis method will explore the probability distribution by a random walk , andrandom walks take a long time to get anywhere. Consider a one{dimensionalrandom walk, for example, on each step of which the state moves randomlyto the left or to the right with equal probability. After T steps of size �,the state is only likely to have moved a distance about pT�. Recall thatthe �rst aim of Monte Carlo sampling is to generate a number of inde-pendent samples from the given distribution (a dozen, say). If the largestlength scale of the state space is L, then we have to simulate a random{walk Metropolis method for a time T ' (L=�)2 before we can expect to geta sample that is roughly independent of the initial condition | and that'sassuming that every step is accepted: if only a fraction f of the steps areaccepted on average, then this time is increased by a factor 1=f .Rule of thumb: lower bound on number of iterations of a Metropo-lis method. If the largest length scale of the space of probable statesis L, a Metropolis method whose proposal distribution generates a ran-dom walk with step size � must be run for at least T ' (L=�)2 iterationsto obtain an independent sample.This rule of thumb only gives a lower bound; the situation may be muchworse, if, for example, the probability distribution consists of several islandsof high probability separated by regions of low probability.To illustrate how slow the exploration of a state space by random walkis, �gure 8 shows a simulation of a Metropolis algorithm for generatingsamples from the distribution:P (x) = � 121 x 2 f0; 1; 2 : : : ; 20g0 otherwise : (29)
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(c) Independent sampling
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Figure 8. Metropolis method for a toy problem. (a) The state sequence for t = 1 : : : 600.Horizontal direction = states from 0 to 20; vertical direction = time from 1 to 600;the cross bars mark time intervals of duration 50. (b) Histogram of occupancy of thestates after 100, 400 and 1200 iterations. (c) For comparison, histograms resulting whensuccessive points are drawn independently from the target distribution.



16 D.J.C. MACKAYThe proposal distribution isQ(x0; x) = � 12 x0 = x� 10 otherwise : (30)Because the target distribution P (x) is uniform, rejections will occur onlywhen the proposal takes the state to x0 = �1 or x0 = 21.The simulation was started in the state x0 = 10 and its evolution isshown in �gure 8a. How long does it take to reach one of the end statesx = 0 and x = 20? Since the distance is 10 steps the rule of thumb abovepredicts that it will typically take a time T ' 100 iterations to reach anend state. This is con�rmed in the present example. The �rst step into anend state occurs on the 178th iteration. How long does it take to visit bothend states? The rule of thumb predicts about 400 iterations are required totraverse the whole state space. And indeed the �rst encounter with the otherend state takes place on the 540th iteration. Thus e�ectively independentsamples are only generated by simulating for about four hundred iterations.This simple example shows that it is important to try to abolish randomwalk behaviour in Monte Carlo methods. A systematic exploration of thetoy state space f0; 1; 2; : : :20g could get around it, using the same step sizes,in about twenty steps instead of four hundred!4.2. METROPOLIS METHOD IN HIGH DIMENSIONSThe rule of thumb that we discussed above, giving a lower bound on thenumber of iterations of a random walk Metropolis method, also applies tohigher dimensional problems. Consider the simplest case of a target distri-bution that is a Gaussian, and a proposal distribution that is a sphericalGaussian of standard deviation in each direction equal to �. Without lossof generality, we can assume that the target distribution is a separable dis-tribution aligned with the axes fxng, and that it has standard deviationsf�ng in the di�erent directions n. Let �max and �min be the largest andsmallest of these standard deviations. Let us assume that � is adjustedsuch that the acceptance probability is close to 1. Under this assumption,each variable xn evolves independently of all the others, executing a ran-dom walk with step sizes about �. The time taken to generate e�ectivelyindependent samples from the target distribution will be controlled by thelargest lengthscale �max; just as in the previous section, where we neededat least T ' (L=�)2 iterations to obtain an independent sample, here weneed T ' (�max=�)2.Now how big can � be? The bigger it is, the smaller this number T be-comes, but if � is too big | bigger than �min | then the acceptance ratewill fall sharply. It seems plausible that the optimal � must be similar to
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(a) x1
x2 P (x) (b) x1

x2 P (x1jx(t)2 )x(t)
(c) x1
x2 P (x2jx1) (d) x1

x2 x(t)x(t+1)x(t+2)Figure 9. Gibbs sampling. (a) The joint density P (x) from which samples are required.(b) Starting from a state x(t), x1 is sampled from the conditional density P (x1jx(t)2 ). (c)A sample is then made from the conditional density P (x2jx1). (d) A couple of iterationsof Gibbs sampling.�min. Strictly, this may not be true; in special cases where the second small-est �n is signi�cantly greater than �min, the optimal � may be closer to thatsecond smallest �n. But our rough conclusion is this: where simple spheri-cal proposal distributions are used, we will need at least T ' (�max=�min)2iterations to obtain an independent sample, where �max and �min are thelongest and shortest lengthscales of the target distribution.This is good news and bad news. It is good news because, unlike thecases of rejection sampling and importance sampling, there is no catas-trophic dependence on the dimensionality N . But it is bad news in that allthe same, this quadratic dependence on the lengthscale ratio may force usto make very lengthy simulations.Fortunately, there are methods for suppressing random walks in MonteCarlo simulations, which we will discuss later.



18 D.J.C. MACKAY5. Gibbs samplingWe introduced importance sampling, rejection sampling and the Metropo-lis method using one{dimensional examples. Gibbs sampling, also knownas the heat bath method, is a method for sampling from distributions overat least two dimensions. It can be viewed as a Metropolis method in whichthe proposal distribution Q is de�ned in terms of the conditional distri-butions of the joint distribution P (x). It is assumed that whilst P (x) istoo complex to draw samples from directly, its conditional distributionsP (xijfxjgj 6=i) are tractable to work with. For many graphical models (butnot all) these one{dimensional conditional distributions are straightforwardto sample from. Conditional distributions that are not of standard formmay still be sampled from by adaptive rejection sampling if the conditionaldistribution satis�es certain convexity properties (Gilks and Wild 1992).Gibbs sampling is illustrated for a case with two variables (x1; x2) = xin �gure 9. On each iteration, we start from the current state x(t), and x1is sampled from the conditional density P (x1jx2), with x2 �xed to x(t)2 . Asample x2 is then made from the conditional density P (x2jx1), using thenew value of x1. This brings us to the new state x(t+1), and completes theiteration.In the general case of a system with K variables, a single iterationinvolves sampling one parameter at a time:x(t+1)1 � P (x1jx(t)2 ; x(t)3 ; : : :x(t)K ) (31)x(t+1)2 � P (x2jx(t+1)1 ; x(t)3 ; : : :x(t)K ) (32)x(t+1)3 � P (x3jx(t+1)1 ; x(t+1)2 ; : : :x(t)K ); etc. (33)Gibbs sampling can be viewed as a Metropolis method which has the prop-erty that every proposal is always accepted. Because Gibbs sampling is aMetropolis method, the probability distribution of x(t) tends to P (x) ast!1, as long as P (x) does not have pathological properties.5.1. GIBBS SAMPLING IN HIGH DIMENSIONSGibbs sampling su�ers from the same defect as simple Metropolis algo-rithms | the state space is explored by a random walk, unless a fortuitousparameterization has been chosen which makes the probability distributionP (x) separable. If, say, two variables x1 and x2 are strongly correlated,having marginal densities of width L and conditional densities of width �,then it will take at least about (L=�)2 iterations to generate an indepen-dent sample from the target density. However Gibbs sampling involves noadjustable parameters, so it is an attractive strategy when one wants to get



MONTE CARLO METHODS 19a model running quickly. An excellent software package, BUGS, is availablewhich makes it easy to set up almost arbitrary probabilistic models andsimulate them by Gibbs sampling (Thomas, Spiegelhalter and Gilks 1992).6. Terminology for Markov chain Monte Carlo methodsWe now spend a few moments sketching the theory on which the Metropolismethod and Gibbs sampling are based.AMarkov chain can be speci�ed by an initial probability distributionp(0)(x) and a transition probability T (x0;x).The probability distribution of the state at the (t+1)th iteration of theMarkov chain is given byp(t+1)(x0) = Z dNx T (x0;x)p(t)(x): (34)We construct the chain such that:1. The desired distribution P (x) is the invariant distribution of thechain.A distribution �(x) is an invariant distribution of T (x0;x) if�(x0) = Z dNx T (x0;x)�(x): (35)2. The chain must also be ergodic, that is,p(t)(x)! �(x) as t!1, for any p(0)(x). (36)It is often convenient to construct T by mixing or concatenating simplebase transitions B all of which satisfyP (x0) = Z dNxB(x0;x)P (x); (37)for the desired density P (x). These base transitions need not be individuallyergodic.Many useful transition probabilities satisfy the detailed balance prop-erty: T (x0;x)P (x) = T (x;x0)P (x0); for all x and x0: (38)This equation says that if we pick a state from the target density P andmake a transition under T to another state, it is just as likely that we willpick x and go from x to x0 as it is that we will pick x0 and go from x0 tox. Markov chains that satisfy detailed balance are also called reversibleMarkov chains. The reason why the detailed balance property is of interestis that detailed balance implies invariance of the distribution P (x) under



20 D.J.C. MACKAYthe Markov chain T (the proof of this is left as an exercise for the reader).Proving that detailed balance holds is often a key step when proving thata Markov chain Monte Carlo simulation will converge to the desired distri-bution. The Metropolis method and Gibbs sampling method both satisfydetailed balance, for example. Detailed balance is not an essential condi-tion, however, and we will see later that irreversible Markov chains can beuseful in practice.7. PracticalitiesCan we predict how long a Markov chain Monte Carlo simulationwill take to equilibrate? By considering the random walks involved in aMarkov chain Monte Carlo simulation we can obtain simple lower boundson the time required for convergence. But predicting this time more pre-cisely is a di�cult problem, and most of the theoretical results are of littlepractical use.Can we diagnose or detect convergence in a running simulation?This is also a di�cult problem. There are a few practical tools available,but none of them is perfect (Cowles and Carlin 1996).Can we speed up the convergence time and time between inde-pendent samples of a Markov chain Monte Carlo method? Here,there is good news.7.1. SPEEDING UP MONTE CARLO METHODS7.1.1. Reducing random walk behaviour in Metropolis methodsThe hybrid Monte Carlo method reviewed in Neal (1993) is a Metropolismethod applicable to continuous state spaces which makes use of gradientinformation to reduce random walk behaviour.For many systems, the probability P (x) can be written in the formP (x) = e�E(x)Z (39)where not only E(x), but also its gradient with respect to x can be read-ily evaluated. It seems wasteful to use a simple random{walk Metropolismethod when this gradient is available | the gradient indicates which di-rection one should go in to �nd states with higher probability!In the hybrid Monte Carlo method, the state space x is augmented bymomentum variables p, and there is an alternation of two types of proposal.The �rst proposal randomizes the momentum variable, leaving the state xunchanged. The second proposal changes both x and p using simulatedHamiltonian dynamics as de�ned by the HamiltonianH(x;p) = E(x) +K(p); (40)



MONTE CARLO METHODS 21g = gradE ( x ) ; # set gradient using initial xE = findE ( x ) ; # set objective function toofor l = 1:L # loop L timesp = randn ( size(x) ) ; # initial momentum is Normal(0,1)H = p' * p / 2 + E ; # evaluate H(x,p)xnew = xgnew = g ;for tau = 1:Tau # make Tau `leapfrog' stepsp = p - epsilon * gnew / 2 ; # make half-step in pxnew = xnew + epsilon * p ; # make step in xgnew = gradE ( xnew ) ; # find new gradientp = p - epsilon * gnew / 2 ; # make half-step in pendforEnew = findE ( xnew ) ; # find new value of HHnew = p' * p / 2 + Enew ;dH = Hnew - H ; # Decide whether to acceptif ( dH < 0 ) accept = 1 ;elseif ( rand() < exp(-dH) ) accept = 1 ;else accept = 0 ;endifif ( accept )g = gnew ; x = xnew ; E = Enew ;endifendfor Figure 10. Octave source code for the hybrid Monte Carlo method.where K(p) is a `kinetic energy' such as K(p) = pTp=2. These two propos-als are used to create (asymptotically) samples from the joint densityPH(x;p) = 1ZH exp[�H(x;p)] = 1ZH exp[�E(x)] exp[�K(p)]: (41)This density is separable, so it is clear that the marginal distribution of x isthe desired distribution exp[�E(x)]=Z. So, simply discarding the momen-
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MONTE CARLO METHODS 23tum variables, we will obtain a sequence of samples fx(t)g which asymp-totically come from P (x).The �rst proposal draws a new momentum from the Gaussian densityexp[�K(p)]=ZK. During the second, dynamical proposal, the momentumvariable determines where the state x goes, and the gradient of E(x) de-termines how the momentum p changes, in accordance with the equations_x = p (42)_p = �@E(x)@x : (43)Because of the persistent motion of x in the direction of the momentump, during each dynamical proposal, the state of the system tends to movea distance that goes linearly with the computer time, rather than as thesquare root.If the simulation of the Hamiltonian dynamics is numerically perfectthen the proposals are accepted every time, because the total energyH(x;p)is a constant of the motion and so a in equation (27) is equal to one. If thesimulation is imperfect, because of �nite step sizes for example, then someof the dynamical proposals will be rejected. The rejection rule makes use ofthe change in H(x;p), which is zero if the simulation is perfect. The occa-sional rejections ensure that asymptotically, we obtain samples (x(t);p(t))from the required joint density PH(x;p).The source code in �gure 10 describes a hybrid Monte Carlo methodwhich uses the `leapfrog' algorithm to simulate the dynamics on the functionfindE(x), whose gradient is found by the function gradE(x). Figure 11shows this algorithm generating samples from a bivariate Gaussian whoseenergy function is E(x) = 12xTAx withA = � 250:25 �249:75�249:75 250:25 � : (44)7.1.2. OverrelaxationThe method of `overrelaxation' is a similar method for reducing ran-dom walk behaviour in Gibbs sampling. Overrelaxation was originally in-troduced for systems in which all the conditional distributions are Gaus-sian. (There are joint distributions that are not Gaussian whose conditionaldistributions are all Gaussian, for example, P (x; y) = exp(�x2y2)=Z.)In ordinary Gibbs sampling, one draws the new value x(t+1)i of the cur-rent variable xi from its conditional distribution, ignoring the old valuex(t)i . This leads to lengthy random walks in cases where the variables arestrongly correlated, as illustrated in the left hand panel of �gure 12.
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-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1(b)
-1

-0.8

-0.6

-0.4

-0.2

0

-1 -0.8-0.6-0.4-0.2 0Figure 12. Overrelaxation contrasted with Gibbs sampling for a bivariate Gaussian withcorrelation � = 0:998. (a) The state sequence for 40 iterations, each iteration involving oneupdate of both variables. The overrelaxation method had � = �0:98. (This excessivelylarge value is chosen to make it easy to see how the overrelaxation method reducesrandom walk behaviour.) The dotted line shows the contour xT��1x = 1. (b) Detail of(a), showing the two steps making up each iteration. (After Neal (1995).)In Adler's (1981) overrelaxation method, one instead samples x(t+1)ifrom a Gaussian that is biased to the opposite side of the conditional dis-tribution. If the conditional distribution of xi is Normal(�; �2) and thecurrent value of xi is x(t)i , then Adler's method sets xi tox(t+1)i = �+ �(x(t)i � �) + (1� �2)1=2��; (45)where � � Normal(0; 1) and � is a parameter between �1 and 1, commonlyset to a negative value.The transition matrix T (x0;x) de�ned by this procedure does not satisfydetailed balance. The individual transitions for the individual coordinatesjust described do satisfy detailed balance, but when we form a chain by ap-plying them in a �xed sequence, the overall chain is not reversible. If, say,two variables are positively correlated, then they will (on a short timescale)



MONTE CARLO METHODS 25evolve in a directed manner instead of by random walk, as shown in �g-ure 12. This may signi�cantly reduce the time required to obtain e�ectivelyindependent samples. This method is still a valid sampling strategy | itconverges to the target density P (x) | because it is made up of transitionsthat satisfy detailed balance.The overrelaxation method has been generalized by Neal (1995, andthis volume) whose `ordered overrelaxation' method is applicable to anysystem where Gibbs sampling is used. For practical purposes this methodmay speed up a simulation by a factor of ten or twenty.7.1.3. Simulated annealingA third technique for speeding convergence is simulated annealing. Insimulated annealing, a `temperature' parameter is introduced which, whenlarge, allows the system to make transitions which would be improbable attemperature 1. The temperature may be initially set to a large value andreduced gradually to 1. It is hoped that this procedure reduces the chance ofthe simulation's becoming stuck in an unrepresentative probability island.We asssume that we wish to sample from a distribution of the formP (x) = e�E(x)Z (46)where E(x) can be evaluated. In the simplest simulated annealing method,we instead sample from the distributionPT (x) = 1Z(T )e�E(x)T (47)and decrease T gradually to 1.Often the energy function can be separated into two terms,E(x) = E0(x) + E1(x); (48)of which the �rst term is `nice' (for example, a separable function of x) andthe second is `nasty'. In these cases, a better simulated annealing methodmight make use of the distributionP 0T (x) = 1Z0(T )e�E0(x)� E1(x)T (49)with T gradually decreasing to 1. In this way, the distribution at hightemperatures reverts to a well{behaved distribution de�ned by E0.Simulated annealing is often used as an optimization method, where theaim is to �nd an x that minimizes E(x), in which case the temperature isdecreased to zero rather than to 1. As a Monte Carlo method, simulated



26 D.J.C. MACKAYannealing as described above doesn't sample exactly from the right dis-tribution; the closely related `simulated tempering' methods (Marinari andParisi 1992) correct the biases introduced by the annealing process by mak-ing the temperature itself a random variable that is updated in Metropolisfashion during the simulation.7.2. CAN THE NORMALIZING CONSTANT BE EVALUATED?If the target density P (x) is given in the form of an unnormalized densityP �(x) with P (x) = 1ZP �(x), the value of Z may well be of interest. MonteCarlo methods do not readily yield an estimate of this quantity, and itis an area of active research to �nd ways of evaluating it. Techniques forevaluating Z include:1. Importance sampling (reviewed by Neal (1993)).2. `Thermodynamic integration' during simulated annealing, the `accep-tance ratio' method, and `umbrella sampling' (reviewed by Neal (1993)).3. `Reversible jump Markov chain Monte Carlo' (Green 1995).Perhaps the best way of dealing with Z, however, is to �nd a solution toone's task that does not require that Z be evaluated. In Bayesian data mod-elling one can avoid the need to evaluate Z | which would be importantfor model comparison | by not having more than one model. Instead ofusing several models (di�ering in complexity, for example) and evaluatingtheir relative posterior probabilities, one can make a single hierarchicalmodel having, for example, various continuous hyperparameters which playa role similar to that played by the distinct models (Neal 1996).7.3. THE METROPOLIS METHOD FOR BIG MODELSOur original description of the Metropolis method involved a joint updatingof all the variables using a proposal density Q(x0;x). For big problems itmay be more e�cient to use several proposal distributions Q(b)(x0;x), eachof which updates only some of the components of x. Each proposal is indi-vidually accepted or rejected, and the proposal distributions are repeatedlyrun through in sequence.In the Metropolis method, the proposal density Q(x0;x) typically hasa number of parameters that control, for example, its `width'. These pa-rameters are usually set by trial and error with the rule of thumb beingthat one aims for a rejection frequency of about 0.5. It is not valid to havethe width parameters be dynamically updated during the simulation in away that depends on the history of the simulation. Such a modi�cationof the proposal density would violate the detailed balance condition whichguarantees that the Markov chain has the correct invariant distribution.



MONTE CARLO METHODS 277.4. GIBBS SAMPLING IN BIG MODELSOur description of Gibbs sampling involved sampling one parameter at atime, as described in equations (31{33). For big problems it may be moree�cient to sample groups of variables jointly, that is to use several proposaldistributions:x(t+1)1 : : : x(t+1)a � P (x1 : : :xajx(t)a+1 : : : x(t)K ) (50)x(t+1)a+1 : : : x(t+1)b � P (xa+1 : : :xbjx(t+1)1 : : : x(t+1)a ; x(t)b+1 : : : x(t)K ); etc.: (51)7.5. HOW MANY SAMPLES ARE NEEDED?At the start of this chapter, we observed that the variance of an estimator�̂ depends only on the number of independent samples R and the value of�2 = Z dNx P (x)(�(x)� �)2: (52)We have now discussed a variety of methods for generating samples fromP (x). How many independent samples R should we aim for?In many problems, we really only need about twelve independent sam-ples from P (x). Imagine that x is an unknown vector such as the amountof corrosion present in each of 10,000 underground pipelines around Sicily,and �(x) is the total cost of repairing those pipelines. The distributionP (x) describes the probability of a state x given the tests that have beencarried out on some pipelines and the assumptions about the physics ofcorrosion. The quantity � is the expected cost of the repairs. The quantity�2 is the variance of the cost | � measures by how much we should expectthe actual cost to di�er from the expectation �.Now, how accurately would a manager like to know �? I would suggestthere is little point in knowing � to a precision �ner than about �=3. Afterall, the true cost is likely to di�er by �� from �. If we obtain R = 12independent samples from P (x), we can estimate � to a precision of �=p12| which is smaller than �=3. So twelve samples su�ce.7.6. ALLOCATION OF RESOURCESAssuming we have decided how many independent samples R are required,an important question is how one should make use of one's limited computerresources to obtain these samples.A typical Markov chain Monte Carlo experiment involves an initial pe-riod in which control parameters of the simulation such as step sizes may beadjusted. This is followed by a `burn in' period during which we hope the
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(1)

(2)

(3)Figure 13. Three possible Markov Chain Monte Carlo strategies for obtaining twelvesamples using a �xed amount of computer time. Computer time is represented by hor-izontal lines; samples by white circles. (1) A single run consisting of one long `burn in'period followed by a sampling period. (2) Four medium{length runs with di�erent initialconditions and a medium{length burn in period. (3) Twelve short runs.simulation `converges' to the desired distribution. Finally, as the simulationcontinues, we record the state vector occasionally so as to create a list ofstates fx(r)gRr=1 that we hope are roughly independent samples from P (x).There are several possible strategies (�gure 13).1. Make one long run, obtaining all R samples from it.2. Make a few medium length runs with di�erent initial conditions, ob-taining some samples from each.3. Make R short runs, each starting from a di�erent random initial con-dition, with the only state that is recorded being the �nal state of eachsimulation.The �rst strategy has the best chance of attaining `convergence'. The laststrategy may have the advantage that the correlations between the recordedsamples are smaller. The middle path appears to be popular with Markovchain Monte Carlo experts because it avoids the ine�ciency of discardingburn{in iterations in many runs, while still allowing one to detect problemswith lack of convergence that would not be apparent from a single run.



MONTE CARLO METHODS 297.7. PHILOSOPHYOne curious defect of these Monte Carlo methods | which are widely usedby Bayesian statisticians | is that they are all non{Bayesian. They involvecomputer experiments from which estimators of quantities of interest arederived. These estimators depend on the sampling distributions that wereused to generate the samples. In contrast, an alternative Bayesian approachto the problem would use the results of our computer experiments to inferthe properties of the target function P (x) and generate predictive distribu-tions for quantities of interest such as �. This approach would give answerswhich would depend only on the computed values of P �(x(r)) at the pointsfx(r)g; the answers would not depend on how those points were chosen.It remains an open problem to create a Bayesian version of Monte Carlomethods.8. Summary� Monte Carlo methods are a powerful tool that allow one to implementany probability distribution that can be expressed in the form P (x) =1ZP �(x).� Monte Carlo methods can answer virtually any query related to P (x)by putting the query in the formZ �(x)P (x) ' 1RXr �(x(r)): (53)� In high{dimensional problems the only satisfactory methods are thosebased on Markov chain Monte Carlo: the Metropolis method and Gibbssampling.� Simple Metropolis algorithms, although widely used, perform poorlybecause they explore the space by a slow random walk. More sophisti-cated Metropolis algorithms such as hybrid Monte Carlo make use ofproposal densities that give faster movement through the state space.The e�ciency of Gibbs sampling is also troubled by random walks.The method of ordered overrelaxation is a general purpose techniquefor suppressing them.ACKNOWLEDGEMENTSThis presentation of Monte Carlo methods owes a great deal to Wally Gilksand David Spiegelhalter. I thank Radford Neal for teaching me about MonteCarlo methods and for giving helpful comments on the manuscript.
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