
Relational Database Design 1

RELATIONAL DATABASE DESIGN

Basic ConceptsBasic Concepts
• a databasedatabase is an collection of logically related records
• a relational databaserelational database stores its data in 2-dimensional

tables
• a tabletable is a two-dimensional structure made up

of rows (tuples, records) and columns (attributes, fields)
• example: a table of students engaged in sports activities,

where a student is allowed to participate in at most one
activity

• each row is unique and stores data about one entity
• row order is unimportant
• each column has a unique attribute nameattribute name
• each column (attribute) description (metadata) is stored in

the database
• Access metadata is stored and manipulated via the
Table Design View grid

• column order is unimportant
• all entries in a column have the same data type

•Access examples: Text(50), Number(Integer),
Date/Time

• each cell contains atomic data: no lists or sub-tables

Table CharacteristicsTable Characteristics

StudentID Activity Fee
100 Skiing 200
150 Swimming 50
175 Squash 50
200 Swimming 50

Relational Database Design 2

RELATIONAL DATABASE DESIGN

Primary KeysPrimary Keys
• a primary keyprimary key is an attribute or a collection of attributes

whose value(s) uniquely identify each row in a relation
• a primary key should be minimal: it should not contain
unnecessary attributes

• we assume that a student is allowed to participate in at
most one activity

• the only possible primary key in the above table is
StudentIDStudentID
•• Sometimes there is more than one possible choice; each
possible choice is called a candidate key
• what if we allow the students to participate in more than

one activity?

StudentID Activity Fee
100 Skiing 200
100 Golf 65
175 Squash 50
175 Swimming 50
200 Swimming 50
200 Golf 65

• now the only possible primary key is the combined value of
(StudentIDStudentID, ActivityActivity),
• such a multi-attribute primary key is called a composite key
or concatenated key

StudentID Activity Fee
100 Skiing 200
150 Swimming 50
175 Squash 50
200 Swimming 50

Relational Database Design 3

RELATIONAL DATABASE DESIGN

Composite KeysComposite Keys
• a table can only have one primary key
• but sometimes the primary key can be made up of several
fields
• concatenation means putting two things next to one
another: the concatenation of “burger” and “foo” is
“burgerfoo”.
• consider the following table of cars

• LicensePlateLicensePlate is not a possible primary key, because two
different cars can have the same license plate number if
they’re from different states
• but if we concatenate LicensePlateLicensePlate and StateState, the
resulting value of ((LicensePlateLicensePlate, State), State) must be unique:

•• example: example: ““LVR120NJLVR120NJ”” and and ““LVR120CTLVR120CT””
•• therefore, ((LicensePlateLicensePlate, State) is a possible primary key, State) is a possible primary key
(a candidate key)
• Sometimes we may invent a new attribute to serve as a
primary key (sometimes called a synthetic key)

• if no suitable primary key is available
• or, to avoid composite keys
• in Access, “Autonumber” fields can serve this
purpose

LicensePlate State Make Model Year
LVR120 NJ Honda Accord 2003
BCX50P NJ Buick Regal 1998
LVR120 CT Toyota Corolla 2002
908HYY MA Ford Windstar 2001
UHP33X NJ Nissan Altima 2006

Relational Database Design 4

RELATIONAL DATABASE DESIGN

Foreign KeysForeign Keys
• a foreign key is an attribute or a collection of attributes
whose value are intended to match the primary key of
some related record (usually in a different table)
• example: the STATE and CITY table below

STATE table:

State
Abbrev

StateName

Union
Order

StateBird

State
Population

CT Connecticut 5 American robin 3,287,116
MI Michigan 26 robin 9,295,297
SD South Dakota 40 pheasant 696,004
TN Tennessee 16 mocking bird 4,877,185
TX Texas 28 mocking bird 16,986,510

CITY table:

State
Abbrev

CityName

City
Population

CT Hartford 139,739
CT Madison 14,031
CT Portland 8,418
MI Lansing 127,321
SD Madison 6,257
SD Pierre 12,906
TN Nashville 488,374
TX Austin 465,622
TX Portland 12,224

• primary key in STATE relation: StateAbbrevStateAbbrev
• primary key in CITY relation: (StateAbbrevStateAbbrev, CityNameCityName)
• foreign key in CITY relation: StateAbbrevStateAbbrev

Relational Database Design 5

RELATIONAL DATABASE DESIGN

Outline NotationOutline Notation
STATE(StateAbbrev, StateName, UnionOrder,

StateBird, StatePopulation)
CITY(StateAbbrev, CityName, CityPopulation)

StateAbbrev foreign key to STATE

• Underline all parts of each primary key
• Note foreign keys with “attribute foreign key to TABLE”

EntityEntity--Relationship DiagramsRelationship Diagrams

• one-to-many relationships: to determine the direction,
always start with “one”

• “one city is in one state”
• “one state contains many cities”

• the foreign key is always in “the many” – otherwise it
could not be atomic (it would have to be a list)
• We will study other kinds of relationships (one-to-one and
many-to-many) shortly

Relational Database Design 6

RELATIONAL DATABASE DESIGN

Functional DependencyFunctional Dependency
• attribute B is functionally dependentfunctionally dependent on attribute A if

given a value of attribute A, there is only one possible
corresponding value of attribute B

• that is, any two rows with the same value of A must
have the same value for B

• attribute A is the determinantdeterminant of attribute B if attribute B
is functionally dependent on attribute A

• in the STATE relation above, StateAbbrevStateAbbrev is a
determinant of all other attributes

• in the STATE relation, the attribute StateNameStateName is also
a determinant of all other attributes

• so, StateAbbrevStateAbbrev and StateNameStateName are both candidate
keys for STATE
• in the CITY relation above, the attributes
(StateAbbrevStateAbbrev, , CityNameCityName)) together are a determinant of
the attribute CityPopulationCityPopulation
• in the CITY relation, the attribute CityNameCityName is not a

determinant of the attribute CityPopulationCityPopulation because
multiple cities in the table may have the same name

Relational Database Design 7

RELATIONAL DATABASE DESIGN

Dependency DiagramsDependency Diagrams
• a dependency diagram or bubble diagram is a pictorial
representation of functional dependencies

• an attribute is represented by an oval
• you draw an arrow from A to B when attribute A

is a determinant of attribute B
• example: when students were only allowed one sports
activity, we have ACTIVITY(StudentID, Activity, Fee)

• example: when students can have multiple activities, we
have ACTIVITY(StudentID, Activity, Fee)

StudentID

Fee

Activity

Relational Database Design 8

RELATIONAL DATABASE DESIGN

• a partial dependencypartial dependency is a functional dependency whose
determinant is part of the primary key (but not all of it)

• example: ACTIVITY(StudentID, Activity, Fee)

Partial DependenciesPartial Dependencies

Transitive DependenciesTransitive Dependencies
• a transitive dependennsitive dependency is a functional dependency
whose determinant is not the primary key, part of the
primary key, or a candidate key
• example: ACTIVITY(StudentID, Activity, Fee)

StudentID

Fee

Activity

Relational Database Design 9

RELATIONAL DATABASE DESIGN

Database AnomaliesDatabase Anomalies
• anomaliesanomalies are problems caused by bad database design

example: ACTIVITY(StudentID, Activity, Fee)
 StudentID Activity Fee

100 Skiing 200
100 Golf 65
175 Squash 50
175 Swimming 50
200 Swimming 50
200 Golf 65

• an insertion anomalyinsertion anomaly occurs when a row cannot be added
to a relation, because not all data are available (or one has
to invent “dummy” data)

• example: we want to store that scuba diving
costs $175, but have no place to put this information
until a student takes up scuba-diving (unless we
create a fake student)

• a deletion anomalydeletion anomaly occurs when data is deleted from a
relation, and other critical data are unintentionally lost

• example: if we delete the record with StudentID =
100, we forget that skiing costs $200

• an update anomalyupdate anomaly occurs when one must make many
changes to reflect the modification of a single datum

• example: if the cost of swimming changes, then all
entries with swimming Activity must be changed too

Relational Database Design 10

RELATIONAL DATABASE DESIGN

Cause of AnomaliesCause of Anomalies
• anomalies are primarily caused by:

• data redundancy: replication of the same field in
multiple tables, other than foreign keys

• Functional dependencies whose determinants are
not candidate keys, including

• partial dependency
• transitive dependency

• example: ACTIVITY(StudentID, Activity, Fee)
 StudentID Activity Fee

100 Skiing 200
100 Golf 65
175 Squash 50
175 Swimming 50
200 Swimming 50
200 Golf 65

• ActivityActivity by itself is not a candidate key, so we get
anomalies (in this case, from a partial dependency)

StudentID

Fee

Activity

Relational Database Design 11

RELATIONAL DATABASE DESIGN

Fixing Anomalies (Normalizing)Fixing Anomalies (Normalizing)
• Break up tables so all dependencies are from primary (or
candidate) keys

PARTICIPATING(StudentID, Activity)
Activity foreign key to ACTIVITIES

ACTIVITY(Activity, Fee)

StudentID Activity Activity Fees
100 Skiing Skiing 200
100 Golf Golf 65
150 Swimming Swimming 50
175 Squash Squash 50
175 Swimming ScubaDiving 200
200 Swimming
200 Golf

Relational Database Design 12

RELATIONAL DATABASE DESIGN

• the above relations do not have any of the anomalies
• we can add the cost of diving in ACTIVITIES

even though no one has taken it in STUDENTS
• if StudentIDStudentID 100 drops Skiing, no skiing-related data

will be lost
• if the cost of swimming changes, that cost need

only be changed in one place only (the ACTIVITIES
table)

• the ActivityActivity field is in both tables, but that’s needed to
relate (“join”) the information in the two tables

StudentID Activity Activity Fees
100 Skiing Skiing 200
100 Golf Golf 65
150 Swimming Swimming 50
175 Squash Squash 50
175 Swimming ScubaDiving 200
200 Swimming
200 Golf

Relational Database Design 13

RELATIONAL DATABASE DESIGN

Good Database Design PrinciplesGood Database Design Principles
1. no redundancyno redundancy

• a field is stored in only one table, unless it happens to
be a foreign key

• replication of foreign keys is permissible, because
they allow two tables to be joined together

2. no no ““badbad”” dependenciesdependencies
• in the dependency diagram of any relation in the
database, the determinant should be the whole primary
key, or a candidate key. Violations of this rule include:

• partial dependencies
• transitive dependencies

normalizationnormalization is the process of eliminating “bad”
dependencies by splitting up tables and linking them with
foreign keys

• “normal forms” are categories that classify how
completely a table has been normalized
• there are six recognized normal forms (NF):

First Normal Form (1NF)
Second Normal Form (2NF)
Third Normal Form (3NF)
Boyce Codd Normal Form (BCNF)
Fourth Normal Form (4NF)
Fifth Normal Form (5NF)

