RELATIONAL DATABASE DESIGN

Basic Concepts

- a database is an collection of logically related records

 a relational database stores its data in 2-dimensional
tables

- a table is a two-dimensional structure made up
of rows (tuples, records) and columns (attributes, fields)

- example: a table of students engaged in sports activities,
where a student is allowed to participate in at most one
activity

StudentID | Activity Fee
100 Skiing 200
150 Swimming | 50
175 Squash 50
200 Swimming [50

Table Characteristics

» each row is unique and stores data about one entity
* row order is unimportant
» each column has a unique attribute name

» each column (attribute) description (metadata) is stored in
the database

» Access metadata is stored and manipulated via the
Table Design View grid

» column order is unimportant
- all entries in a column have the same data type

*Access examples: Text(50), Number(Integer),
Date/Time

* each cell contains atomic data: no lists or sub-tables

Relational Database Design 1

RELATIONAL DATABASE DESIGN

Primary Kevys

e a primary key is an attribute or a collection of attributes
whose value(s) uniquely identify each row in a relation

« a primary key should be minimal: it should not contain
unnecessary attributes

StudentID | Activity Fee
100 Skiing 200
150 Swimming [50
175 Squash 50
200 Swimming [50

» we assume that a student is allowed to participate in at
most one activity

* the only possible primary key in the above table is
StudentID

« Sometimes there is more than one possible choice; each
possible choice is called a candidate key

- what if we allow the students to participate in more than
one activity?

StudentID | Activity Fee
100 Skiing 200
100 Golf 65
175 Squash 50
175 Swimming | 50
200 Swimming | 50
200 Golf 65

* now the only possible primary key is the combined value of
(StudentlD, Activity),

* such a multi-attribute primary key is called a composite key
or concatenated key

Relational Database Design 2

RELATIONAL DATABASE DESIGN

Composite Keys

- a table can only have one primary key

* but sometimes the primary key can be made up of several
fields

« concatenation means putting two things next to one
another: the concatenation of “burger” and “foo” is
“burgerfoo”.

 consider the following table of cars

LicensePlate | State Make | Model Year
LVR120 NJ Honda | Accord 2003
BCX50P NJ Buick | Regal 1998
LVR120 CT Toyota | Corolla 2002
908HYY MA Ford Windstar | 2001
UHP33X NJ Nissan | Altima 2006

 LicensePlate is not a possible primary key, because two
different cars can have the same license plate number if
they’re from different states

* but if we concatenate LicensePlate and State, the
resulting value of (LicensePlate, State) must be unique:

- example: “LVR120NJ” and “LVR120CT”

- therefore, (LicensePlate, State) is a possible primary key
(a candidate key)

« Sometimes we may invent a new attribute to serve as a
primary key (sometimes called a synthetic key)

« if no suitable primary key is available
- or, to avoid composite keys

* in Access, “Autonumber” fields can serve this
purpose

Relational Database Design 3

RELATIONAL DATABASE DESIGN

Foreign Keys

* a foreign key is an attribute or a collection of attributes

whose value are intended to match the primary key of

some related record (usually in a different table)

- example: the STATE and CITY table below

STATE table:
State Union State
Abbrev | StateName Order | StateBird Population
CT Connecticut 5 American robin 3,287,116
MI Michigan 26 robin 9,295,297
SD South Dakota 40 pheasant 696,004
TN Tennessee 16 mocking bird 4 877,185
X Texas 28 mocking bird 16,986,510
CITY table:
State City
Abbrev | CityName | Population
CT Hartford 139,739
CT Madison 14,031
CT Portland 8,418
MI Lansing 127,321
SD Madison 6,257
SD Pierre 12,906
TN Nashville |488,374
X Austin 465,622
X Portland 12,224

* primary key in STATE relation: StateAbbrev

 primary key in CITY relation: (StateAbbrev, CityName)

- foreign key in CITY relation: StateAbbrev

Relational Database Design

RELATIONAL DATABASE DESIGN

Outline Notation

STATE(StateAbbrev, StateName, UnionOrder,
StateBird, StatePopulation)

CITY(StateAbbrev, CityName, CityPopulation)
StateAbbrev foreign key to STATE

* Underline all parts of each primary key
* Note foreign keys with “attribute foreign key to TABLE”

Entity-Relationship Diagrams

STATE

| 1

&

‘M
CITY

» one-to-many relationships: to determine the direction,
always start with “one”

 “one city is in one state”
 “one state contains many cities”

* the foreign key is always in “the many” — otherwise it
could not be atomic (it would have to be a list)

* We will study other kinds of relationships (one-to-one and
many-to-many) shortly

Relational Database Design 5

RELATIONAL DATABASE DESIGN

Functional Dependency

- attribute B is functionally dependent on attribute A if
given a value of attribute A, there is only one possible
corresponding value of attribute B

* that is, any two rows with the same value of A must
have the same value for B

 attribute A is the determinant of attribute B if attribute B
is functionally dependent on attribute A

* in the STATE relation above, StateAbbrev is a
determinant of all other attributes

* in the STATE relation, the attribute StateName is also
a determinant of all other attributes

* so, StateAbbrev and StateName are both candidate
keys for STATE

* in the CITY relation above, the attributes
(StateAbbrev, CityName) together are a determinant of
the attribute CityPopulation

* in the CITY relation, the attribute CityName is not a
determinant of the attribute CityPopulation because
multiple cities in the table may have the same name

Relational Database Design 6

RELATIONAL DATABASE DESIGN

Dependency Diagrams

» a dependency diagram or bubble diagram is a pictorial
representation of functional dependencies

* an attribute is represented by an oval

« you draw an arrow from A to B when attribute A
is a determinant of attribute B

- example: when students were only allowed one sports
activity, we have ACTIVITY(StudentID, Activity, Fee)

- example: when students can have multiple activities, we
have ACTIVITY(StudentID, Activity, Fee)

Relational Database Design 7

RELATIONAL DATABASE DESIGN

Partial Dependencies

- a partial dependency is a functional dependency whose
determinant is part of the primary key (but not all of it)

« example: ACTIVITY(StudentID, Activity, Fee)

Transitive Dependencies

* a transitive dependency is a functional dependency
whose determinant is not the primary key, part of the
primary key, or a candidate key

« example: ACTIVITY(StudentID, Activity, Fee)

Relational Database Design 8

RELATIONAL DATABASE DESIGN

Database Anomalies

« anomalies are problems caused by bad database design
example: ACTIVITY(StudentID, Activity, Fee)

StudentID | Activity Fee
100 Skiing 200
100 Golf 65
175 Squash 50
175 Swimming | 50
200 Swimming |50
200 Golf 65

 an insertion anomaly occurs when a row cannot be added
to a relation, because not all data are available (or one has
to invent “dummy” data)

- example: we want to store that scuba diving

costs $175, but have no place to put this information
until a student takes up scuba-diving (unless we
create a fake student)

» a deletion anomaly occurs when data is deleted from a
relation, and other critical data are unintentionally lost

» example: if we delete the record with StudentID =
100, we forget that skiing costs $200

« an update anomaly occurs when one must make many
changes to reflect the modification of a single datum

« example: if the cost of swimming changes, then all
entries with swimming Activity must be changed too

Relational Database Design 9

RELATIONAL DATABASE DESIGN

Cause of Anomalies

« anomalies are primarily caused by:

« data redundancy: replication of the same field in
multiple tables, other than foreign keys

* Functional dependencies whose determinants are
not candidate keys, including

« partial dependency
* transitive dependency

- example: ACTIVITY(StudentID, Activity, Fee)

StudentID | Activity Fee

100 Skiing 200
100 Golf 65
175 Squash 50
175 Swimming | 50

200 Swimming |50
@ 200 Golf 65

* Activity by itself is not a candidate key, so we get
anomalies (in this case, from a partial dependency)

Relational Database Design 10

RELATIONAL DATABASE DESIGN

Fixing Anomalies (Normalizinq)

* Break up tables so all dependencies are from primary (or
candidate) keys

PARTICIPATING(StudentID, Activity)
Activity foreign key to ACTIVITIES

ACTIVITY(Activity, Fee)

StudentID | Activity Activity Fees
100 Skiing Skiing 200
100 Golf Golf 65
150 Swimming Swimming 50
175 Squash Squash 50
175 Swimming ScubaDiving | 200
200 Swimming
200 Golf

ACTIVITY

PARTICIPATING

Relational Database Design 1

RELATIONAL DATABASE DESIGN

StudentID | Activity Activity Fees
100 Skiing Skiing 200
100 Golf Golf 65
150 Swimming Swimming 50
175 Squash Squash 50
175 Swimming ScubaDiving | 200
200 Swimming
200 Golf

- the above relations do not have any of the anomalies

» we can add the cost of diving in ACTIVITIES
even though no one has taken it in STUDENTS

« if StudentID 100 drops Skiing, no skiing-related data
will be lost

- if the cost of swimming changes, that cost need
only be changed in one place only (the ACTIVITIES
table)

* the Activity field is in both tables, but that’s needed to
relate (“join”) the information in the two tables

__|]
Relational Database Design 12

RELATIONAL DATABASE DESIGN

Good Database Design Principles

1. no redundancy

- a field is stored in only one table, unless it happens to
be a foreign key

* replication of foreign keys is permissible, because
they allow two tables to be joined together

2. no “bad” dependencies

* in the dependency diagram of any relation in the
database, the determinant should be the whole primary
key, or a candidate key. Violations of this rule include:

- partial dependencies
* transitive dependencies

normalization is the process of eliminating “bad”
dependencies by splitting up tables and linking them with
foreign keys

» “normal forms” are categories that classify how
completely a table has been normalized

* there are six recognized normal forms (NF):

> First Normal Form (1NF)
> Second Normal Form (2NF)

Third Normal Form (3NF)
Boyce Codd Normal Form (BCNF)

Fourth Normal Form (4NF)
Fifth Normal Form (5NF)

Relational Database Design 13

