Searching for High Energy Astrophysical v from the depths of Mediterranean Sea

Antonio Capone Physics Department University 'La Sapienza' Roma - Italy antonio.capone@uniroma1.it

Neutrino

Astrophysical v detection

Galaxie

- Why ?
- How ?
- Where ?

The v, γ , HE C.R. connection

- Multimessenger search for H.E. astrophysical sources

Results from Cherenkov v Telescopes

Copyright Science&Vie Juillet 1999

The evolution of astronomy ...

From Traditional Astronomy (Optics) to Multi-Wavelength

Astronomy:

observations of light in the visible band are complemented by radio, X-ray and γ astronomy

Galileo Galilei showing the Doge of Venice how to use the telescope (1858), fresco by Giuseppe Bertini (1825–1898)

... and to Multi-Messengers Astronomy: HE-CR, photons, neutrinos, GW ...

The Cosmic Rays spectrum

Evoli 2018 - DOI/10.5281/zenodo.2360277.svg Energy [J] 10^{-10} 10^{-8} 10^{-6} 10^{0} 10^{2} 10^{-2} 10^{-4} $1/cm^2/s$ 10^{3} $\sim E^{-2.7}$ 10^{1} $E_{\nu}^2 \phi_{\nu} = ext{Energy flux [GeV/m^2 s sr]}$ 1/m²/yr Knee 10^{-1} $\sim E^{-3.1}$ - accessore 10^{-3} 1/km²/yr Ankle γ IRGB $v + \bar{v}$ 10^{-5} AM502 FERMI HAWC HESS AUGER Vac LHC Ee CALET KASCADE-Granule CREAM I+II DAMPE Tibet-III 10^{-7} GeV PeV TeV EeV $10^{12}\,{\rm eV}$ $10^{18} \, eV$ $10^9 \,\mathrm{eV}$ Energy

~ 1000 particles/(s·m²)

ionized nuclei:

- 90% protons
- 9% α particles
- heavier nuclei
- what is their origin?
 - a small solar
 - most with E< 10¹⁵⁻¹⁶ eV
 - originated in the galaxy
 - extragalactic E> 10¹⁷⁻¹⁸ eV

The "all particle spectrum"

- •Observed elementary particles or nuclei carrying a kinetic energy up to 10²¹eV (like a tennis ball moving at ~150km/h)
- Many open questions:
- Where they come from ?
- Which acceleration mechanisms

• UHE astrophysical neutrinos will extend the limits of the "visible" Universe.

Multi-messenger observations

Which processes characterize the High Energy sources

Nucleons propagation and interactions in the Universe: the GZK cut-off

$$\mathbf{p} + \gamma_{CMBR} \rightarrow \mathbf{\Delta}^{+} \rightarrow \mathbf{p} + \pi^{0}$$

$$\downarrow \gamma \gamma$$

$$\rightarrow \mathbf{n} + \pi^{+}$$

$$\downarrow \mu^{+} \nu_{\mu}$$

$$\downarrow e^{+} \nu_{e} \overline{\nu}_{\mu}$$
Assuming for the 'target photons' $\mathbf{E}_{\gamma} = \mathbf{1} \cdot \mathbf{4} \cdot \mathbf{10}^{-3} \mathbf{eV}$:
$$s_{out} = (m_{p} + m_{\pi})^{2}$$

$$s_{in} = (E_{p} + E_{CMBR})^{2} - (\vec{p}_{p} + \vec{q}_{CMBR})^{2} = E_{p}^{2} + E_{CMBR}^{2} + 2E_{p}E_{CMBR} - p_{p}^{2} - q_{CMBR}^{2} - 2|\vec{p}_{p}| \cdot |\vec{q}_{CMBR}|\cos(\theta)$$

$$s_{in} = E_{p}^{2} - p_{p}^{2} + 2E_{p}E_{CMBR} - 2|\vec{p}_{p}| \cdot |\vec{q}_{CMBR}|\cos(\theta) \approx m_{p}^{2} + 2E_{p}E_{CMBR}(1 - \cos(\theta))$$
the condition for the production of the Δ^{+} resonance requires $s_{in} \geq (m_{p} + m_{\pi})^{2}$

$$m_{p}^{2} + 2E_{p}E_{CMBR}(1 - \cos(\theta)) \geq m_{p}^{2} + m_{\pi}^{2} + 2m_{p}m_{\pi} \quad per \quad \theta = \pi \quad \Rightarrow 1 - \cos(\theta) = 2$$

$$E_{p} \geq \frac{2m_{p}m_{\pi} + m_{\pi}^{2}}{4E_{CMBR}} = \frac{2 \cdot 938 \cdot 10^{6} \cdot 140 \cdot 10^{6} + (140 \cdot 10^{6})^{2}}{4 \cdot 1.4 \cdot 10^{-3}} \approx 5.0 \cdot 10^{19} eV = 50 EeV \sim 8J$$

27/01/21 - Antonio Capone

Neutrino fluxes: what do we know/expect ?

27/01/21 - Antonio Capone

and neutral current $\nu_{\alpha} \rightarrow \nu_{\alpha}$

utrino Interactions – what can we "see"

Tracks (because of μ)

Cascades Also charged current $\nu_e \to e$ and charged current $\nu_{\tau} \to \tau$ and neutral current $\nu_{\alpha} \to \nu_{\alpha}$

A very intense muon flux is coming (downgoing) from the atmosphere ...

Atmospheric muons (down-going): main background

Deep in a transparent medium

Water or Ice:

- large (and inexpensive) target for v interaction
- transparent radiators for Cherenkov light;
- large deep: protection against the cosmic-ray muon background

Neutrino Telescopes: signal and background

Cherenkov v Telescope: Detection principle

Search for neutrino induced events, mainly $v_{\mu} N \rightarrow \mu X$, deep underwater

Down-going μ from atm. showers S/N $\sim 10^{-6}$ at 3500m w.e. depth

p, nuclei

Neutrinos from cosmic sources induce 1-100 muon evts/y in a km³ Neutrino Telescope

p, nuclei Up-going μ from neutrinos generated in atm. showers $S/N \sim 10^{-4}$ in a km³ Neutrino '

- Atmospheric neutrino flux ~ E_v^{-3}

- Neutrino flux from cosmic sources ~ E_v^{-2}
 - Search for neutrinos with $E_v > 1 \div 10$ TeV
- ~TeV muons propagate in water for several km before being stopped
 - go deep to reduce down-going atmospheric µ backg.
 - long μ tracks allow good angular reconstruction

For $E_{v} \ge 1TeV$ $\theta_{\mu v} \sim \frac{\overline{0.7^{\circ}}}{\sqrt{E_{v}[TeV]}}$

27/01/21 - Antonio Capone

Light propagation in water

Light propagation in South Polar ice

IceCube – The Neutrino Telescope at the South Pole

Events in IceCube Detector

27/01/21 - Antonio Capone

Virtual seminar on multimessenger astronomy - Technische Universität München

SPL

A cosmic neutrino interacts in IceCube detector

date: August 9, 2011 energy: 1.04 PeV topology: shower nickname: Bert

The color code indicate the hit-time:

- red = early time
- blue = late time

Up-going track in ANTARES: a neutrino candidate

Example of a reconstructed up-going muon (i.e. a neutrino candidate)

Neutrino Telescope physic's goal - 1

Search for point-like cosmic Neutrino Sources

Experimental signal : statistical evidence of an excess of events coming from the same direction

Neutrino Telescope physic's goal - 2

Search for Diffuse flux of Cosmic Neutrinos

- Neutrinos from:
 - Unresolved AGN, GRBs, ...
 - "Z-bursts"
 - "GZK like" proton-CMB interactions
- Top-Down models $\nu_{10^{-3}}$

Their identification out of the more intense background of atmospheric neutrinos (and μ) is possible at very high energies (E_{μ} >> TeV) and requires good energy reconstruction.

Neutrino Telescope physic's goal - 3

Neutrino Telescopes in a multi-messenger framework

- Search for Coincident events, in a restricted time and direction windows, with EM/γ/GW counterparts (flaring sources, transient events, ...)
 - Relaxed energy/direction measurement
 - Transient/ multi-messenger information
 - Observing γ , ν , CR, GW, ... from the same source (or cosmic region):
 - propagation models
 - acceleration mechanisms
 - protons or electrons accelerated ?

Multi-wavelength observation: Mrk421 an example

Extensive multi-wavelength measurements showing the spectral energy distribution (SED) of Markarian 421 from observations made in 2009. The dashed line is a fit of the data with a leptonic model. Abdo et al. ApJ 736(2011) 131 for the references to the data

2013 - The great IceCube discovery

IceCube 2013 - High Energy Starting Event Analysis

Charge Threshold

3-Year Analysis PRL 113, 101101 (2014)

36 events in 3 years

Three > PeV events seen in three years, including a 2-PeV neutrino

IceCube 2017 - High Energy Starting Event Analysis

starting events:

6 years $\rightarrow 8\sigma$

IceCube: diffuse v_{μ} flux with up-going muons

after 7 years \rightarrow 6.4 sigma

IceCube 2017

High Energy Staring events (showers) and up-going muons analyses give consistent results ?

Where these neutrinos are coming from ??

No indications of a strong anisotropy from extended emission regions which could indicate a contribution from Galactic sources along the Galactic plane. A subdominant Galactic component cannot be excluded. Hypothesis: H.E. v diffuse flux from extragalactic sources. **ANTARES can help to understand the origin of this HE diffuse v flux ???**

Latest ANTARES results on the search for diffuse ν flux

Tracks

Data: 2007-2015 (2451 live-days) Above E_{cut}: Bkg: 13.5 ± 3 evts, IC-like signal: 3 evts

Observed: 19 evts

Cascades

Data: 2007-2013 (1405 live-days) Above E_{cut}: Bkg: 10.5 ± 4 evts, IC-like signal: 1.5 evts Observed: 14 evts

The Astrophysical Journal Letters, 853:L7, 2018

ANTARES

combined upper limits and sensitivities for 9 years data sample (2007-2015) tracks + cascades The best fit for a single power-law cosmic neutrino spectrum, in terms of per-flavor flux at 100 TeV, is $\phi_0^{1f}(100 \text{ TeV}) = (1.7 \pm 1.0) \cdot 10^{-18} \text{ GeV}^{-1} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$ with spectral index $\Gamma = 2.4^{+0.4}_{-0.5}$

Search for neutrinos from the Galactic ridge - 1

v's and γ-rays produced by CR propagation

 $p_{CR} + p_{ISM} \rightarrow \pi^0 \pi^{\pm} \dots$ $\pi^0 \rightarrow \gamma \gamma (EM \ cascade)$

 $\pi^{\pm} \rightarrow \nu_{\mu}, \nu_{e} \dots$

- Search for v_{μ} , data 2007-2013
- Search region |||<30°, |b|<4°
- Cuts optimized for neutrino energy spectrum $\sim E^{-\gamma}$ (γ =2.4-2.5)
- Counts in the signal/off zones
- No excess in the HE neutrinos
- 90% C.L. upper limits: $3 < E_v < 300 \text{ TeV}$

Distribution of the reconstructed E_{μ} of up-going muons in the Galactic Plane (black crosses) and average of the off-zone regions (red histogram).

Physics Letters B 760 (2016) 143-148

Search for neutrinos from the Galactic plane - 2

New analysis on tracks and showers, based on Maximum Likelihood analysis

KRA_γ new model to describe the C.R. transport in our galaxy. It agrees with C.R. measurements (KASCADE, Pamela, AMS, Fermi-LAT, HESS).
FERMI-LAT diffuse γ flux from

along the galactic plane $(\pi^0 \rightarrow \gamma \gamma)$ well explained above few GeV.

KRA_{γ} allows to predict the ν flux by π^{\pm} decays induced by galactic CR interactions

 $\frac{\text{KRA}_{\gamma} \text{ 50PeV cut-off for CR}}{\text{KRA}_{\gamma} \text{ 5PeV cut-off for CR}}$

KRA_{γ} assuming a neutrino flux $\propto E^{-2.5}$ and a CR spectrum with 50 PeV cut-off can explain ~20% of the IceCube observed HESE. ANTARES, with an good visibility of the Galactic Plane well suited to observe these fluxes or to put competitive limits: no signal found \rightarrow set 90%C.L. upper limits.

27/01/21 - Antonio Capone

Neutrinos from "FERMI Bubbles" ??

Search from a Mediterranean Cherenkov v Telescope

- FERMI detected hard γ emission (E⁻²) up to 100 GeV in extended "bubbles" around Galactic Center, hard spectrum not compatible with Inverse Compton mechanism, M.Su et al., Ap.J.724 (2010).
- Models involving hadronic processes (e.g. Crocker & Aharonian, PRL 2011) predict significant neutrino fluxes.
- Estimates for the neutrino flux: $\Phi_{\nu} \approx 0.4 \cdot \Phi_{\gamma} \Rightarrow E_{\nu}^{2} \frac{dN_{\nu_{\mu} + \bar{\nu}_{\mu}}}{dE_{\nu}} \approx 1.2 \div 2.4 \cdot 10^{-7} GeV \ cm^{-1}s^{-1}sr^{-1} = A_{theory}$
- An exponential energy cut-off could affect the flux

$$E_{\nu}^{2} \frac{dN_{\nu_{\mu} + \bar{\nu}_{\mu}}}{dE_{\nu}} = A_{theory} e^{-\frac{E}{E_{\nu}^{cutoff}}}$$

• ANTARES, the present Mediterranean v Telescope, searched for these neutrinos.

Search for a diffuse flux of ν_{μ} from "FERMI Bubbles"

Compare the neutrino-like events coming from 3 "off-zones" (with the same size and shape as the Fermi Bubbles "on-zone") with the events coming from the Fermi Bubbles

Events selected as up-going and well reconstructed tracks. Data sample, in the period 2008-2011, includes 806 days

In the 3 off-zones observed:

n_{bkg} = **9, 12 and 12 events** In the Fermi-Bubble **region**

 $n_{obs} = 16 \text{ events}$ (1.2 σ excess)

No statistically consistent signal observed.

It's mandatory now !!!!

To search for neutrino point like sources:

- Large size detector required (very small fluxes expected) (KM3NeT, IceCube phase2)
- Very good accuracy in angular reconstruction (high background, the irreducible atmospheric background has to be subtracted statistically)
- Multimessenger analysis

The ANTARES search for point-like v sources based on two kind of events

Tracks: CC u_{μ} or $u_{\tau}
ightarrow \mu$

- Interaction can occur far from the detector providing a large *Effective Volume*
- Angular resol. $< 0.4^{\circ}$ for $E_{\rm m}$
- *Energy resol.* ~ factor 3

Electronic or hadronic showers: NC and CC ν_e or $\nu_{\tau} \rightarrow$ showers

ANTARES Search for point-like cosmic v Sources

9 years of ANTARES data searching for all neutrino flavours: 7629 "tracks" + 180 "shower" events passed the selection criteria

so far no significant excess has been found

ANTARES results: "full sky search" of v sources

The visible sky of ANTARES divided on a $1^0 \times 1^0$ (r.a x decl.) boxes. Maximum Likelihood analysis searching for clusters

The most significant cluster: decl. δ = 23.5⁰, r.a. α = 343.8⁰ has a pre-trial p-value of 3.84×10⁻⁶

$$\rightarrow$$
 U. L. from this sky location $E^2 \frac{d\Phi}{dE} = 3.8 \times 10^{-8}$ GeV cm⁻² s⁻¹

ANTARES results: "full sky search" of ν sources

Joint IceCube + ANTARES search for v sources

Skymap of pre-trial p-values for the combined ANTARES (9 years) and IceCube 97 years) point-like sources analysis.

Joint IceCube + ANTARES search for v sources

Skymap of pre-trial p-values for the combined ANTARES (9 years) and

90% C.L. Sensitivity and Limits for $\gamma = 2.5$

90% C.L. Sensitivity and Limits for $\gamma = 2.0$

upper limits at 90% C.L. on the one-flavor neutrino flux

The Multi-Messenger Search Programme with ANTARES

Triggering on Neutrino Telescopes site

IceCube 170922 very High Energy Event: Trigger sent to other astrophysical experiments

Triggering on Neutrino Telescopes site

IceCube Trigger

43 seconds after trigger, GCN notice was sent

///////////////////////////////////////	///////////////////////////////////////
TITLE:	GCN/AMON NOTICE
NOTICE_DATE:	Fri 22 Sep 17 20:55:13 UT
NOTICE_TYPE:	AMON ICECUBE EHE
RUN_NUM:	130033
EVENT_NUM:	50579430
SRC_RA:	77.2853d {+05h 09m 08s} (J2000),
	77.5221d {+05h 10m 05s} (current),
	76.6176d {+05h 06m 28s} (1950)
SRC_DEC:	+5.7517d {+05d 45' 06"} (J2000),
	+5.7732d {+05d 46' 24"} (current),
	+5.6888d {+05d 41' 20"} (1950)
SRC_ERROR:	14.99 [arcmin radius, stat+sys, 50% containment]
DISCOVERY_DATE:	18018 TJD; 265 DOY; 17/09/22 (yy/mm/dd)
DISCOVERY_TIME:	75270 SOD {20:54:30.43} UT
REVISION:	0
N_EVENTS:	1 [number of neutrinos]
STREAM:	2
DELTA_T:	0.0000 [sec]
SIGMA_T:	0.0000e+00 [dn]
ENERGY :	1.1998e+02 [TeV]
SIGNALNESS:	5.6507e-01 [dn]
CHARGE :	5784.9552 [pe]

Triggering on Neutrino Telescopes site

Follow-up detections of IC170922 based on public telegrams

> 100 GeV gammas

IceCube 170922 Fermi detects a flaring

blazar within 0.06°

multiwavelength campaign launched by IC 170922

IceCube, *Fermi* –LAT, MAGIC, Agile, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, KISO, Liverpool, Subaru, *Swift*, VLA, VERITAS

- neutrino: time 22.09.17, 20:54:31 UTC energy 290 TeV direction RA 77.43° Dec 5.72°
- Fermi-LAT: flaring blazar within 0.06° (7x steady flux)
- MAGIC: TeV source in follow-up observations
- follow-up by 12 more telescopes
- \rightarrow IceCube archival data (without look-elsewhere effect)
- \rightarrow Fermi-LAT archival data

search in archival IceCube data:

- 150 day flare in December 2014 of 19 events (bkg <6)
- 10⁻⁵ bkg. probability

spectrum E^{-2.1}

\mathbf{v} from sources of GRBs

GRBs are the brightest gamma ray sources in the Universe lasting from a few milliseconds to several minutes. With a total luminosity, under the hypothesis of isotropic emission, of about $L_{GRB} = 10^{51}$ erg/s, these sources are four orders of magnitude brighter than Active Galactic Nuclei, the most luminous steady sources in the sky, with luminosity ranging from:

 $L_{AGN} = 10^{44} \text{ erg/s to } LAGN = 10^{47} \text{ erg/s}.$

Schematic view of the GRB fireball model. The three phases of the GRB development are displayed together with characteristic times and dimensions.

Map of observed GRB in galactic coordinates: the plane of the Milky Way galaxy is along the horizontal line at the middle of the figure. The burst locations are color-coded based on the fluence, which is the energy flux of the burst integrated over the total duration of the event.

A Multi-Messenger Search for ν from GRBs

Multi-Messenger Search for ν from GRB

GRBs: intense flashes of high-energy electromagnetic radiation observed isotropically in the sky. If hadrons are accelerated in GRBs, following the p γ interactions both v and γ are expected.

Search for neutrinos in coincidence with GRBs occurred in the period 2007-2017.

784 long GRBs (T₉₀ >2 s) selected out of FERMI/SWIFT catalogues, below ANTARES horizon at the trigger time. NeuCosmA software used to evaluate individual v fluxes.

Total v fluence from GRBs stacking and the contribution to the diffuse v flux evaluated

No neutrino events are found in spatial and temporal coincidence with the GRB sample

GRBs are not the main contributors to the observed IceCube diffuse n flux below $E\nu \sim 1$ PeV

Summary

- ANTARES studied the **Southern sky** with v_{μ} competitive sensitivities and excellent angular resolution for both *tracks* and *cascades*
 - Upper limits on known GeV-TeV γ-ray sources <10⁻⁸ GeV/(cm² s)
 - Sensitivity for a diffuse flux close to the level of the IC signal
- Detailed study of extended regions (Galactic plane, Fermi Bubbles)
 - no $\,\nu_{\mu}\,\mbox{excess}$ from the Galactic ridge/IC hot spot
- A large multi-messenger effort
 - EM radiation: radio (MWA), optical, X-ray, γ-rays (LAT, IACTs)
 - Gravitational Wave observatories and IceCube
- ANTARES contribute to the indirect searches for Dark Matter
 - Most competitive limits for spin-dependent cross-section
 - Competitive $\langle \sigma v \rangle$ limits from the Galactic centre
- **KM3NeT-Arca** Neutrino Telescope under construction will soon be able to observe the neutrino sky with unprecedented sensitivities.