Energy scales in the ∞ ly small - VI

 Grand Unification Scale. From the observation that weak, em and strong coupling constants are "running" coupling constants, if we plot them vs. q² we get:

Methods in Experimental Particle Physics

Around 10¹⁶ GeV meeting point ??

02/10/18

Energy scales in the ∞ ly small - VII

- Why LHC is concentrate on the O(TeV) scale ?
- There is an intermediate scale around the TeV. It is motivated by the "naturalness" – "fine tuning" – "hierarchy" problem connected to the properties of the Higgs Mass. Mass parameter in the

 $\left(\frac{g^2}{(4\pi)^2}M^2\right)$

SM lagrangian

Quantum corrections

- The Higgs mass m_H is UV sensitive (its value depends on quantum corrections)

- *M* is the scale up to which we have the UV theory.
- If no other scale is there btw Higgs and Planck, $M = M_{Planck}$, so that strong cancellations are needed between $-2\mu^2$ and $g^2M^2/(4\pi)^2$ to give the observed Higgs Mass
- This is un-natural..
- If $M \approx O(\text{TeV})$ all becomes natural, e.g. MSSM, Technicolor, . . .

 $m_H^2 \sim (-2\mu^2) +$

Energy scales in the ∞ ly small - Summary

quantity	value	Energy
Bohr radius	0.53×10 ⁻¹⁰ m (0.5 Å)	3.7 keV
Electron Compton wavelength	3.86×10 ⁻¹³ m (386 fm)	0.51 MeV
Electron classical radius	2.82×10 ⁻¹⁵ m (2.8 fm)	70 MeV
Proton radius – QCD confinement scale	0.82×10 ⁻¹⁵ m (0.8 fm)	240 MeV
Fermi scale (electroweak scale)	$7 \times 10^{-19} \mathrm{m}$	250 GeV
"New Physics" scale		1 TeV
GUT Scale		10 ¹⁶ GeV
Planck scale	$1.62 \times 10^{-35} \mathrm{m}$	$1.2 \times 10^{19} \text{ GeV}$

The TeV scale is the maximum reachable with the present accelerator technology

Probability/Frequency of a final state: the cross-section and the decay width

- The **cross-section** measures the "probability" of a given final state in a collision (actual definition will be in a later lecture). It is a [L]².
- The **decay width** and the **branching ratio** measure the "probability" of a given final state in a decay. The decay width is the inverse of the lifetime so that it is a [T]⁻¹. The branching ratio is an adimensional quantity
- If we include **cross-sections** and **decay widths**, we enter in the quantum field theories where the normalized Planck constant enters in the game.
- In the "natural system" the units are

 $\hbar = c = 1$

- **cross-section** is a $(\text{length})^2$ so an $(\text{energy})^{-2}$.
- **decay width** is a (time)⁻¹ so an (energy)
- 1 GeV⁻² = 3.88×10^{-4} barn (1 b = 10^{-24} cm² = 100 fm²)

Cross-section scales

• Relation between an experimental cross-section and the theory (same applies for branching ratios)

Two ingredients in the theory calculations:

 \rightarrow dynamics (amplitude from lagrangian, Feynman diagrams... mainly the coupling constants);

 \rightarrow phase space $d\phi$

NB: the integration on the phase space DEPENDS in general on the experiment details (accessible kinematic region) \rightarrow Montecarlo

03/10/18

Cross-section order of magnitude estimates

- Based on dimensional arguments and few numbers (neglects phase-space and more...)
 - Electromagnetic processes: $e^+e^- \rightarrow \mu^+\mu^-$, $\gamma\gamma$
 - Weak processes: vN scattering
 - Hadron strong interaction scattering: pp scattering

α	1/137	$\left(\sigma\left(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\right)\gamma\gamma\right) \approx \frac{\alpha^{2}}{2}$	$S=(1 \text{ GeV})^2$	$S=(100 \text{ GeV})^2$
G	10 ⁻⁵ GeV ⁻²	$O\left(e \ e \ -\mu \ \mu \ ,\gamma\gamma\right) \sim \frac{1}{s}$	20 nb	2 pb
	1.6	$\sigma(ve \rightarrow ve) \approx G_F^2 2m_e E_v$	40 fb	4 pb
r _p	1 Im	$\sigma(pp) \approx \pi r_{\rm e}^2$	30 mb	30 mb
1 GeV^{-2}	3.88 ×10 ⁻⁴ b			

Experimentally:

 $\sigma(ve=>ve) \sim 10^{-41} \text{ cm}^2 \text{ x } E_v \text{ (GeV)} = 0.01 \text{ fb } \text{ x } E_v \text{ (GeV)}$ E_v neutrino energy in laboatory

$$S=2m_e E_v = 2*0.000511*E_v (GeV) GeV^2$$

=>E_v(GeV)~1000 * s (GeV²)

$$\sigma(ve=>ve)(s=1 \text{ GeV}^2) \sim 10 \text{ fb}$$

$$\sigma(ve=>ve)(s=100 \text{ GeV}^2) \sim 1 \text{ pb}$$

LifeTime (or Width) of a particle vs. theory

- As for the cross-section the value depends on two ingredients:
 - Decay type (weak, em, strong) through decay matrix element
 - Volume of the available phase space
- The Width Γ is an additive quantity: you have to add the *partial widths* of the single decays to get the *total width*
- Useful formulas: two-body decay phase-space (rest system)

$$\Gamma = \frac{1}{8\pi} \frac{p}{M^2} |\mathfrak{M}|^2.$$
 NB Dimensions: If Γ is [E] \rightarrow |M| is also [E]
$$|\vec{p_1}| = |\vec{p_2}| = \frac{[(M^2 - (m_1 + m_2)^2)(M^2 - (m_1 - m_2)^2)]^{1/2}}{2M},$$

Width (LifeTime) order of magnitude estimates

• The amplitude square has the dimensions of E².

- Weak \rightarrow |Ampl|² \approx G_F² \times M⁶
- E.m. \rightarrow |Ampl|² $\approx \alpha^2 \times M^2$
- Strong \rightarrow |Ampl|² $\approx \alpha_s(M)^2 \times M^2$
- Examples of estimates (wrong by factor ≈ 10 maximum):

Interaction	Decay	Phase space (MeV ⁻¹)	Ampl ² (MeV ²)	Г (MeV)	τ (s)
Weak	$\pi^{\pm} \rightarrow \mu^{\pm} \nu$	6.0×10^{-5}	6.0×10^{-10}	3.6×10^{-14}	1.8×10^{-8} (2.6 × 10 ⁻⁸)
e.m.	π ⁰ → γγ	1.5×10^{-4}	0.97	1.4×10^{-4}	4.6×10^{-18} (8.5 × 10 ⁻¹⁷)
strong	$\rho^0 \rightarrow \pi^+ \pi^-$	2.4×10^{-5}	6.0×10^{5}	13 (150)	5.0×10^{-23}
10 Methods in Experimental Particle Physics 02,				02/10/18	

	Lifetime t	Width Γ
Weak decays		
K _s , K _l	$0.89564 \times 10^{-10} \mathrm{s}, 5.116 \times 10^{-8} \mathrm{s}$	
K [±]	$1.2380 \times 10^{-8} \text{ s}$	
Λ	$2.632 \times 10^{-10} \mathrm{s}$	
B-hadrons	$\approx 10^{-12} \mathrm{s}$	
Muon	$2.2 \times 10^{-6} \mathrm{s}$	
Tau-lepton	$2.9 \times 10^{-13} \mathrm{s}$	
Top-quark	$\approx 5 \times 10^{-25} \mathrm{s}$	2 GeV
e.m. decays		
π^{0}	$8.52 \times 10^{-17} \mathrm{s}$	8 eV
η	$\approx 10^{-19} \mathrm{s}$	1.30 keV
Strong decays		
J/ψ		92.9 keV
Υ		54.02 keV
ρ		149.1 MeV
ω		8.49 MeV
φ		4.26 MeV
Δ		114 ÷ 120 MeV

Recap - fundamental interactions

- Electromagnetic interaction:
 - Can be studied at all energies with "moderate" cross-sections;
 - Above O(100 GeV) becomes electro-weak
- Weak interactions:
 - At low energies it can be studied using decays of "stable" particles large lifetimes and small cross-sections;
 - Above O(100 GeV) becomes electro-weak
- Strong interactions:
 - At low energy (below 1 GeV) "hadronic physics" based on confinement: no fundamental theory available by now
 - At high energies (above 1 GeV) QCD is a good theory: however since partons are not directly accessible, only "inclusive" quantities can be measured and compared to theory. Importance of simulations to relate partonic quantities to observables.

Comparison between beam possibilities

- Electrons:
 - Clean, point-like, fixed (almost) energy, but large irradiation due to the low mass. "Exclusive" studies are possible (all final state particles are reconstructed and a complete kinematic analysis can be done)
 - \rightarrow e⁺e⁻ colliders less for energy frontier, mostly for precision measurements
- Protons:
 - Bunch of partons with momentum spectrum, but low irradiation. "Inclusive" studies are possible. A complete kinematic analysis is in general not possible (only in the transverse plane it is to first approximation possible)
 - → highest energies are "easily" reachable, high luminosity are reachable but problems in the interpretation of the results; very "demanding" detectors and trigger systems.
- Anti-protons:
 - Difficult to obtain high intensities and high luminosity but no problems with energies, same problems of protons (bunch of partons)
- → p-antip limited by luminosity, e⁺e⁻ limited by energy BUT perfect for precision studies, pp good choice for energy frontier

Implications for experiments:

- You need high energy for
 - Probe electro-weak scales, get closer to higher scales
 - Enlarge the achieveble mass spectrum (particle discoveries)
- You need high beam intensity and large/dense targets or high efficiency detectors
 - To access low probability phenomena
- You need high resolution detectors
 - To improve particle discrimination especially for rare events.

End of the Introduction

- Present prospects of Elementary Particle experiments:
 - ENERGY frontier \rightarrow LHC, HL-LHC, ILC, TLEP,....
 - INTENSITY frontier \rightarrow flavour-factories, fixed target,...
 - SENSITIVITY frontier \rightarrow detectors for dark matter, neutrinos,..
- The general idea is to measure quantities for which you have a clear prediction from the Standard Model, and a hint that a sizeable correction would be present in case of "New Physics".

15