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�  Once the candidate sample is obtained many quantities can 
be measured (particle properties, e.g. particle mass). 

�  BUT in most cases they are obtained from a FIT to a data 
distribution. So, you divide events in bins and extract the 
quantity as a fit parameter ! the event counting is still one 
major source of uncertainty ! the uncertainty on the 
parameter depends on the statistics ≈ √Ni. 

�  Example: 
� Measure the mass of a “imaginary” particle of M=5 GeV. 
� Mass spectrum, gaussian peak over a uniform background 
�  FIT in three different cases: 103, 104 and 105 events selected 



Mass uncertainty  
due to statistics 
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Observations: 
 " Poissonian uncertainty on each bin 
 " Reduce bin size for higher statistics 
 " Fit function = A+B*Gauss(M) 
 " Free parameters: A,B,M (fixed width) 
 " The fit is good for each statistics 

Results 
    N=103 events:  
 Mass = 5.22±0.22 GeV,  χ2 =  28 / 18 dof 
    N=104 events:  
 Mass = 5.01±0.06 GeV,  χ2 =  38 / 48 dof 
    N=105 events:  
 Mass = 5.02±0.02 GeV,  χ2 =  83 / 98 dof 
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Where could be a systematic 
uncertainty here ? 
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�  Absolute mass scale: this can be measured using a candle of 
known mass. Not always it is available. e.g. Z for the Higgs 
mass at the LHC. 

�  Mass resolution: in most cases the width of the peak is given 
by the experimental resolution that sometimes is not 
perfectly gaussian, giving rise to possible distortion to the 
curve. 

�  Physics effects: knowledge of the line-shape, interference 
with the background… 

�  In general: M = central value ± stat.uncert. ± syst.uncert. 
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The light quark masses: study of η→π+π-π0decay 
η→πππ decay ⇒ Isospin violation  
e.m. strongly suppressed, induced dominantly by the 
strong interaction associated with the u-d quark mass 
difference  
     

•  Odd powers of X are C-violating ⇒ c and e are expected to be zero 

•  First large statistics measurement of η→π+π─π0 by KLOE group with 0.45 fb-1 

e+e−→φ(1020)→ηγ (�1.34 × 106 events)  [JHEP 05(2008)006, KLOE08] 
 
•  Update with Lint = 1.6 fb-1   
     � 4.7 × 106 events  [JHEP1605(2016)019] 

•  Dalitz plot density parameterized as: 
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Table 5. Summary of the systematic errors for a, b, d, f parameters (fit #3).

7 Discussion

The final results for the Dalitz plot parameters, including systematic effects, are therefore:

a = −1.095± 0.003+0.003
−0.002

b = +0.145± 0.003± 0.005

d = +0.081± 0.003+0.006
−0.005

f = +0.141± 0.007+0.007
−0.008

g = −0.044± 0.009+0.012
−0.013
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Figure 7. (Color online) Top: θ∗γγ angle distribution with the MC contributions scaled; the
selected region is at the right of the vertical line. Bottom: missing mass squared,P 2

π0 , with the MC
contributions scaled. The selected region is between the vertical lines. Left/right: bin of the Dalitz
plot with the largest/smallest number of entries, corresponding to (X,Y ) = (0.000,−0.850) and
(X,Y ) = (−0.065, 0.750), respectively.
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Figure 8. (Color online) Resolution of the Dalitz plot variables X (left) and Y (right) from the
signal Monte Carlo simulations. The full line approximates the simulated distribution by a sum of
two Gaussian functions; the dashed line represent the contribution of the broader Gaussian. The
standard deviation of the narrower Gaussian is used in the discussion of the Dalitz plot bin width.
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NNLO result depends on the values of a large number of the coupling constants of the

chiral lagrangian which are not known precisely. On the other hand it is known that the

ππ rescattering plays an important role in the decay, giving about half of the correction

from the LO to the NLO result [8]. The rescattering can be accounted for to all orders using

dispersive integrals and precisely known ππ phase shifts. In the dispersive calculations two

approaches are possible. The first is to improve ChPT predictions starting from the NLO

ChPT calculations. In the second approach one can determine the proportionality factor

for the Q−2 in the η → π+π−π0 decay amplitude from fits to the experimental Dalitz

plot data and by matching the results to the LO amplitude in the region where it could be

considered accurate. Both approaches are pursued by three theory groups: refs. [13–15]. In

the first approach the reliability of the calculations could be verified by a comparison with

the experimental Dalitz plot data. Conversely, in the second approach precise experimental

Dalitz plot distributions could be used to determine the quark ratio Q without relying on

the higher order ChPT calculations.

Two other recent theoretical descriptions of the η → 3π decay amplitude include

unitarized ChPT (UChPT) [11] and non-relativistic effective field theory (NRFT) [12].

UChPT is a model dependent approach which uses relativistic coupled channels and allows

for simultaneous treatment of all hadronic η and η′ decays. The NRFT framework is used

to study higher order isospin breaking effects in the final state interactions.

For the η → π+π−π0 Dalitz plot distribution, the normalized variables X and Y are

commonly used:

X =
√
3
Tπ+ − Tπ−

Qη
(1.2)

Y =
3Tπ0

Qη
− 1 (1.3)

with

Qη = Tπ+ + Tπ− + Tπ0 = mη − 2mπ+ −mπ0 . (1.4)

Ti are kinetic energies of the pions in the η rest frame. The squared amplitude of the decay

is parametrized by a polynomial expansion around (X,Y ) = (0, 0):

|A(X,Y )|2 ≃ N(1+aY +bY 2+cX+dX2+eXY +fY 3+gX2Y +hXY 2+lX3+. . .). (1.5)

The Dalitz plot distribution can then be fit using this formula to extract the parameters

a, b, . . ., usually called the Dalitz plot parameters. Note that coefficients multiplying odd

powers of X (c, e, h and l) must be zero assuming charge conjugation invariance.

The experimental values of the Dalitz plot parameters are shown in table 1 together

with the parametrization of theoretical calculations. The last three most precise measure-

ments include the 2008 analysis from KLOE which was based on 1.34 · 106 events [19].

There is some disagreement among the experiments, specially for the b but also for the

a parameter. Both b and the f parameters from theory deviate from the experimental

values. The new high statistics measurement presented in this paper can help to clarify

the tension among the experimental results, and can be used as a more precise input for

the dispersive calculations.
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Figure 7. (Color online) Top: θ∗γγ angle distribution with the MC contributions scaled; the
selected region is at the right of the vertical line. Bottom: missing mass squared,P 2

π0 , with the MC
contributions scaled. The selected region is between the vertical lines. Left/right: bin of the Dalitz
plot with the largest/smallest number of entries, corresponding to (X,Y ) = (0.000,−0.850) and
(X,Y ) = (−0.065, 0.750), respectively.
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Figure 8. (Color online) Resolution of the Dalitz plot variables X (left) and Y (right) from the
signal Monte Carlo simulations. The full line approximates the simulated distribution by a sum of
two Gaussian functions; the dashed line represent the contribution of the broader Gaussian. The
standard deviation of the narrower Gaussian is used in the discussion of the Dalitz plot bin width.
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NNLO result depends on the values of a large number of the coupling constants of the
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values. The new high statistics measurement presented in this paper can help to clarify

the tension among the experimental results, and can be used as a more precise input for

the dispersive calculations.
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Figure 10. (Color online) The experimental background subtracted Dalitz plot data, Ni, (points
with errors), compared to set #5 fit results (red lines connecting bins with the same Y value). The
row with lowest Ni values corresponds to the highest Y value (Y = +0.75).

g = 0, since it enables a more direct comparison to the previous experiments (KLOE(08),

WASA(14) and BESIII(15)). The correlation matrices for fits #3 and #5 are:

b d f

a −0.269 −0.365 −0.832

b +0.333 −0.139

d +0.089

b d f g

a −0.120 +0.044 −0.859 −0.534

b +0.389 −0.201 −0.225

d −0.160 −0.557

f +0.408.

The fit #5 is compared to the background subtracted Dalitz plot data, Ni, in figure 10.

The red lines represent the fit result and correspond to separate slices in the Y variable.

Figure 11 shows the distribution of the normalized residuals for the fit #5: ri = (Ni −
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η→π+π-π0 decay

KLOE-2 JHEP 05(2016)019  

The light quark masses: study of η→π+π-π0decay 
η→πππ decay ⇒ Isospin violation  
e.m. strongly suppressed, induced dominantly by the 
strong interaction associated with the u-d quark mass 
difference  
     

Fit to the Dalitz Plot 

•  Odd powers of X are C-violating ⇒ c and e are expected to be zero 

•  First large statistics measurement of η→π+π─π0 by KLOE group with 0.45 fb-1 

e+e−→φ(1020)→ηγ (�1.34 × 106 events)  [JHEP 05(2008)006, KLOE08] 
 
•  Update with Lint = 1.6 fb-1   
     � 4.7 × 106 events  [JHEP1605(2016)019] 

•  Dalitz plot density parameterized as: 
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syst. error (×104) ∆a ∆b ∆d ∆f ∆g

EGmin ±6 ±12 ±10 ±5 ±16

BkgSub ±8 ±7 ±11 ±6 ±38

BIN ±17 ±13 ±9 ±36 ±44

θ+γ , θ−γ cut +0
−1

+0
−2

+2
−2

+3
−0

+3
−2

∆te cut + 6
−11

+12
− 1

+18
− 1

+3
−8

+26
−54

∆te −∆tπ cut ±0 +0
−1

+3
−1 ±0 +2

−1

θ∗γγ cut +14
− 5

+2
−1

+21
−12

+ 5
−25

+26
−38

MM + 8
−10

+46
−43

+49
−45

+57
−62

+100
− 92

ECL ±0 ±8 ±6 ±9 ±12

TOTAL +26
−25

+52
−48

+59
−50

+69
−77

+123
−129

Table 4. Summary of the systematic errors for a, b, d, f, g parameters (fit #5 ).

syst. error (×104) ∆a ∆b ∆d ∆f

EGmin ±9 ±10 ±6 ±0

BkgSub ±1 ±5 ±6 ±8

BIN ±9 ±14 ±9 ±26
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−1
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−0

+1
−1

+14
− 8

+ 0
−13
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−10

+39
−36

+31
−26

+28
−35

ECL ±2 ±9 ±9 ±13

TOTAL +18
−18

+46
−41

+38
−31

+45
−51

Table 5. Summary of the systematic errors for a, b, d, f parameters (fit #3).

7 Discussion

The final results for the Dalitz plot parameters, including systematic effects, are therefore:

a = −1.095± 0.003+0.003
−0.002

b = +0.145± 0.003± 0.005

d = +0.081± 0.003+0.006
−0.005

f = +0.141± 0.007+0.007
−0.008

g = −0.044± 0.009+0.012
−0.013

– 15 –

 
c, e param. are C-violating,  
consistent with zero 

J
H
E
P
0
5
(
2
0
1
6
)
0
1
9

syst. error (×104) ∆a ∆b ∆d ∆f ∆g

EGmin ±6 ±12 ±10 ±5 ±16

BkgSub ±8 ±7 ±11 ±6 ±38

BIN ±17 ±13 ±9 ±36 ±44

θ+γ , θ−γ cut +0
−1

+0
−2

+2
−2

+3
−0

+3
−2

∆te cut + 6
−11

+12
− 1

+18
− 1

+3
−8

+26
−54

∆te −∆tπ cut ±0 +0
−1

+3
−1 ±0 +2

−1

θ∗γγ cut +14
− 5

+2
−1

+21
−12

+ 5
−25

+26
−38

MM + 8
−10

+46
−43

+49
−45

+57
−62

+100
− 92

ECL ±0 ±8 ±6 ±9 ±12

TOTAL +26
−25

+52
−48

+59
−50

+69
−77

+123
−129

Table 4. Summary of the systematic errors for a, b, d, f, g parameters (fit #5 ).

syst. error (×104) ∆a ∆b ∆d ∆f

EGmin ±9 ±10 ±6 ±0

BkgSub ±1 ±5 ±6 ±8

BIN ±9 ±14 ±9 ±26

θ+γ , θ−γ cut +0
−1

+0
−2

+1
−1

+4
−0

∆te cut +0
−6

+14
− 6

+7
−0

+19
−15

∆te −∆tπ cut ±0 +0
−1

+3
−0 ±0

θ∗γγ cut +6
−0

+1
−1

+14
− 8

+ 0
−13

MM +10
−10

+39
−36

+31
−26

+28
−35

ECL ±2 ±9 ±9 ±13

TOTAL +18
−18

+46
−41

+38
−31

+45
−51

Table 5. Summary of the systematic errors for a, b, d, f parameters (fit #3).

7 Discussion

The final results for the Dalitz plot parameters, including systematic effects, are therefore:

a = −1.095± 0.003+0.003
−0.002

b = +0.145± 0.003± 0.005

d = +0.081± 0.003+0.006
−0.005

f = +0.141± 0.007+0.007
−0.008

g = −0.044± 0.009+0.012
−0.013

– 15 –

J
H
E
P
0
5
(
2
0
1
6
)
0
1
9

)° (
γ γ

*θ 
0 20 40 60 80 100 120 140 160 180

 

10

210

310

410

DATA
MC SUM
Signal

 bkg0π  ω
sum other bkg

 

)° (
γ γ

*θ 
0 20 40 60 80 100 120 140 160 180

 

1

10

210

310

DATA
MC SUM
Signal

 bkg0π  ω
sum other bkg

 

)2 (MeV2
0

π
P

60000− 40000− 20000− 0 20000 40000

  

1−10

1

10

210

310

410
DATA
MC SUM
Signal

 bkg0
π  ω

sum other bkg

  

)2 (MeV2
0

π
P

60000− 40000− 20000− 0 20000 40000

  

1−10

1

10

210

310
DATA
MC SUM
Signal

 bkg0
π  ω

sum other bkg

 

Figure 7. (Color online) Top: θ∗γγ angle distribution with the MC contributions scaled; the
selected region is at the right of the vertical line. Bottom: missing mass squared,P 2

π0 , with the MC
contributions scaled. The selected region is between the vertical lines. Left/right: bin of the Dalitz
plot with the largest/smallest number of entries, corresponding to (X,Y ) = (0.000,−0.850) and
(X,Y ) = (−0.065, 0.750), respectively.
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Figure 8. (Color online) Resolution of the Dalitz plot variables X (left) and Y (right) from the
signal Monte Carlo simulations. The full line approximates the simulated distribution by a sum of
two Gaussian functions; the dashed line represent the contribution of the broader Gaussian. The
standard deviation of the narrower Gaussian is used in the discussion of the Dalitz plot bin width.
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NNLO result depends on the values of a large number of the coupling constants of the

chiral lagrangian which are not known precisely. On the other hand it is known that the

ππ rescattering plays an important role in the decay, giving about half of the correction

from the LO to the NLO result [8]. The rescattering can be accounted for to all orders using

dispersive integrals and precisely known ππ phase shifts. In the dispersive calculations two

approaches are possible. The first is to improve ChPT predictions starting from the NLO

ChPT calculations. In the second approach one can determine the proportionality factor

for the Q−2 in the η → π+π−π0 decay amplitude from fits to the experimental Dalitz

plot data and by matching the results to the LO amplitude in the region where it could be

considered accurate. Both approaches are pursued by three theory groups: refs. [13–15]. In

the first approach the reliability of the calculations could be verified by a comparison with

the experimental Dalitz plot data. Conversely, in the second approach precise experimental

Dalitz plot distributions could be used to determine the quark ratio Q without relying on

the higher order ChPT calculations.

Two other recent theoretical descriptions of the η → 3π decay amplitude include

unitarized ChPT (UChPT) [11] and non-relativistic effective field theory (NRFT) [12].

UChPT is a model dependent approach which uses relativistic coupled channels and allows

for simultaneous treatment of all hadronic η and η′ decays. The NRFT framework is used

to study higher order isospin breaking effects in the final state interactions.

For the η → π+π−π0 Dalitz plot distribution, the normalized variables X and Y are

commonly used:

X =
√
3
Tπ+ − Tπ−

Qη
(1.2)

Y =
3Tπ0

Qη
− 1 (1.3)

with

Qη = Tπ+ + Tπ− + Tπ0 = mη − 2mπ+ −mπ0 . (1.4)

Ti are kinetic energies of the pions in the η rest frame. The squared amplitude of the decay

is parametrized by a polynomial expansion around (X,Y ) = (0, 0):

|A(X,Y )|2 ≃ N(1+aY +bY 2+cX+dX2+eXY +fY 3+gX2Y +hXY 2+lX3+. . .). (1.5)

The Dalitz plot distribution can then be fit using this formula to extract the parameters

a, b, . . ., usually called the Dalitz plot parameters. Note that coefficients multiplying odd

powers of X (c, e, h and l) must be zero assuming charge conjugation invariance.

The experimental values of the Dalitz plot parameters are shown in table 1 together

with the parametrization of theoretical calculations. The last three most precise measure-

ments include the 2008 analysis from KLOE which was based on 1.34 · 106 events [19].

There is some disagreement among the experiments, specially for the b but also for the

a parameter. Both b and the f parameters from theory deviate from the experimental

values. The new high statistics measurement presented in this paper can help to clarify

the tension among the experimental results, and can be used as a more precise input for

the dispersive calculations.
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Figure 10. (Color online) The experimental background subtracted Dalitz plot data, Ni, (points
with errors), compared to set #5 fit results (red lines connecting bins with the same Y value). The
row with lowest Ni values corresponds to the highest Y value (Y = +0.75).

g = 0, since it enables a more direct comparison to the previous experiments (KLOE(08),

WASA(14) and BESIII(15)). The correlation matrices for fits #3 and #5 are:

b d f

a −0.269 −0.365 −0.832

b +0.333 −0.139

d +0.089

b d f g

a −0.120 +0.044 −0.859 −0.534

b +0.389 −0.201 −0.225

d −0.160 −0.557

f +0.408.

The fit #5 is compared to the background subtracted Dalitz plot data, Ni, in figure 10.

The red lines represent the fit result and correspond to separate slices in the Y variable.

Figure 11 shows the distribution of the normalized residuals for the fit #5: ri = (Ni −
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Figure 11. (Color online) Distribution of the normalized residuals, ri, for fit #5.

Experiment ALR × 10−2 AQ × 10−2 AS × 10−2

Gormley(68) [27] +1.5± 0.5 − 0.5± 0.5

Layter(72) [28] −0.05± 0.22 −0.07± 0.22 0.10± 0.22

Jane(74) [29] +0.28± 0.26 −0.30± 0.25 0.20± 0.25

KLOE(08) [19] +0.09± 0.10+0.09
−0.14 −0.05± 0.010+0.03

−0.05 0.08± 0.10+0.08
−0.13

KLOE(this work) −0.050± 0.045+0.050
−0.11 0.020± 0.045+0.048

−0.023 0.004± 0.045+0.033
−0.035

Table 3. Results on the asymmetry parameters.

∑n
j=1 SijNT,j)/σi. The location of the residuals ri > 1 and ri < −1 on the Dalitz plot is

uniform. The fits #6 and #7 use the acceptance corrected data (see appendix A).

5 Asymmetries

While the extracted Dalitz plot parameters are consistent with charge conjugation sym-

metry, the unbinned integrated charge asymmetries provide a more sensitive test. The

left-right (ALR), quadrant (AQ) and sextant (AS) asymmetries are defined in ref. [28]. The

same background subtraction is applied as for the Dalitz plot parameter analysis. For

each region in the Dalitz plot used in the calculation of the asymmetries, the acceptance is

calculated from the signal MC as the ratio between the number of the reconstructed and

the generated events. The yields are then corrected for the corresponding efficiency. The

procedure was tested using signal MC generated with the same statistics as the experi-

mental data. The results for the asymmetries are presented in the table 3 and compared

to other experiments. The statistical accuracy for all asymmetries in the present analysis

is 4.5 · 10−4. The discussion of the systematical uncertainties is given in section 6.

6 Systematic checks

To quantify and account for systematic effects in the results, several checks have been made.
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Uncertainty combination 
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 central value ± stat.uncert. ± syst.uncert. 
Can we combine stat. and syst. ? If yes how ? 
The two uncertainties might have different probability 
meaning: typically one is a gaussian 68% C.L., the other is a 
“maximum” uncertainty, so in general it is better to hold them 
separate. 
If needed better to add in quadrature rather than linearly. 
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G. Cowan  Statistical Data Analysis / Stat 2 page 92 

Summary on multivariate methods 
Particle physics has used several multivariate methods for many years: 

 linear (Fisher) discriminant 
 neural networks 
 naive Bayes   

and has in recent years started to use a few more: 

 boosted decision trees 
 support vector machines 
 kernel density estimation 
 k-nearest neighbour 

The emphasis is often on controlling systematic uncertainties between 
the modeled training data and Nature to avoid false discovery. 

Although many classifier outputs are "black boxes", a discovery 
at 5σ significance with a sophisticated (opaque) method will win the 
competition if backed up by, say, 4σ evidence from a cut-based method. 

Comments on multivariate methods: 



Summarizing 

25/10/18 Methods in Experimental Particle Physics 9 

�  Steps of an PP experiment (assuming the accelerator and the 
detector are there): 
� Design of a trigger  
� Definition of an offline selection 
�  Event counting and normalization (including efficiency 

and background evaluation) 
�  Fit of “candidate” distributions 

�  Uncertainties 
�  Statistical due to Poisson fluctuations of the event counting 
�  Statistical due to binomial fluctuations in the efficiency 

measurement 
�  Systematic due to non perfect knowledge of detector effects. 



25/10/18 Methods in Experimental Particle Physics 10 

Experimental Elementary Particle Physics:

problems with solutions

Cesare Bini

1 Problems

The problems presented here are discussed during the lectures of the Experimental Elemen-
tary Particle Physics course of the last year of Laurea Magistrale in Physics at Sapienza.
To solve these problems, access at the Particle Data Group web page (http://pdg.lbl.gov)
is needed. Other relevant informations can be obtained by consulting the course slides
(http://www.roma1.infn.it/people/bini/corsoFSPE1516.html).

1. A charged kaon (K+ ) beam is produced with a rate of 1.2⇥102 Hz. Our detector takes
data for�t = 24 hours and aims to count the total number of decaysK+ ! e+⌫e. The
e�ciency of our detector for this final state is ✏=63.2% with negligible uncertainty.
Evaluate the minimum value of the rejection power needed for the K+ ! µ+⌫µ decay
if we want to maintain the uncertainty on N(K+ ! e+⌫e) below 15% (neglect other
possible backgrounds and the uncertainties on background).

2. In an e+e� experiment at a center of mass energy
p
s=1.5 GeV, we aim to count

the number of e+e� ! K+K� final states. At the end of the experiment, after
the selection, we get Ncand=136. We estimate the background to be Nb=13.2±0.9.
The selection e�ciency is obtained by selecting 5922 events from a sample of 104

Montecarlo simulated e+e� ! K+K� final states. Calculate N(e+e� ! K+K�)
with its uncertainty. What is the dominant contribution to the uncertainty ? How
many st.dev. is the signal from 0 ?

3. We have designed an event selection chain based on the simulation in such a way
that at the end of the selection 25% of the selected events are signal events and 75%
are background events. How many total candidates do we need to collect in order to
observe the signal with at least 5 st.dev. significance ?

4. The expected rate of neutrinos interacting in our detector is 0.23⇥10�2 evts/day, and
the average e�ciency for the detection of such interactions is 43.2%. Evaluate the
probability to detect at least a neutrino in the first 24h, in the first year and in the
first 10 years of operation.
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observe the signal with at least 5 st.dev. significance ?

4. The expected rate of neutrinos interacting in our detector is 0.23⇥10�2 evts/day, and
the average e�ciency for the detection of such interactions is 43.2%. Evaluate the
probability to detect at least a neutrino in the first 24h, in the first year and in the
first 10 years of operation.

1

Proposed exercises 

5. The most updated values of the parameter µ = �/�SM for the Higgs boson from
ATLAS for the three main decay channels (in 2014) were:

µ�� = 1.55± 0.30

µZZ = 1.43± 0.37

µWW = 0.99± 0.29

Evaluate the compatibility among the three independent ATLAS results and calculate
the best overall estimate of µ from ATLAS. Then evaluate the compatibility with the
SM expectation (µ=1).

6. In the 2011+2012 LHC dataset (corresponding to about 25 fb�1), a sample of 2.24⇥105

tt events has been collected. We know that �(pp ! tt+X) is 177 ± 5 pb. How large
was the e�ciency for tt events assuming no background ?

7. We perform a cross-section measurement and obtain the following values: Ncand

=128, Nb = 14 ± 2, ✏ = 0.523 ± 0.002, Lint = 2.43 pb�1 ± 1.8 %: calculate the
resulting cross-section with its uncertainty. In case this is a measurement of e+e� !
⇡+⇡� at

p
s = 1 GeV, determine the value of the pion time-like form factor with its

uncertainty. The formula relating the cross-section to the form factor F⇡(s) is the
following:

�(s) =
⇡↵2

3s
�3
⇡|F⇡(s)|2

8. The Higgs boson production at a linear collider happens mainly through the reac-
tion e+e� ! ZH. If MH = 125 GeV, and the cross-section �(e+e� ! ZH,

p
s =

300GeV)= 220 fb, which value of luminosity do we need to get O(106) events in 1
year of data taking ? How many final states with two muons and two photons from
the Z ! µ+µ� and H ! �� simultaneous decays do we get in the same period ?
Evaluate the maximum and minimum photon energies from the Higgs.

9. Consider the reaction e+e� ! K+K� at a �-factory. Which fraction of events have
at least one kaon decaying within a sphere of R = 20 cm ? In which fraction of events
both kaons decay within the same sphere ?

10. The SM expected semi-leptonicKS charge asymmetry is 3⇥10�3. At Dafne we expect
to produce a sample of 1.2⇥109 tagged KSs. If the BR(KS ! ⇡e⌫)=BR(KS !
⇡+e�⌫)+BR(KS ! ⇡�e+⌫)=6.95⇥10�4 which error can we reach on the asymmetry
?

11. Which average instantaneous luminosity is required to improve by a factor 3 such an
uncertainty in one year of data taking (assuming a duty cicle of 50% and a tagging
e�ciency of 30%) ? [�(e+e� ! �)= 5 µb at the � peak].

2
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�  Physics quantities (to be compared with theory 
expectations) 
� Cross-section 
�  Branching ratio 
� Asymmetries 
�  Particle Masses, Widths and Lifetimes 

�  Quantities related to the experiment (BUT to be 
measured to get physics quantities) 
�  Efficiencies 
�  Luminosity 
�  Backgrounds 



Cross-section - I 
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�  Suppose we have done an experiment and obtained the following 
quantities for a given final state: 
�  Ncand, Nb, ε, φ

�  What is φ ? It is the “flux”, something telling us how many 
collisions could take place per unit of time and surface. 
�  Consider a “fixed-target” experiment (transverse size of the target >> beam 

dimensions): 
 
�  Consider a “colliding beam” experiment  

 
(head-on beams: N1 and N2 number of particles per beam, ΣX, ΣY beam transverse gaussian 
areas, fcoll collision frequency) In this case we normally use the word 
“Luminosity”. Flux or luminosity are measured in: cm-2s-1 

φ = !NprojNtarδx =
!Nprojρδx
AmN

=
!Nprojρ(g / cm

3)NAδx(cm)
A

φ = fcoll
N1N2

4πΣXΣY
= L
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�  In any case, the rate of events due to final state X is: 

�  σX is the cross-section, having the dimension of a surface. 
�  it doesn’t depend on the experiment but on the process only 
�  can be compared to the theory 
�  for a given σX, the higher is φ, the larger the event rate 
�  given an initial state, for every final state X you have a specific 

cross-section 
�  the “total cross-section” is obtained by adding the cross-

sections for all possible final states: the cross-section is an additive 
quantity. 

� The unit is the “barn”. 1 barn = 10-24 cm2. 

€ 

˙ N X = φσX



Cross-section - III 
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�  Suppose we have taken data for a time Δt: the total number of events collected 
will be: 

    The flux integral over time is the Integrated Flux or (in case of colliding 
beams) Integrated Luminosity. Integrated luminosity is measured in: b-1 

�  How can we measure this cross-section ? 

�  Sources of uncertainty: we apply the uncertainty propagation formula. We 
assume no correlations btw the quantities in the formula (Lint = integral of 
flux) 

 

NX =σ X × φ dt
Δt
∫

€ 

σX =
NX

φdt∫
=

1
φdt∫

Ncand − Nb

ε

€ 

σ (σX )
σX

# 

$ 
% 

& 

' 
( 

2

=
σ(Lint )
Lint

# 

$ 
% 

& 

' 
( 

2

+
σ(ε)
ε

# 

$ 
% 

& 

' 
( 
2

+
σ 2(Ncand ) +σ 2(Nb )
(Ncand − Nb )

2
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�  Given an unstable particle a, it can decay in several (say N) final 
states, k=1,…,N. If Γ is the total width of the particle (Γ=1/τ 
with τ particle lifetime), for each final state we define a “partial 
width” in such a way that 

�  The branching ratio of the particle a to the final state X is 

 
�  To measure the B.R. the same analysis as for a cross-section is 

needed. In this case we need the number of decaying particles Na 
(not the flux) to normalize: 

€ 

Γ = Γk
k=1

N

∑

€ 

B.R. a→ X( ) =
ΓX
Γ

€ 

B.R.(a→ X) =
Ncand − Nb

ε
1
Na
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�  Given an unstable particle a, it can decay in several (say N) final states, 
k=1,…,N. If Γ is the total width of the particle (Γ=1/τ with τ particle 
lifetime), for each final state we define a “partial width” in such a way 
that 

 
�  The branching ratio of the particle a to the final state X is 
 
 
�  To measure the B.R. the same analysis as for a cross-section is needed. In 

this case we need the number of decaying particles Na (not the flux) to 
normalize: 
 
 

�  Sometimes the normalization is done relative to another process of 
known B.R. (relative measurement) 

€ 

Γ = Γk
k=1

N

∑

€ 

B.R. a→ X( ) =
ΓX
Γ

€ 

B.R.(a→ X) =
Ncand − Nb

ε
1
Na

B.R.(a→ X)
B.R.(a→Y )

=
Ncand,X − Nb,X

Ncand,Y − Nb,Y

#

$
%%

&

'
((
εY
εX

#

$
%

&

'
(
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�  If we want to consider only final states with a given kinematic 
configuration (momenta, angles, energies,…) and give the 
cross-section as a function of  these variables 

�  Experimentally we have to divide in bins and count the 
number of events per bin.  

�  Example: differential cross-section vs. scattering angle 

�  NB: Ncand, Nb and ε as a function of θ are needed. 

 
€ 

dσ
dcosθ
$ 

% 
& 

' 

( 
) 
i

=
1
φdt∫

Ncand
i − Nb

i

εi

$ 

% 
& 

' 

( 
) 

1
Δ cosθi



Differential cross-section - II 
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�  Additional problems appear. 
�  Efficiency is required per bin (can be different for different 

kinematic configurations). 
�  Background is required per bin (as above). 
� The migration of events from one bin to another is possible: 

need of smearing procedures to take into account this. Black: “true” distribution 
Red: expected distribution 

 if σ=0.1 
Blue: expected distribution 

 if σ=0.2 
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�  In case there is a substancial migration of events among bins 
(resolution larger than bin size), this affects the comparison btw 
exp.histo (ni

exp) and theory (ni
th). This can be solved in two 

different ways: 
�  Folding of the theoretical distribution: the theoretical function 

fth(x) is “smeared” through a smearing matrix M based on our 
knowledge of the resolution; ni

th " n’i
th 

 
 
�  Unfolding of the experimental histogram: ni

exp " n’i
exp. Very 

difficult procedure, mostly unstable, inversion of M required 

 

ʹni
th = nj

thMi, j
j=1

N

∑

ni
th = dxf th (x)

xi

xi+1∫

ʹni
exp = nj

expMi, j
−1

j=1

N

∑
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Fig. 6: Smearing matrix

where q⃗ denotes the dependence on the vector of the QM- and CPT -violating
parameters. Finally, the observed ∆t distribution is fitted with the following
function:

ni = N

⎛

⎝

∑

j

sij ϵj Ij(q⃗)

⎞

⎠ + N regIreg
i + N4πI4π

i , (4)

where ni is the expected number of events in the ith bin of the histogram,
sij is the smearing matrix, and ϵj is the efficiency. N , the number of
KSKL → π+π−π+π− events, is a free parameter in the fit.
The number of events due to incoherent regeneration on the cylindrical beam
pipe, N reg, is fixed in the fit. The time distribution Ireg

i for the contribution
from incoherent regeneration is evaluated from MC. The coherent regener-
ation is taken into account modifying the time evolution as follows :

|KS,L(ti)⟩ = |KS,L(ti)⟩ + ρcoh|KL,S(ti)⟩ (5)

where ρcoh, the coherent regeneration parameter, is also fixed. N reg and ρcoh

are calculated from the measured values for the spherical beam pipe [1] by
taking into account the different thickness, shape and material composition.

The contribution from non-resonant e+e− → π+π−π+π− events is treated
in a similar manner; N4π is fixed to the value determined as in the previous

9

In order to take into account the resolution on ∆t in the fit, a smearing
matrix has been constructed from MC by properly filling a 2D histogram
with the “true” and the reconstructed ∆t values (fig. 6). The efficiency and
the smearing matrix are then used in the fit procedure as explained in the
following section.

6 Fit

We fit the ∆t distribution between 0 and 12τS in intervals of width ∆̄t = τS
to the data histogram. The fitting function is obtained from the following
distribution

I(t1, t2) =
|N |2

2
|⟨π+π−|KS⟩|4|η+−|2{e−ΓLt1−ΓSt2 + e−ΓSt1−ΓLt2

−2e−(ΓS+ΓL)(t1+t2)/2 cos[∆m(t1 − t2)]} (3)

where ti are the proper times of the KS and KL decays, ΓS and ΓL the
widths of KS and KL, ∆m = mL − mS their mass difference and η+− =
⟨π+π−|KL⟩
⟨π+π−|KS⟩

= |η+−|eiφ+− , after having included the explicit dependence

from the decoherence parameter ζ, or the QM and CPT violating parameters
γ and ω, as discussed in Ref. [1].
We then integrate I(t1, t2) over the sum t1 + t2 for fixed ∆t = |t1 − t2|, and
over the bin-width of the data histogram:

Ij(q⃗) =
∫ j∆̄t

(j−1)∆̄t
d(∆t)

∫

∞

∆t
I(t1, t2; q⃗) d(t1 + t2),
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In order to take into account the resolution on ∆t in the fit, a smearing
matrix has been constructed from MC by properly filling a 2D histogram
with the “true” and the reconstructed ∆t values (fig. 6). The efficiency and
the smearing matrix are then used in the fit procedure as explained in the
following section.

6 Fit

We fit the ∆t distribution between 0 and 12τS in intervals of width ∆̄t = τS
to the data histogram. The fitting function is obtained from the following
distribution

I(t1, t2) =
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−2e−(ΓS+ΓL)(t1+t2)/2 cos[∆m(t1 − t2)]} (3)

where ti are the proper times of the KS and KL decays, ΓS and ΓL the
widths of KS and KL, ∆m = mL − mS their mass difference and η+− =
⟨π+π−|KL⟩
⟨π+π−|KS⟩

= |η+−|eiφ+− , after having included the explicit dependence

from the decoherence parameter ζ, or the QM and CPT violating parameters
γ and ω, as discussed in Ref. [1].
We then integrate I(t1, t2) over the sum t1 + t2 for fixed ∆t = |t1 − t2|, and
over the bin-width of the data histogram:
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Fig. 7: ∆t distribution from the fit used to determine ζSL. The black
points with errors are data and the solid histogram is the fit result. The
uncertainty arising from the efficiency correction is shown as the hatched
area.

Section, rather than left free in the fit. The fit is performed by minimizing
the least squares function:

χ2 =
n

∑

i=1

(Ndata
i − ni)

2/
(

ni + (niδϵi/ϵi)
2
)

(6)

where Ndata
i is the number of events observed in the ith bin and δϵi is the

error on the efficiency, including the correction. Using Eq. (4) with the
QM- and CPT -violating parameters fixed to zero, ∆m can be left as free
parameter and evaluated. In this case, the fit gives

∆m = (5.25 ± 0.20) × 109s−1,

with χ2/dof = 8.6/10, which is compatible with the more precise value given
by the PDG [5]:

∆m = (5.290 ± 0.015) × 109s−1.

For the determination of the QM- and CPT -violating parameters, ΓS ,ΓL,
and ∆m are fixed to the PDG [5] values in all subsequent fits.

As an example, the fit of the ∆t distribution used to determine ζSL is
shown in Fig. 7.
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where q⃗ denotes the dependence on the vector of the QM- and CPT -violating
parameters. Finally, the observed ∆t distribution is fitted with the following
function:

ni = N

⎛

⎝

∑

j

sij ϵj Ij(q⃗)

⎞

⎠ + N regIreg
i + N4πI4π

i , (4)

where ni is the expected number of events in the ith bin of the histogram,
sij is the smearing matrix, and ϵj is the efficiency. N , the number of
KSKL → π+π−π+π− events, is a free parameter in the fit.
The number of events due to incoherent regeneration on the cylindrical beam
pipe, N reg, is fixed in the fit. The time distribution Ireg

i for the contribution
from incoherent regeneration is evaluated from MC. The coherent regener-
ation is taken into account modifying the time evolution as follows :

|KS,L(ti)⟩ = |KS,L(ti)⟩ + ρcoh|KL,S(ti)⟩ (5)

where ρcoh, the coherent regeneration parameter, is also fixed. N reg and ρcoh

are calculated from the measured values for the spherical beam pipe [1] by
taking into account the different thickness, shape and material composition.

The contribution from non-resonant e+e− → π+π−π+π− events is treated
in a similar manner; N4π is fixed to the value determined as in the previous

9
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�  A very useful and powerful observable: 

�  It can be “charge asymmetry”, Forward-Backward 
asymmetry”,…  
�  Independent from the absolute normalization 
�  (+) and (-) could have different efficiencies, but most of them 

could cancel: 

�  Statistical error (N=N++N-) : 

Α =
N + − N −

N + + N −

Α =
N +

ε+
− N

−

ε−

N +

ε+
+ N

−

ε−

σ Α( ) = 1
N

1−Α2
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σ Α( ) = 1

N
1−Α2
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From the experimental point of view a branching ratio measurement is very similar
to a cross-section measurement. If a sample of Npart decaying particles is produced and
a number Ni of final states corresponding to the decay chain i are counted

(83) BR(i) =
Ni

Npart

that, following the same notation and the same considerations given above for the cross-
section measurement, can be expressed as:

(84) BR(i) =
Ncand �Nb

✏
⇥ 1

Npart

totally similar to eq.76, the only di↵erence being the normalization: the luminosity
is replaced here by the total number of decaying particles produced. Also, the same
considerations apply for the measurement of di↵erential branching ratios, and a formula
similar to eq.78 holds for the uncertainties.

4.4. Asymmetries. Another quantity used in EPP to study important phenomena in
particular related to symmetry violations, is the asymmetry. In general an asymmetry
is defined as follows:

(85) A =
N+ �N�

N+ +N�

where two alternative event configurations have been defined, and the symbols N+ and
N� represent the number of events in each of these configurations. Examples of asymme-
tries are: left-right asymmetries (with respect to a given plane in the detector), charge
asymmetries (how many particles have either positive or negative charge), up-down,
forward-backward, and so on.

Experimentally the two quantities N+ and N� have to be measured and combined
according to eq.85. However possible di↵erences of the e�ciencies between the two
configurations have to be taken into account. If, for example, positively charged particles
have higher e�ciency with respect to negatively charged particles, the asymmetry has
to be corrected according to:

(86) A =
N+/✏+ �N�/✏�

N+/✏+ +N�/✏�

If ✏+ ⇡ ✏�, eq.85 can be directly used. In this case, the e�ciencies completely cancel in
the ratio. Notice that in all cases, no normalization is required for this quantity.

The statistical uncertainty on the asymmetry can be evaluate using a binomial model
where N = N+ +N�, n = N+, f+ = n/N , so that A = 2f+ � 1. We get:

(87) �2(A) = 4�2(f+) = 4
f+(1� f+)

N

but, since

(88) f+ =
1 +A

2 29

we have also

(89) �(A) = 2

r
(1 +A)/2(1� (1 +A)/2)

N
=

2p
N

r
1 +A

2

1�A
2

=
1p
N

p
1�A2

The uncertainty on the asymmetry goes as the inverse of the square root of the total
number of events. The same result is obtained by assuming independent poissonian
fluctuations for N+ and N�.

4.5. Statistical and systematic uncertainties. When reporting the uncertainty on
the measured quantities, a distinction is made between two kinds of uncertainties, nor-
mally named statistical and systematic. The most common way to separate the
uncertainty in these two parts, is to call statistical uncertainty all what comes from
the counting of the candidates, and systematics all what doesn’t come from candidate
counting. With reference to eq. 78, the last two terms, the uncertainties on e�ciency
and luminosity, are normally included in the systematics term, while the uncertainty on
Ncand is the statistical term. The uncertainty on Nb is also normally included in the
systematic term.

Another way to report the results is to distinguish between uncertainties of type A
and type B. This distinction is supported by metrological institutes but is scarcely
used in EPP. Type A uncertainties are all those uncertainties derived from all forms of
event counting, not only candidate counting, but also control region, Montecarlo event
counting, in other words, all those uncertainties that can be reduced by increasing the
statistics. Type B are all those uncertainties that cannot be reduced by increasing the
statistics.

A good attitude is to explain in detail in the paper all the sources of uncertainty and
the way they are combined.


