Not only event counting

® Once the candidate sample is obtained many quantities can
be measured (particle properties, e.g. particle mass).

® BUT in most cases they are obtained from a FIT to a data
distribution. So, you divide events in bins and extract the
quantity as a fit parameter =» the event counting is still one
major source of uncertainty "® the uncertainty on the
parameter depends on the statistics ~ \/Ni.

* Example:
® Measure the mass of a “imaginary” particle of M=5 GeV.
® Mass spectrum, gaussian peak over a uniform background

® FIT in three different cases: 10°, 10* and 10° events selected
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Mass uncertainty
due to statistics

Observations:

—2 Poissonian uncertainty on each bin

— Reduce bin size for higher statistics
=> Fit function = A+B*Gauss(M)

—> Free parameters: A,B,M (fixed width)
= The fit is good for each statistics

Results

N=10° events:

Mass = 5.22£0.22 GeV, x’ = 28 / 18 dof
N=10" events:

Mass = 5.01320.06 GeV, }° = 38 / 48 dof
N=10" events:

Mass = 5.02£0.02 GeV, x’ = 83 / 98 dof
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Where could be a systematic
uncertainty here ?

e Absolute mass scale: this can be measured using a candle of

known mass. Not always it is available. e. g. 7 for the Higgs
mass at the LHC.

® Mass resolution: in most cases the width of the peak is given
by the experimental resolution that sometimes is not
pertectly gaussian, giving rise to possible distortion to the

Curve.

® Physics effects: knowledge of the line-shape, interference

with the background. .

e |n general: M = central value T stat.uncert. T syst.uncert.
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Uncertainty combination

central value * stat.uncert. = syst.uncert.
Can we combine stat. and syst. 7 If yes how ?

The two uncertainties might have ditferent probability
meaning: typically one is a gaussian 68% C.L., the other is a

“maximum” uncertainty, so in general it is better to hold them
separate.

If needed better to add in quadrature rather than linearly.
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Comments on multivariate methods:

The emphasis 1s often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 50 significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 40 evidence from a cut-based method.
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Summarizing

® Steps of an PP experiment (assuming the accelerator and the
detector are there):

® Design of a trigger
® Definition of an offline selection

* Event counting and normalization (including efficiency
and background evaluation)

e Fit of “candidate” distributions
® [Uncertainties
e Statistical due to Poisson fluctuations of the event counting

e Statistical due to binomial fluctuations in the efficiency
measurement

® Systematic due to non perfect knowledge of detector effects.
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Proposed exercises

. We have designed an event selection chain based on the simulation in such a way
that at the end of the selection 25% of the selected events are signal events and 75%
are background events. How many total candidates do we need to collect in order to
observe the signal with at least 5 st.dev. significance 7

. The expected rate of neutrinos interacting in our detector is 0.23x10~2 evts/day, and
the average efficiency for the detection of such interactions is 43.2%. Evaluate the
probability to detect at least a neutrino in the first 24h, in the first year and in the
first 10 years of operation.

. In the 201142012 LHC dataset (corresponding to about 25 fb~1), a sample of 2.24x10°
tt events has been collected. We know that o(pp — tt+ X) is 177 + 5 pb. How large
was the efficiency for ¢t events assuming no background ?
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Quantities to measure in EPP
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Quantities to measure in EPP

® Physics quantities (to be compared with theory
expectations)
® Cross-section
® Branching ratio
® Asymmetries
® Particle Masses, Widths and Lifetimes
® Quantities related to the experiment (BUT to be
measured to get physics quantities)
e Efficiencies
® Luminosity

° Backgrounds

Methods in Experimental Particle Physics

25/10/18



Cross-section - |

® Suppose we have done an experiment and obtained the following
quantities for a given final state:
® Nonas Np» €, @

® What is @ ? It is the “flux”, something telling us how many
collisions could take place per unit of time and surface.
* Consider a “fixed-target” experiment (transverse size of the target >> beam

dlmenswns) ¢ NpmJN Sx = pmjpéx pmjp(g/cm )N 5x(cm)
Am,, A
® Consider a “Colhdlng beam” experiment
NN,
¢ fcoll =L
4>, 2,

(head—on beams: N, and N, number of partlcles per beam, 2y, 2 beam transverse gaussian
areas, f, , collision frequency) In this case we normally use the word

“Luminosity”. Flux or luminosity are measured in: cm™2s!
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Cross-section - |l

* In any case, the rate of events due to final state X is:
N X = ¢GX
® O, is the cross-section, having the dimension of a surface.
® it doesn’t depend on the experiment but on the process only
® can be compared to the theory

* for a given Oy, the higher is @, the larger the event rate

® given an initial state, for every final state X you have a specitic
Ccross-section

® the “total cross-section” is obtained by adding the cross-
sections for all possible final states: the cross-section is an additive
quantit].

® The unit is the “barn”. 1 barn = 102* cm?.
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Cross-section - Il

* Suppose we have taken data for a time At: the total number of events collected

will be:
N, =0, x f ¢dt
At
The flux integral over time is the Integrated Flux or (in case of colliding

beams) Integrated Luminosity. Integrated luminosity is measured in: b™!

e How can we measure this cross-section ?

g o Nx 1 Ny
o fgdr [edr e

e Sources of uncertainty: we apply the uncertainty propagation formula. We

_Nb

assume no correlations btw the quantities in the formula (L;,, = integral of

flux)

o(oy) 2 ) o(L. ) 2+(()'(£‘)) o’(N_ )+0°(N,)
€ ( cand ~ b)

GX Lint
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Branching ratio measurement

® Given an unstable particle a, it can decay in several (say N) final
states, k=1,...,N. If I'is the total width of the particle (I'=1/7

with T particle lifetime), for each final state we define a “partial
width” in such a way that

N
r=>T,
k=1

® The branching ratio of the particle a to the final state X is
_ Iy
I

® To measure the B.R. the same analysis as for a cross-section is
needed. In this case we need the number of decaying particles N,
(not the flux) to normalize:

BR(a—X)

BR.(an)=Ncand_Nb 1

Methods in Experimental Particle Physics E Na 25/10/18




Branching ratio measurement

® Given an unstable particle a, it can decay in several (say N) final states,
k=1,...,N. If I' is the total width of the particle (I'=1/7 with T particle

lifetime), for each final state we define a “partial width” in such a way
that N
r=yT,
k=1
® The branching ratio of the particle a to the final state X is

FX
I

® To measure the B.R. the same analysis as for a cross-section is needed. In
this case we need the number of decaying particles N, (not the flux) to

normalize: N N, 1

BR.(a— X)=—m—
( ) P

a

BR(a— X)

e Sometimes the normalization is done relative to another process of
known B.R. (relative measurement)
Ncand,X - Nb,X (gY )
Ncand,Y - Nb,Y gX

B.R.(a — X)
Methods in Experimental Particle Ph}'sics 25/10/18
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Differential cross-section - |

e [f we want to consider only final states with a given kinematic
configuration (momenta, angles, energies,...) and give the

cross-section as a function of these variables

© Experimentally we have to divide in bins and count the

number of events per bin.

© Example: differential cross-section vs. scattering angle

(do )_ 1 (N ,-N,| 1
dcosf/, fqbdt E; Acos0,

N, and € as a function of 6 are needed.

e NB: N

cand?
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* Additional problems appear.

° Efficiency is required per bin (can be different for different

kinematic configurations).

® Background is required per bin (as above).

® The migration of events from one bin to another is possible:
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Folding - Unfolding

® In case there is a substancial migration of events among bins
(resolution larger than bin size), this atfects the comparison btw
exp.histo (n,*?) and theory (n;"). This can be solved in two

different ways:
e Folding of the theoretical distribution: the theoretical function
fh ( X) is “smeared” through a smearing matrix M based on our

knowledge of the resolution; n,;* > n’"
N

Ith th

Jj=1

n' = [ dif" (x)

* Unfolding of the experimeﬁtal histogram: n;*? = n’ 2P Very
difficult procedure, mostly unstable, inversion of M required
N
rexp __ exp -1
n.o o= En ;M
j1
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Asymmetry measurement

* A very useful and powertful observable:
N =N~
N+ N~
® It can be “charge asymmetry”, Forward-Backward

A=

asymmetry’, ...
° Independent from the absolute normalization

® (+) and (-) could have different efficiencies, but most of them
N N 4 _ NA
NV

® Statistical error (N=N*+N") :

could cancel:

N
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Asymmetry measurement

The statistical uncertainty on the asymmetry can be evaluate using a binomial model
where N =Nt +N~", n=N7", ff =n/N, so that A =2f" —1. We get:

(87) o2 (A) = 4o?(f+) = 4@
but, since
(85) prolaA

we have also

(89) U(A):2\/(1+A)/2(1J\;(1+A)/2):\/2N\/1—;A1_2A:\/%m

The uncertainty on the asymmetry goes as the inverse of the square root of the total

number of events. The same result is obtained by assuming independent poissonian
fluctuations for N* and N .

1
| | | | o(A)=—=+VI-A"
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