Other Proposed exercises

We perform a cross-section measurement and obtain the following values: N gnqg
=128, N = 14 + 2, ¢ = 0.523 + 0.002, L;; = 2.43 pb~! + 1.8 %: calculate the
resulting cross-section with its uncertainty. In case this is a measurement of ete™ —
7tr~ at /s = 1 GeV, determine the value of the pion time-like form factor with its
uncertainty. The formula relating the cross-section to the form factor Fy(s) is the
following;:

2
o(s) = 5B Fa(s)]

Consider the reaction ete™ — KTK~ at a ®-factory. Which fraction of events have
at least one kaon decaying within a sphere of R = 20 cm ? In which fraction of events
both kaons decay within the same sphere ?

The SM expected semi-leptonic Kg charge asymmetry is 3x1073. At Dafne we expect
to produce a sample of 1.2x10° tagged Kgs. If the BR(Ks — mev)=BR(Kgs —

7te U)+BR(Kg — 7 eTv)=6.95x10~* which error can we reach on the asymmetry
?

Which average instantaneous luminosity is required to improve by a factor 3 such an
uncertainty in one year of data takine (assuming a duty cicle of 50% and a tagging
efficiency of 30%) 7 [o(eTe™ — ¢)= 3 ub at the ¢ peak].
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Particle properties

® Once a particle has been identified (either directly or
through its decay products), it is interesting to measure its
properties:
® Mass M
* Total Decay Width I
e LifeTime T
® Couplings g

® If the particle is identified through its decay, all these
parameters can be obtained through a dedicated analysis of

the kinematics of its decay products.
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Invariant Mass - |

® Suppose that a particle X decays to a number of particles (N), and
assume we can measure the quadri—momenta of all them. We can
evaluate the Invariant Mass of X for all the candidate events of our

final sample:

® [tisa relativistically invariant quantity. In case of N =2
M, =m +m; +2(E1E2 -D 132)

® [f N=2 and the masses are O or very small compared to p
M;, =2EE,(1-cosb)=E,E,sin’ %

® Where Ois the opening angle between the two daughter particles.
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Invariant Mass - Il

® Given the sample of candidates, we do the invariant mass
distribution and we typically get a plot like that:
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- A peak (the signature of the .
. % 225 LHCb
partlcle) % 20~ Preliminary m, = (3092.7+2.4) MeV/c?
- A background (almost flat = @ SUIE24) Mo
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(1) Mass of particle; A

(2)  Width of the particle (BUT not in this case...);
(3) Number of particles produced (related to O'or BR)
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Invariant Mass - Il

® Given the sample of candidates, we do the invariant mass
distribution and we typically get a plot like that:
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(1) Mass of particle; M. MeV/c?]

(2)  Width of the particle (BUT not in this case...);
(3) Number of particles produced (related to O'or BR)
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Invariant Mass - Il

® Given the sample of candidates, we do the invariant mass
distribution and we typically get a plot like that:
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get from this plot (by fitting it) ?
(1) Mass of particle;

(2)  Width of the particle (BUT not in this case...);

(3) Number of particles produced (related to O'or BR)
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Invariant Mass - Il

® Given the sample of candidates, we do the invariant mass
distribution and we typically get a plot like that:
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Invariant Mass - Il

® Given the sample of candidates, we do the invariant mass

distribution and we typically geta plot like that:

- A peak (the signature of the B, = J/ ¥ £,(980)
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(1) Mass of particle; I = 00y 2 i

(2)  Width of the particle (BUT not in this case...);
(3) Number of particles produced (related to O'or BR)
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Suppose Poisson variable and n=0 is measured (no background) Upper limit (lower limit =0)

=> 0x0 (freq) or 1X1 (Beyes) ?

By construction the probability to measure x,’<x if the true value W=, (x,) is (1-a) (only one limit)
or the probability to measure x> x,, if the true value U=W,(x,) is o

[} n —l
P>0/ =52 1 e —g
gy frequentist
A =-In(l-a)
_ -1
g(/l/n:()):mp(n_()/l)f()(l) — € =e—/1

Bayesian

(uniform prior)

[p(n=0/2)f,(A)dA ]oe—ﬂd/l
0 0

A _
p(A<A)= J‘e_/ld/’tzl—e_’1 =
0

g(A/n=0)

90% | 95% | 99%
23 3.0 4.6

|

A (68.3%)=1.15
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Parenthesys: 2 kinds of background

® Unreducible background: same final state as the signal, no
way to disentangle. The only way to separate Signal from
unreducible background is to fit the inv.mass spectrum

® Reducible background: a different final state that mimic the
signal (e.g. because you are losing one or more particles, or

because you are confusing the nature of one or more
particles)

* Example:
° Signal: pp%H%ZZ*%‘H
® Unreducible background: pp% 77%2>4]

® Reducible backgrounds: pp—=2Zbb with Z=>21 and two leptons,
one from each b-quark jet; pp% tt with each t2> Wb=21v"1"j
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f,(500) mass 400-550 MeV width 400-700 MeV
P(770) mass 775.26 MeV width 149.1 MeV
w(782) mass 782.65 MeV width 8.49 MeV
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Fig. 3. Result of the KL fit (a)—(b)—(c) and of the NS fit (d)—(e)—(f). (a)—(d) Data spectrum compared with the fitting function (upper curve following the data points)
and with the estimated non-scalar part of the function (lower curve); (b)—(e) fit residuals as a function of m; (c)—(f) the fitting function is compared to the spectrum
obtained subtracting to the measured data the non-scalar part of the function in the fy region.
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Mass and Width measurement

* Fitofthe M, spectrum with a Breit-Wigner + a continuos background:

BUT careful with mass resolution. It can be neglected only if
G<Minv)<<r
o IfoM,,) =TI or o(M,, )>I there are two approaches (as we already
know):
° Folding: correct the theoretical distribution to be used in the fit:

04 (E)= [ G, (E-E,)0y, (E,)dE,

* Unfolding: correct the experimental data and fit with the theoretical
function.
® Use a gaussian (or a “Crystal Ball” function) neglecting completely the width.

® In many cases only the mass is accessible: the uncertainty on the mass is
the one given by the fit (taking into account the statistics) + possible

scale systematics.
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Gaussian vs. Crystal Ball

® Gaussian: 3-parameters, 4, U, O. Integral —Ao\27

2
m —_—
F(m i A o) = Aexp(-" 20‘2‘) )
® Crystal-Ball: 5-parameters, m, O, &, n, N

—(m—'r?z,)2 -
fes(m,m,0,a,n) =N -{ ¢ 207 . per "™ > —q
A - (B — m;m)_n per m;m < —a

a2
A= ()" 7, B=1g—laf
Essentially takes into account energy losses, useful in many cases.

Crystal—Ball function and its first derivative are both continuos.

After Crystal-Ball collaboration, Crystal Ball hermetic Nal detector at SPEAR Stanford
1979 (then DESY, AGS-BNL, A2-Mainz Microtron...)
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Crystal Ball function
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Examples of the Crystal Ball function.

Crystal Ball Function

T=0,0 =1,N = 1Reg: o= 10, Green: a.= 1, Blue: a=0.1.
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Template fits: not functions but

histograms

In this case the fit is not done
with a function with parameters
BUT it is a “template” fit:

= aHIST1(my,,...) + bHIST2

a, b and my; are free parameters

Events / 2.5 GeV

The method requires the knowledge
(from MC) of the expected
distributions. Such a knowledge
Improves our uncertainties.

NB: HIST1 and HIST?2 take into
account experimental resolution:

so it is directly the folding method

@ Methods in Experimental Particle Physics

An example: Higgs mass in the

4] channel.
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Effect of the mass resolution on the
significativity of a signal

® [ et’s consider now the case in which we look for a process and

we expect a peak in a distribution at a definite mass: when may

we say that we have observed that process ?

® Method of assessment: simple fit S+B (e.g. template fit).
STO(S) away from O at least 3 (5) standard deviations.

° Ingredients:

® Mass resolution;
neglecting O(B)
® Background

o’(S)=0°(N)+0°(B)=N+0°(B)
~N=S+B=S+60,0b

e Effect of mass resolution negligible on the uncertainty on S if:

S

S>>6bo,, = O0,,<<—
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Background b= 50 /MeV  in an interval of 60 MeV (+/- 3*10 MeV) B=b*60 MeV = 3000 (broad)
in an interval of 12 MeV (+/- 3*%2 MeV) B=b*12 MeV = 600  (narrow)

Signal =200

Significance = 3.5 (broad) and 7.1 (narrow)

S/6b = 0.67 MeV => in both cases O, <<S/6b not satistied => resolution effect important

and observation of the signal can be improved reducing the resolution

narrow peak broad peak
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FIGURE 8. Simulation of S = 200 .J/¢ events superimposed to a flat
background of 10000 distributed on a range of 200 MeV (b=50 MeV—1).
ov = 2 MeV (left) and oy = 10 MeV (right). The limits of £3o/
intervals around the expected position of the peak are shown. Outside
these limits are the sidebands.
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H->vyy ATLAS: is the resolution

negligible ?

$
Numbers directly from %
the plot: §
S~1000 “

b=5000/2 GeV

= 2500/ GeV

0,~10 GeV/6
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g
=>S/6b n
=0.07 GeV << 0y §
o
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