#### Lifetime measurement - I

→ In the first decades of EPP, bubble-chambers and emulsions allowed to see directly the decay length of a particle either neutral or charged (see Kaons); → The decay length *I* is related to the lifetime through the  $I = \beta \gamma \tau c \rightarrow \tau = 1 / \beta \gamma c$ → For a sample of particles produced we expect an exponential distribution

**K0** 

Entries 1272709 20000  $\chi^2/ndf$ 48.73 / 56 45.02 .1785E+05 **P**1 **P**2 51.59 .4236 17500 15000 12500 10000 7500 5000 2500 Metł 10 15 20 25 30 35 5  $\tau_{KL}$  (ns)



06/11/18

# Lifetime measurement - II

• Example: pions, kaons, c and b-hadrons in the LHC context (momentum range 10 ÷ 100 GeV).

|                                  | π+                   | K <sup>+</sup>       | $\mathbf{D}^+$        | <b>B</b> <sup>+</sup> |
|----------------------------------|----------------------|----------------------|-----------------------|-----------------------|
| Mass (GeV)                       | 0.140                | 0.494                | 1.869                 | 5.279                 |
| Life Time (s)                    | $2.6 \times 10^{-8}$ | $1.2 \times 10^{-8}$ | $1.0 \times 10^{-12}$ | $1.6 \times 10^{-12}$ |
| Decay length (m)<br>p = 10 GeV   | 557                  | 72.8                 | $1.6 \times 10^{-3}$  | $9.1 \times 10^{-4}$  |
| Decay length (m)<br>p = 100  GeV | 5570                 | 728                  | 0.016                 | 0.0091                |

NBWhen going to c or b quarks, decay lengths O(<mm) are obtained</li>
→ Necessity of dedicated "vertex detectors"

#### Lifetime measurement - III



### PEP-II e<sup>+</sup>e<sup>-</sup> Collider



3.1 GeV positrons x 9 GeV electrons

#### **B-factories**

Β

#### BABAR @ PEP-II collected L=557 fb<sup>-1</sup>

BELLE @ KEKB collected L=1040 fb<sup>-1</sup>



#### **Correlated B meson pairs**





N.B. : production vertex position  $Z_0$  not very well known : only  $\Delta Z$  is available !

# Efficiency measurement - I

- Suppose you want to measure the detection efficiency of a final state X: X contains N particles e.g.  $Z \rightarrow \mu\mu$  contains 2 particles and whatever else. How much is the probability to select an event containing a  $Z \rightarrow \mu\mu$ ?
- Let's suppose that:
  - Trigger is: at least 1 muon with  $p_T{>}10$  GeV and  $|\eta|{<}2.5$
  - Offline selection is: 2 and only 2 muons with opposite charge and  $M_Z$ -2 $\Gamma < M_{inv} < M_Z+2\Gamma$
- Approach for efficiency
  - Full event method: apply trigger and selection to simulated events and calculate  $N_{sel}/N_{gen}$  (validation is required)
  - Single particle method: (see next slides)

## Efficiency measurement - II

- Measure single muon efficiencies as a function of kinematics  $(p_T, \eta, ...)$ ; eventually perform the same "measurement" using simulated data.
  - Tag & Probe method: muon detection efficiency measured using an independent detector and using "correlated" events.
  - Trigger efficiency using "pre-scaled" samples collected with a trigger having a lower threshold.

$$\varepsilon_{trigger} = \frac{\# \mu - triggered}{\# \mu - total}$$

$$T&P: a "Tag Muon" in the MS and a "Probe" in the ID Tag+Probe Inv. Mass consistent With a Z boson  $\Rightarrow$  There should be a track in the MS
$$\varepsilon_{TP} = \frac{\# \mu - reco}{\# \mu - \exp ected}$$

$$Tag Muon$$$$

Methods in Experimental Particle Physics

06/11/18

### Efficiency measurement - III

- Muon Efficiency ATLAS experiment.
- As a function of  $\eta$  and  $p_T$  comparison with simulation  $\clubsuit$  Scale Factors



Methods in Experimental Particle Physics

9

06/11/18

# Efficiency measurement - IV

- After that I have:  $\boldsymbol{\epsilon}_{T}(\boldsymbol{p}_{T},\boldsymbol{\eta},\ldots)$  and  $\boldsymbol{\epsilon}_{S}(\boldsymbol{p}_{T},\boldsymbol{\eta},\ldots)$
- From MC I get the expected kinematic distributions of the final state muons and I apply for each muon its efficiency depending on its  $p_T$  and  $\eta$ . The number of surviving events gives the efficiency for X
- Or I simply apply the scale factors to the MC fully simulated events to take into account data-MC differences.

Exercise:

Determine the tracking efficiency for charged pions as a function of momentum in the KLOE detector exploiting the decay:

 $\phi \to \pi^{+}\pi^{-}\pi^{0}$ 



# Background measurement - I

- Based on simulations:
  - define all possible background processes (with known cross-sections);
  - apply trigger and selection to each simulated sample;
  - determine the amount of background in the "signal region" after weighting with known cross-sections.
- Data-driven methods:
  - "control regions" based on a different selection (e.g. sidebands);
  - fit control region distributions with simulated distributions and get weigths;
  - then export to "signal region" using "transfer-factors".
- Example: reducible background of H4l ATLAS analysis (next slides)

## Background measurement - II

Table 3: Expected contribution of the  $\ell\ell + \mu\mu$  background sources in each of the control regions.

|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Background                                                             | Inverted $d_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inverted isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $$ $e\mu + \mu\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Same-sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $Zbar{b}$                                                              | $32.8\pm0.5\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $26.5\pm1.2\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.3\pm1.2\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $30.6\pm0.7\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Z + light-flavor jets                                                  | $9.2 \pm 1.3\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $39.3\pm2.6\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.0\pm0.8\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $16.9\pm1.6\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $t\overline{t}$                                                        | $58.0\pm0.9\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $34.2\pm1.6\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $99.7 \pm 1.0\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $52.5\pm1.1\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 120 \\ 0 \\ 0 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | $\begin{array}{c} \textbf{av} \\ \textbf{av} \\$ | $\begin{array}{c} 80\\ \text{FeV} \int \text{Ldt} = 4.5 \text{ fb}^{-1} \\ \text{reV} \int \text{Ldt} = 20.3 \text{ fb}^{-1} \\ \text{egion} \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ | $ \frac{1}{\sqrt{s}} = 7 \text{ TeV } \int \text{Ldt} = 4.5 \text{ fb}^{-1} \\ \frac{1}{\sqrt{s}} = 8 \text{ TeV } \int \text{Ldt} = 20.3 \text{ fb}^{-1} \\ \text{region} + \text{Data} \\ - \text{Total background} \\ \frac{1}{\sqrt{t}} \\ - $ | $\begin{array}{c} 120 \\ \textbf{ATLAS} \\ \sqrt{s} = 7 \text{ TeV } \int \text{Ldt} = 4.5 \text{ fb}^{-1} \\ \sqrt{s} = 8 \text{ TeV } \int \text{Ldt} = 20.3 \text{ fb} \\ 1/4 \mu\mu \text{ Same sign control region} \\ \textbf{40} \\ \textbf{ Total background} \\ \textbf{ Total background} \\ \textbf{40} \\ \textbf{ Z+light-flavor jets} \\ \textbf{ Z+light-flavor jets} \\ \textbf{20} \\ \textbf{0} \\ \textbf{50} \\ \textbf{60} \\ \textbf{70} \\ \textbf{80} \\ \textbf{90} \\ \textbf{100} \\ \textbf{m}_{12} \\ \textbf{[Ge]} \end{array}$ |
| Reducible background y                                                 | vields for $4\mu$ and $2e2\mu$ in respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eference control region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Control region Zbb                                                     | Z + light-flavor jets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total $Z$ + jets $t\bar{t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Combined fit $159 \pm 2$                                               | $\begin{array}{ccc} 20 & 49 \pm 10 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ Extrapo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | late to "signal region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Inverted impact parameter<br>Inverted isolation                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{ccc} 206\pm18 & & 208\pm23 \\ 210\pm21 & & 201\pm24 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | using tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ansfer factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $e\mu + \mu\mu$<br>Same-sign dilepton                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cc} - & 201 \pm 12 \\ 198 \pm 20 & 196 \pm 22 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | → (see n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | next slide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

13

#### A. $\ell\ell + \mu\mu$ background

The  $\ell \ell + \mu \mu$  reducible background arises from Z + jetsand  $t\bar{t}$  processes, where the Z + jets contribution has a  $Zb\bar{b}$ heavy-flavor quark component in which the heavy-flavor quarks decay semileptonically, and a component arising from Z + light-flavor jets with subsequent  $\pi/K$  in-flight decays. The number of background events from Z + jetsand  $t\bar{t}$  production is estimated from an unbinned maximum likelihood fit, performed simultaneously to four orthogonal control regions, each of them providing information on one or more of the background components. The fit results are expressed in terms of yields in a reference control region, defined by applying the analysis event selection except for the isolation and impact parameter requirements to the subleading dilepton pair. The reference control region is also used for the validation of the estimates. Finally, the background estimates in the reference control region are extrapolated to the signal region.

The control regions used in the maximum likelihood fit are designed to minimize contamination from the Higgs boson signal and the  $ZZ^*$  background. The four control regions are

- (a) Inverted requirement on impact parameter significance. Candidates are selected following the analysis event selection, but (1) without applying the isolation requirement to the muons of the subleading dilepton and (2) requiring that at least one of the two muons fails the impact parameter significance requirement. As a result, this control region is enriched in  $Zb\bar{b}$  and  $t\bar{t}$  events.
- (b) *Inverted requirement on isolation.* Candidates are selected following the analysis event selection, but requiring that at least one of the muons of the subleading dilepton fails the isolation requirement. As a result, this control region is enriched in Z + light-flavor-jet events ( $\pi/K$  in-flight decays) and  $t\bar{t}$  events.
- (c)  $e\mu$  leading dilepton  $(e\mu + \mu\mu)$ . Candidates are selected following the analysis event selection, but requiring the leading dilepton to be an electron-muon pair. Moreover, the isolation and impact parameter

14

requirements are not applied to the muons of the subleading dilepton, which are also allowed to have the same or opposite charge sign. Events containing a *Z*-boson candidate decaying into  $e^+e^-$  or  $\mu^+\mu^-$  pairs are removed with a requirement on the mass. This control region is dominated by  $t\bar{t}$  events.

(d) Same-sign subleading dilepton. The analysis event selection is applied, but for the subleading dilepton neither isolation nor impact parameter significance requirements are applied and the leptons are required to have the same charge sign (SS). This same-sign control region is not dominated by a specific background; all the reducible backgrounds have a significant contribution.

#### PHYSICAL REVIEW D 91, 012006 (2015)

Measurements of Higgs boson production and couplings in the four-lepton channel in *pp* collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

#### A. Inclusive analysis

Four-lepton events were selected with single-lepton and dilepton triggers. The  $p_{\rm T}$  ( $E_{\rm T}$ ) thresholds for single-muon (single-electron) triggers increased from 18 to 24 GeV (20 to 24 GeV) between the 7 and 8 TeV data, in order to cope with the increasing instantaneous luminosity. The dilepton trigger thresholds for 7 TeV data are set at 10 GeV  $p_{\rm T}$  for muons, 12 GeV  $E_{\rm T}$  for electrons and (6, 10) GeV for (muon, electron) mixed-flavor pairs. For the 8 TeV data, the thresholds were raised to 13 GeV for the dimuon trigger, to 12 GeV for the dielectron trigger and (8, 12) GeV for the (muon, electron) trigger; furthermore, a dimuon trigger with different thresholds on the muon  $p_{\rm T}$ , 8 and 18 GeV, was added. The trigger efficiency for events passing the final selection is above 97% in the  $4\mu$ ,  $2\mu 2e$  and  $2e2\mu$ channels and close to 100% in the 4e channel for both 7 and 8 TeV data.

Higgs boson candidates are formed by selecting two sameflavor, opposite-sign lepton pairs (a lepton quadruplet) in an event. Each lepton is required to have a longitudinal impact parameter less than 10 mm with respect to the primary vertex, and muons are required to have a transverse impact parameter of less than 1 mm to reject cosmic-ray muons. These selections are not applied to standalone muons that have no ID track. Each electron (muon) must satisfy  $E_{\rm T} > 7$  GeV ( $p_{\rm T} > 6$  GeV) and be measured in the pseudorapidity range  $|\eta| < 2.47$  ( $|\eta| < 2.7$ ). The highest- $p_{\rm T}$  lepton in the quadruplet must satisfy  $p_{\rm T} > 20$  GeV, and the second (third) lepton in  $p_{\rm T}$  order must satisfy  $p_{\rm T} > 15$  GeV ( $p_{\rm T} > 10$  GeV). Each event is required to have the triggering lepton(s) matched to one or two of the selected leptons.

Multiple quadruplets within a single event are possible: for four muons or four electrons there are two ways to pair the masses, and for five or more leptons there are multiple ways to choose the leptons. Quadruplet selection is done separately in each subchannel:  $4\mu$ ,  $2e2\mu$ ,  $2\mu 2e$ , 4e, keeping only a single quadruplet per channel. For each channel, the lepton pair with the mass closest to the Z boson mass is referred to as the leading dilepton and its invariant mass,  $m_{12}$ , is required to be between 50 and 106 GeV. The second, subleading, pair of each channel is chosen from the remaining leptons as the pair closest in mass to the Z boson and in the range  $m_{\min} < m_{34} < 115$  GeV, where  $m_{\min}$  is 12 GeV for  $m_{4\ell}$  < 140 GeV, rises linearly to 50 GeV at  $m_{4\ell} = 190 \text{ GeV}$  and then remains at 50 GeV for  $m_{\Delta \ell} > 190$  GeV. Finally, if more than one channel has a quadruplet passing the selection, the channel with the highest expected signal rate is kept, i.e. in the order  $4\mu$ ,

 $2e2\mu$ ,  $2\mu2e$ , 4e. The rate of two quadruplets in one event is below the per mille level.

#### Background measurement - III

Table 5: Estimates for the  $\ell\ell + \mu\mu$  background in the signal region for the full  $m_{4\ell}$  mass range for the  $\sqrt{s} = 7$  TeV and  $\sqrt{s} = 8$  TeV data. The Z + jets and  $t\bar{t}$  background estimates are data-driven and the WZ contribution is from simulation. The decomposition of the Z + jets background in terms of the  $Zb\bar{b}$  and the Z + light-flavor-jets contributions is also provided.

| Background             | $4\mu$                                             | $2e2\mu$                                              |  |  |  |  |  |
|------------------------|----------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| $\sqrt{s}=7~{ m TeV}$  |                                                    |                                                       |  |  |  |  |  |
| Z + jets               | $0.42 \pm 0.21 ({ m stat}) \pm 0.08 ({ m syst})$   | $0.29 \pm 0.14 ({ m stat}) \pm 0.05 ({ m syst})$      |  |  |  |  |  |
| $tar{t}$               | $0.081 \pm 0.016({ m stat}) \pm 0.021({ m syst})$  | $0.056 \pm 0.011(\text{stat}) \pm 0.015(\text{syst})$ |  |  |  |  |  |
| WZ expectation         | $0.08\pm0.05$                                      | $0.19\pm0.10$                                         |  |  |  |  |  |
| Z + jets decomposition |                                                    |                                                       |  |  |  |  |  |
| $Zbar{b}$              | $0.36 \pm 0.19 ({ m stat}) \pm 0.07 ({ m syst})$   | $0.25 \pm 0.13 ({ m stat}) \pm 0.05 ({ m syst})$      |  |  |  |  |  |
| Z + light-flavor jets  | $0.06\pm0.08(\mathrm{stat})\pm0.04(\mathrm{syst})$ | $0.04 \pm 0.06 ({\rm stat}) \pm 0.02 ({\rm syst})$    |  |  |  |  |  |
| $\sqrt{s} = 8$ TeV     |                                                    |                                                       |  |  |  |  |  |
| Z + jets               | $3.11 \pm 0.46 ({ m stat}) \pm 0.43 ({ m syst})$   | $2.58 \pm 0.39 ({ m stat}) \pm 0.43 ({ m syst})$      |  |  |  |  |  |
| $tar{t}$               | $0.51 \pm 0.03 ({ m stat}) \pm 0.09 ({ m syst})$   | $0.48 \pm 0.03 ({ m stat}) \pm 0.08 ({ m syst})$      |  |  |  |  |  |
| WZ expectation         | $0.42\pm0.07$                                      | $0.44\pm0.06$                                         |  |  |  |  |  |
| Z + jets decomposition |                                                    |                                                       |  |  |  |  |  |
| $Zbar{b}$              | $2.30\pm0.26(\mathrm{stat})\pm0.14(\mathrm{syst})$ | $2.01 \pm 0.23 ({ m stat}) \pm 0.13 ({ m syst})$      |  |  |  |  |  |
| Z + light-flavor jets  | $0.81\pm0.38(\mathrm{stat})\pm0.41(\mathrm{syst})$ | $0.57 \pm 0.31 ({ m stat}) \pm 0.41 ({ m syst})$      |  |  |  |  |  |

# The "ABCD" factorization method

• Use two variables (var1 and var2) with these features:

- For the background they are completely independent
- The signal is localized in a region of the two variables
- Divide the plane in 4 boxes: the signal is on D only

For the background, due to the independence we have few relations:

$$B/D = A/C$$

$$B/A = D/C$$

So: If I count the background (in data) events in regions A,B and C I can extrapolate in the signal region D: D = CB/A



# Luminosity measurement - I

In order to get the luminosity we need to know the "cross-section" of a candle process:

$$L = \frac{N}{\sigma}$$

- In e<sup>+</sup>e<sup>-</sup> experiments QED helps, since Bhabha scattering can be theoretically evaluated with high precision (< 1%).</li>
- In pp experiment the situation is more difficult.
  - Two-step procedure: continuous "relative luminosity" measurement through several monitors. Count the number of "inelastic interactions";
  - time-to-time using the "Van der Meer" scan the absolute calibration is obtained by measuring the effective  $\sigma_{inel}$ .



## Luminosity measurement - II

**Van der Meer scan**: Measurement of the rate of inelastic interactions as a function of the bunch horizontal and vertical separations:



→ Determine the transverse bunch dimensions  $\Sigma_x$ ,  $\Sigma_y$  and the inelastic rate at 0 separation. → Using the known values of the number of protons per bunch from LHC monitors, one get the *inelastic cross-section* that provides the absolute normalization.

$$L = n_b f \frac{N_1 N_2}{4\pi \Sigma_x \Sigma_y} = \frac{\dot{N}_{inel}}{\sigma_{inel}}$$
$$\sigma_{inel} = \left(\frac{\dot{N}_{inel}^0}{n_b f}\right) \frac{4\pi \Sigma_x \Sigma_y}{N_1 N_2}$$



Methods in Experimental Particle Physics

06/11/18





06/11/18



21

## Recap

- Let's remind at this point that our aim is to learn how to design an experiment.
- We have seen:
  - Definition of the process we want to study
  - Selection of the events correponding to this process
  - Measurement of the quantities related to the process
  - Other measurements related to the physics objects we are studying.
- Now, in order to really design an experiment we need:
  - To see how projectiles and targets can be set-up
  - To see how to put together different detectors to mesure what we need to measure

