The acceptance-rejection method

- (1) Generate a random number x, uniform in $[x_{\min}, x_{\max}]$, i.e. $x = x_{\min} + r_1(x_{\max} - x_{\min})$, r_1 is uniform in [0,1].
- (2) Generate a 2nd independent random number u uniformly distributed between 0 and f_{max}, i.e. u = r₂f_{max}.
 (2) If u ≤ f(u) there execute u If not reject u and repeat
- (3) If u < f(x), then accept x. If not, reject x and repeat.

Example with acceptance-rejection method

$$f(x) = \frac{3}{8}(1+x^2)$$

(-1 \le x \le 1)

If dot below curve, use *x* value in histogram.

Improving efficiency of the acceptance-rejection method

The fraction of accepted points is equal to the fraction of the box's area under the curve.

For very peaked distributions, this may be very low and thus the algorithm may be slow.

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms to f(x) more closely, where h(x) is a pdf from which we can generate random values and C is a constant.

Generate points uniformly over C h(x).

If point is below f(x), accept x.

Monte Carlo event generators

Simple example: $e^+e^- \rightarrow \mu^+\mu^-$

Generate $\cos\theta$ and ϕ :

$$f(\cos\theta; A_{\mathsf{FB}}) \propto \left(1 + \frac{8}{3}A_{\mathsf{FB}}\cos\theta + \cos^2\theta\right),$$
$$g(\phi) = \frac{1}{2\pi} \quad (0 \le \phi \le 2\pi)$$

Less simple: 'event generators' for a variety of reactions: $e^+e^- \rightarrow \mu^+\mu^-$, hadrons, ... $pp \rightarrow$ hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = 'events', i.e., for each event we get a list of generated particles and their momentum vectors, types, etc.

X~									
Fuent listing (summary)									
Event fisting (summary)									
I particle/jet	KS	KF	orig	P_X	P_9	p_z	E		m
1 !p+!	21	2212	0	0.000	0.000	7000.000	7000.	.000	0,938
2 [p+!	21	2212	Ó	0,000	0,000	-7000,000	7000,	.000	0,938
	==== 21	======= 21	 1	0.863	-0.323	1739.862	1739.	.862	0.000
4 !ubar!	-21	-2	2	-0,621	-0,163	-777,415	777.	415	0.000
5 !9!	21	21	- 3	-2,427	5,486	1487,857	1487.	X ~	
6 !g!	21	21	- 4	-62,910	63,357	-463,274	471.	\sim	
7 !"g!	21	1000021	0	314,363	544.843	498,897	979.	397	pi+
8 !~9!	-21	1000021	<u>0</u>	-379,700	-476,000	525,686	980.	398	gamma
9 !~chi_1-!	-21	-1000024	<u> </u>	130,058	112,247	129,860	263.	399	gamma
10 !sbar!	-21	-3	<u> </u>	259,400	187,468	83,100	330.	400	(p10)
11 !c!	-21	4	- 7	-79,403	242,409	283,026	381.	401	(p10)
12 !"chi_20!	-21	1000023	8	-326,241	-80,971	113,712	385.	402	(p10)
13 !b!	-21	5	8	-51,841	-294,077	389,853	491.	403	gamma
14 !bbar!	-21	-5	8	-0,597	-99,577	21,299	101.	404	gamma
15 !"chi_10!	-21	1000022	9	103,352	81,316	83,457	175.	405	p1-
16 !s!	-21	- 3	9	5,451	38,374	52,302	65.	406	p1+
17 !cbar!	-21	-4		20,839	-7,250	-5,938	- 22.	407	K+
18 !"chi_10!	-21	1000022	12	-136,266	-72,961	53,246	181.	408	P1-
19 !nu_mu!	-21	14	12	-78,263	-24.757	21./19	84.	409	(P10)
20 !nu_mubar!	21	-14	12	-107,801	16,901	38,226	115.	410	(p10)
	===							411	(KbarV)
21 gamma	1	22	4	2,636	1,55/	0,125	2.	412	P1-
22 ("ch1_1-)	11	-1000024		129,643	112,440	129,820	262.	413	NT (-:0)
25 ("ch1_20)	11	1000023	12	-322,330	-80,817	115,191	- 382.	414	(P10) (V co)
24 "ch1_10	1	1000022	15	97,944	77,819	80,917	169.	410	(N_3V) Pa
25 "ch1_10	1	1000022	18	-136,266	-72,961	55,246	181.	410	NT
26 nu_mu	1	14	19	-78,263	-24,757	21,719	445	417	p1-
27 nu_mubar 20 (D-11)	1	-14	20	-107,801	16,901	38,226	115.	418	(pi0)
28 (Delta++)	11	2224	2	0,222	0,012	-27:54,287	27.54.	413	(pit)
8								420	(pi0)
								421	(P10)
			•					422	ni-
			•					423	O SWWS
								425	oamma

PYTHIA Monte Carlo $pp \rightarrow gluino-gluino$

A simulated event

- •
- •

							- D ×
1	211	209	0.006	0,398	-308,296	308,297	0,140
1	22	211	0,407	0,087-	1695,458	1695,458	0,000
1	22	211	0,113	-0,029	-314,822	314,822	0,000
11	111	212	0,021	0,122	-103,709	103,709	0,135
11	111	212	0,084	-0,068	-94,276	94,276	0,135
11	111	212	0,267	-0,052	-144,673	144.674	0,135
1	22	215	-1,581	2,473	3,306	4,421	0.000
1	- 22	215	-1,494	2,143	3,051	4,016	0,000
1	-211	216	0,007	0,738	4.015	4.085	0,140
1	211	216	-0,024	0,293	0,486	0,585	0,140
1	321	218	4,382	-1,412	-1,799	4,968	0,494
1	-211	218	1,183	-0,894	-0,176	1,500	0,140
11	111	218	0,955	-0,459	-0,590	1,221	0,135
11	111	218	2,349	-1,105	-1,181	2,855	0,135
11	-311	219	1,441	-0,247	-0,472	1.615	0,498
1	-211	219	2,232	-0,400	-0,249	2,285	0,140
1	321	220	1,380	-0,652	-0,361	1.644	0.494
11	111	220	1,078	-0,265	0,175	1,132	0,135
11	310	222	1,841	0,111	0,894	2,109	0,498
1	321	223	0,307	0,107	0,252	0,642	0,494
1	-211	223	0,266	0,316	-0,201	0,480	0,140
1	-2112	226	1,335	1.641	2,078	3,111	0,940
11	111	226	0,899	1.046	1,311	1,908	0,135
1	211	227	0,217	1,407	1,356	1,971	0,140
11	111	227	1,207	2,336	2,767	3,820	0,135
1	2112	228	3,475	5,324	5,702	8,592	0,940
1	-211	228	1,856	2,606	2,808	4,259	0,140
1	- 22	229	-0,012	0,247	0,421	0,489	0,000
1	22	229	0.025	0.034	0,009	0.043	0,000
1	211	230	2,718	5,229	6,403	8,703	0,140
11	111	230	4,109	6.747	7,597	10,961	0,135
1	-211	231	0.551	1,233	1,945	2,372	0,140
11	111	231	0,645	1,141	0,922	1,608	0,135
1	- 22	232	-0,383	1,169	1,208	1,724	0,000
1	22	232	-0,201	0,070	0,060	0,221	0.000

Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.

Simulates detector response:

multiple Coulomb scattering (generate scattering angle), particle decays (generate lifetime), ionization energy loss (generate Δ), electromagnetic, hadronic showers, production of signals, electronics response, ...

Output = simulated raw data \rightarrow input to reconstruction software: track finding, fitting, etc.

Predict what you should see at 'detector level' given a certain hypothesis for 'generator level'. Compare with the real data. Estimate 'efficiencies' = #events found / # events generated. Programming package: GEANT

Monte Carlo integration method

• x uniform random variable in [a,b]:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(x_i) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

• Hit or miss method, x,y u.r.v., x in [a.b], y in [0,c]:

$$\int_{a}^{b} f(x) dx = \frac{N_{hit}}{N_{TOT}} c(b-a)$$

Differential pair production cross section from circularly polarized photons

$$d^5 \sigma = (a + b \vec{\mathbf{P}}_{\gamma} \cdot \vec{\mathbf{n}}) dE_+ d\Omega_+ d\Omega_ \vec{\mathbf{P}}_{\gamma} = \pm P_{\gamma} \hat{\mathbf{k}}$$

$$d\sigma = \left| \sum_{\vec{\mathbf{L}}} e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{L}}} \right|^2 d\sigma(\vec{\mathbf{q}})$$
$$\left| \sum_{\vec{\mathbf{L}}} e^{i\vec{\mathbf{q}}\cdot\vec{\mathbf{L}}} \right|^2 \propto \sum_{\vec{\mathbf{g}}} \delta(\vec{\mathbf{q}} - \vec{\mathbf{g}})$$
$$\vec{\mathbf{q}} = \vec{\mathbf{g}}$$

$$d^{5}\sigma(\vec{\mathbf{q}}) = \frac{d^{5}\sigma}{dE_{+}d\Omega_{+}d\Omega_{-}} |J|dqd\Omega_{+}dE_{-}d\phi_{-}$$

$$d\sigma_c^5 = \left|\sum_{ec{\mathbf{L}}} \exp(iec{\mathbf{q}}\cdotec{\mathbf{L}})
ight|^2 \exp(-A_T q^2) d\sigma^5(ec{\mathbf{q}})$$

$$\left|\sum_{diam} \exp(i\vec{\mathbf{q}}\cdot\vec{\mathbf{L}})\right|^2 = \frac{1}{8}N\frac{(2\pi)^3}{\Delta}\sum_{\vec{\mathbf{g}}}D(\vec{\mathbf{g}})\delta(\vec{\mathbf{q}}-\vec{\mathbf{g}})$$

$$A_{exp} = \frac{N_{e^+} - N_{e^+}^{inf}}{N_{e^+}^{sup} + N_{e^+}^{inf}} = -\frac{N_{e^-}^{sup} - N_{e^-}^{inf}}{N_{e^-}^{sup} + N_{e^-}^{inf}}$$

Recap

- Let's remind at this point that our aim is to learn how to design an experiment.
- We have seen:
 - Definition of the process we want to study
 - Selection of the events correponding to this process
 - Measurement of the quantities related to the process
 - Other measurements related to the physics objects we are studying.
- Now, in order to really design an experiment we need:
 - To see how projectiles and targets can be set-up
 - To see how to put together different detectors to mesure what we need to measure

How to design an EPP experiment

How to design an EPP experiment

- Define which process I want to study:
 - \rightarrow initial state (particles, energy, required intensities,...)
 - → final state(s) (which particles to detect, which energies, which are the main possible backgrounds etc.): exclusive vs. inclusive.
 - \rightarrow \rightarrow Overall Montecarlo simulation of the process, to understand the main parameters in the game (kinematics, rates, number of particles, backgrounds)
- Overall design parameters:
 - Center of mass energy \sqrt{s}
 - Luminosity L / flux ϕ to obtain the requires statistical accuracy. For this I need to know (or at least to estimate) the cross-section of the process.
 - Detector general structure: depends on what we want to measure:
 - charged particles momenta \rightarrow magnetic field
 - neutral particles detection and particles energy \rightarrow calorimetry
 - special particles: neutrinos, muons, neutrons,...

Collider experiments

The main parameters of the colliders LHC: ATLAS+CMS parameters

Particle Accelerator Physics

- A new discipline, separation of the communities;
- Many byproducts:
 - Beams for medicine
 - Beams for archeology and determination of age
- Two main quantities define an accelerator: the **center of mass energy** and the **beam intensity** (normally called luminosity)
- Few general aspects to be considered (we consider colliders here):
 - The **center of mass energy** is a "design" quantity: it depends on the machine dimensions, magnets and optics.
 - The **luminosity** is a quantity that has to be reached: it depends on several parameters. In many cases it doesn't reach the "design" value. It is the key quantity for the INTENSITY frontier projects.

60 years of experiments at accelerators have discovered the set of fundamental particles

Particle physics looks at matter in its smallest dimensions and accelerators are very fine microscope or, better, *atto-scope!* $\lambda = h/p$: @LHC: T = 1 TeV $\Rightarrow \lambda \cong 10^{-18}$ m = 1 am (actually 30 zm)

...back to Big Bang

Trip back toward the Big Bang: t_{µs}≅1/E²_{Gev}
T ≅ 100 fs after Big Bang for single particle creation (3 TeV)
T ≅ 1 µs for collective phenomena QGS (Quark-Gluon Soup)

But we are left with the task of explaining how the rich complexity that developed in the ensuing 13.7 billion years came about... Which is a much more complex task!

HILUM

Accelerators: the two frontiers

2 routes to new knowledge about the fundamental structure of the matter

<u>High Energy Frontier</u>

New phenomena (new particles) created when the "usable" energy > mc² [×2]

High Precision Frontier

Known phenomena studied with high precision *may* show inconsistencies with theory

L. Rossi @ FI 21-06-2018 Calvetti-lacopini

Livingston plot

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

From Luca.Bottura-CERN

CERN

Colliders: "Livingston" plots

Colliders: general aspects - I

• Storage rings:

beams are accumulated in circular orbits and are put in collisions.

- "bunches" of particles (typically $N \approx 10^{10} \cdot 10^{12}$ / bunch) in small transverse dimensions (σ_X , σ_Y down to < mm level) and higher longitudinal dimensions (σ_Z at cm level) like *needles* or *ribbons*.
- the bunches travel along a \approx circular trajectory (curvilinear coordinate *s*)
 - magnetic fields to bend them (dipoles) and to focalize them (quadrupoles or higher order)
 - electric fields to increase their energies (RadioFrequency cavities)
- Multi-bunch operation n_b (increase of luminosity BUT reduction of inter-bunch time)
- One or more interaction regions (with experiments or not..)
- History:
 - e⁺e⁻: Ada, Adone, Spear,... Lep, flavour-factories
 - pp: ISR, LHC
 - ppbar: SpS, Tevatron
 - ep: HERA
 - muon colliders are considered today (never built)
- Linear colliders:

ambituous projects aiming to reach higher electron energies without the large energy loss due to synchrotron radiation.

Colliders: general aspects - II

Colliders: general aspects - III

- Two different operation modes:
 - Single injection (LHC)
 - "top-up" injection, continuos mode.
- Important quantities for the experiment operation are:
 - Integrated luminosity
 - Machine background

LifeTime: 50% reduction in 10 minutes

Colliders: general aspects - IV

"Typical" LHC operation mode: single- injection

LifeTime: 25% reduction in 9 h

Collider	parameters -	
----------	--------------	--

		CESR (Cornell)	CESR-C (Cornell)	LEP (CERN)	ILC (TBD)	CLIC (TBD)
Physics start date		1979	2002	1989	TBD	TBD
	Physics end date	2002	2008	2000	—	—
Main	Maximum beam energy (GeV)	6	6	100 - 104.6	250 (upgradeable to 500)	1500 (first phase: 250)
parameters	Delivered integrated lumi- nosity per exp. (fb ⁻¹)	41.5	2.0	$\begin{array}{c} 0.221 \ {\rm at} \ {\rm Z} \ {\rm peak} \\ 0.501 \ {\rm at} \ 65 - 100 \ {\rm GeV} \\ 0.275 \ {\rm at} \ {>}100 \ {\rm GeV} \end{array}$	_	_
	Luminosity $(10^{30} \text{ cm}^{-2} \text{s}^{-1})$	1280 at 5.3 GeV	76 at 2.08 GeV	24 at Z peak 100 at $> 90 \text{ GeV}$	1.5×10^4	6×10^4
Impact on	Time between collisions (μ s)	0.014 to 0.22	0.014 to 0.22	22	0.55^{+}	0.0005 [‡]
impact on	Full crossing angle (μ rad)	± 2000	± 3300	0	14000	20000
detector	Energy spread (units 10^{-3})	0.6 at 5.3 GeV	0.82 at 2.08 GeV	0.7→1.5	1	3.4
operation	Bunch length (cm)	1.8	1.2	1.0	0.03	0.0044
-	Beam radius (μ m)	$\begin{array}{c} H\colon 460\\ V\colon 4 \end{array}$	$H: 340 \ V: 6.5$	$\begin{array}{c} H\colon 200 \to 300 \\ V\colon 2.5 \to 8 \end{array}$	$H: 0.474 \ V: 0.0059$	H: 0.045 * V: 0.0009
	Free space at interaction point (m)	$\pm 2.2 \ (\pm 0.6$ to REC quads)	$\pm 2.2 \ (\pm 0.3)$ to PM quads	± 3.5	± 3.5	± 3.5
	Luminosity lifetime (hr)	2–3	2–3	$\begin{array}{l} 20 \ \mathrm{at} \ \mathrm{Z} \ \mathrm{peak} \\ 10 \ \mathrm{at} > 90 \ \mathrm{GeV} \end{array}$	n/a	n/a
	Turn-around time (min)	5 (topping up)	1.5 (topping up)	50	n/a	n/a
	Injection energy (GeV)	1.8-6	1.5 - 6	22	n/a	n/a
Techincal	Transverse emittance $(10^{-9}\pi \text{ rad-m})$	$\begin{array}{c} H\colon 210\\ V\colon 1 \end{array}$	H: 120 V: 3.5	$\begin{array}{c} H\colon 2045\\ V\colon 0.25 \rightarrow 1 \end{array}$	$H: 0.02 V: 7 \times 10^{-5}$	$\begin{array}{l} H: \ 2.2 \times 10^{-4} \\ V: \ 6.8 \times 10^{-6} \end{array}$
parameters	β^* , amplitude function at interaction point (m)	H: 1.0 V: 0.018	$H: 0.94 \ V: 0.012$	$H: 1.5 \ V: 0.05$	$H: 0.01 V: 5 \times 10^{-4}$	$H: 0.0069 V: 6.8 \times 10^{-5}$

27

Collider parameters - II

		KEKB (KEK)	PEP-II (SLAC)	SuperKEKB (KEK)	
Physics start date		1999	1999	2015	
	Physics end date	2010	2008	_	
Main	Maximum beam energy (GeV)	e^{-} : 8.33 (8.0 nominal) e^{+} : 3.64 (3.5 nominal)	$e^{-}: 7-12$ (9.0 nominal) $e^{+}: 2.5-4$ (3.1 nominal)	e^- : 7 e^+ : 4	
parameters	Delivered integrated luminosity per exp. (fb^{-1})	1040	557		
	Luminosity $(10^{30} \text{ cm}^{-2} \text{s}^{-1})$	21083	12069 (design: 3000)	$8 imes 10^5$	
Impact on	Time between collisions (μs)	0.00590 or 0.00786	0.0042	0.004	
impact on	Full crossing angle (μ rad)	$\pm 11000^{\dagger}$	0	± 41500	
detector	Energy spread (units 10^{-3})	0.7	$e^{-}/e^{+}: 0.61/0.77$	$e^-/e^+: 0.64/0.81$	
operation	Bunch length (cm)	0.65	e^-/e^+ : 1.1/1.0	$e^-/e^+: 0.5/0.6$	
operation	Beam radius (μ m)	H: 124 (e^-) , 117 (e^+) V: 1.9	H: 157 V: 4.7	e^{-} : 11 (H), 0.062 (V) e^{+} : 10 (H), 0.048 (V)	
	Free space at interaction point (m)	+0.75/-0.58 (+300/-500) mrad cone	$\pm 0.2,$ $\pm 300 \text{ mrad cone}$	$e^-:+1.20/-1.28, e^+:+0.78/-0.73 \ (+300/-500) \ { m mrad} \ { m cone}$	
	Luminosity lifetime (hr)	continuous	continuous	continuous	
	Turn-around time (min)	continuous	continuous	continuous	
	Injection energy (GeV)	$e^{-}/e^{+}: 8.0/3.5 \text{ (nominal)}$	$e^{-}/e^{+}: 9.0/3.1 \text{ (nominal)}$	$e^{-}/e^{+}:7/4$	
Techincal		e^{-} : 24 (57*) (H), 0.61 (V) e^{+} : 18 (55*) (H), 0.56 (V)	$e^{-}: 48 (H), 1.8 (V)$ $e^{+}: 24 (H), 1.8 (V)$	$e^{-}: 4.6 (H), 0.013 (V)$ $e^{+}: 3.2 (H), 0.0086 (V)$	
parameters	β^* , amplitude function at interaction point (m)	e^{-} : 1.2 (0.27*) (H), 0.0059 (V) e^{+} : 1.2 (0.23*) (H), 0.0059 (V)	$e^{-:}$ 0.50 (H), 0.012 (V) $e^{+:}$ 0.50 (H), 0.012 (V)	$e^{-}: 0.025 (H), 3 \times 10^{-4} (V)$ $e^{+}: 0.032 (H), 2.7 \times 10^{-4} (V)$	
		-			

		HERA TEVATRON* (DESY) (Fermilab)		RHIC (Brookhaven)	LHC (CERN)		
	Physics start date	1992	1987	2001	2009	2012 (expected)	nominal
	Physics end date	2007	2011	—			
	Particles collided	ep	$p\overline{p}$	pp (polarized)		pp	
Main	Maximum beam energy (TeV)	e: 0.030 p: 0.92	0.980	0.25 $48%$ polarization	3.5	4.0	7.0
parameters	Delivered integrated lumi- nosity per exp. (fb^{-1})	0.8	12	up to 0.14 at 100 GeV/n up to 0.15 at 200 GeV/n	up to 5.6	_	_
	$\stackrel{\rm Luminosity}{(10^{30} \rm \ cm^{-2} s^{-1})}$	75	431	145 (pk) 90 (avg)	3.7×10^3	5×10^3	1.0×10^4
Impact on	Time between collisions (ns)	96	396	107	49.90	49.90	24.95
detector operation	Full crossing angle (μ rad)	0	0	0	240	≈ 300	≈ 300
	Energy spread (units 10^{-3})	e: 0.91 p: 0.2	0.14	0.15	0.116	0.116	0.113
	Bunch length (cm)	e: 0.83 p: 8.5	$p: 50 \\ \bar{p}: 45$	70	9	9	7.5
I	$\begin{array}{c} \text{Beam radius} \\ (10^{-6} \text{ m}) \end{array}$	e: 110(H), 30(V) p: 111(H), 30(V)	$p: 28 \\ \bar{p}: 16$	90	26	20	16.6
	Free space at interaction point (m)	± 2	± 6.5	16	38	38	38
	Initial luminosity decay time, $-L/(dL/dt)$ (hr)	10	6 (avg)	5.5	8	8	14.9
	Turn-around time (min)	e: 75, p: 135	90	200	≈ 180	≈ 180	≈ 180
	Injection energy (TeV)	e: 0.012 p: 0.040	0.15	0.023	0.450	0.450	0.450
Techincal	Transverse emittance $(10^{-9}\pi \text{ rad-m})$	e: 20(H), 3.5(V) p: 5(H), 5(V)	p: 3 $\bar{p}: 1$	15	0.7	0.6	0.5
parameters	β^* , ampl. function at interaction point (m)	e: 0.6(H), 0.26(V) p: 2.45(H), 0.18(V)	0.28	0.6	1.0	0.6	0.55

Collider parameters - III