The quest for high Luminosity

® Luminosity formula:
® fis fixed by the collider radius
® High N, and N,and n,
® LowO_, o,

o Intefgrated Luminosity L, : [L
=12 =» nbarn! = 10?? cm™?

® Problems:

int]

® Increase number of particles /
bunch ? = beam-beam effects
generate instabilities;

® Increase number of bunches
reduces the inter-bunch time Tp;

® Decrease O and Oy? (see next
slides on beam dynamics).
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The pile-up

* How many interactions take place per bunch crossing ? It
depends on:
® Interaction rate that in turns depends on:

Luminosity

Total Cross-section

® Bunch crossing rate that depends on
Bunch frequency

Number of bunches circulating

® Pile-up 4 = average number of interactions per bunch-

crossing
Lo,

ot
n,
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: o
Comparison: e*e vs pp
* DAFNE: e"e (@ 1 GeV c.o.m. energy, O, =5 Ub,
L=10%cm™s!, n, =120, f=c/100 m = 3 MHz
9PI*BC: p M:
° LHC: pp (@ 13TeV c.o.m. energy, O, =70 mb,
L=10**cm™s!, n,=3000, f=c/27 km = 10 kHz
eTBC: , W=
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Heavy lon collisions.

® Lead nuclei (@ LHC: * Heavy ions program (@ RHIC
o /=82,A=208, M = 195 GeV ® Au, Cu, Uions up to 100
e AE, = ZeV (proton X Z) GeV/nucleon
® p= ZeRB (proton X Z) ® Luminosity ~10%%+-10%
21
o DE, = 574TeV=82 X 7 cmes
TeV ® (Cross-sections:
e =>E, /Nucleon = 574/A = °0,,~70 mb
2.77TeV o0 . ~0 XA23
N pPb = “pp
® Vsyn=0>.54TeV (% GPPXRNHC )
® Luminosity: = 10?7 cms7! ® Opppp ¥ O, X N & 10 barn!
* n, =600 * How much is the pile-up ?

* N,=N,=7X 107 ions/bunch
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Proposed exercises

Consider the parameters of the three accelerators:

e LHC: protons, R = 4.3 km, E,,,. = 7 TeV, Tgc = 25 ns;
e LEP: electrons, R = 4.3 km, E,,4. = 100 GeV, Tsc = 22 us;
e DAFNE: electrons, R = 15 m, E,,,, = 500 MeV, Tgc = 2.7 ns;

Evaluate for each accelerator the following quantities: the revolution frequency f;
the number of bunches ny; the minimum value of the magnetic field B,,;, required
to hold the particles in orbit. From the luminosity and current profile plots shown as
examples in the course slides, determine for DAFNE and LHC, the products o, X oy

Design a pp machine at /s = 40 TeV and L = 10 cm~2s~!. Which values of o
and oy are needed 7 The following limits have to be respected:

e B<5HT

e Ny, Ny < 10! /bunch

e Tsc > 10 ns

Evaluate the maximum ,/syn that can be obtained at LHC for Cu-Cu and Pb-Pb
collisions respectively.

Evaluate the value of /syn for Au-Au collisions if the energy of the Au ions is 10.5
TeV. In case these collisions are done at RHIC for which value of the luminosity the
pile-up becomes of order 1 7 (RHIC circumference = 3.834 km, ny=111)
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Analysis of event distributions: the fit

(i) to compare the distributions with expectations from theories, and (ii) to extract from
them physical quantities of interest like masses, widths, couplings, spins and so on. We
call fit the method to do both these important things.



Analysis of event distributions: the fit

(1) First of all we have to define the hypothesis. It can be the theoretical function
y(x/80), x being the variable or the set of variables, and 6 a set of K parameters
. K could be even 0, in this case the theory makes an ”absolute prediction” and
there is no need to adjust parameters to compare it to theory.



Analysis of event distributions: the fit

(2) Then we have to define a test statistics ¢, that is a variable depending on the
data that, if the hypothesis is correct, has a known distribution function (in
the following we use pdf to indicate probability distribution functions). The
meaning of this pdf is the following: if we repeat the experiment many times
and if every time we evaluate ¢, if the hypothesis is correct the histogram of the
sample statistics will follow the pdf within the statistical errors of the sample.



Analysis of event distributions: the fit

(3) Finally we do the experiment. In case the theory depends on few parameters, we
adjust the parameters in such a way to get the best possible agreement between
data and theory. From this we obtain the estimates of the parameters with their
uncertainties. We evaluate then the actual value of ¢, let’s call it t* from the data
after parameter adjustment, and see if in the ¢ pdf this value corresponds to a
region of high or low probability. In case it is in a region of high probability,
it’s likely that the theory is correct, so that we conclude that the experiment
corroborates the theory. In case it corresponds to a region of low probability
it’s unlikely that the theory is correct, so that we say that the experiment falsifies
the theory, or, in other words, that we have not found any parameter region that
allows an acceptable agreement.



Choice of test statistics: binned data
M 400—- ’ﬁ,“mk ALN
Histogram: Z n; =N - W\ Jf | .ﬂ
=1 gzoo- j V }‘ i !‘l
I M | I J |
/ i | ||
Theory YZY(X/ Q) e1 9 1:1 e K O-o ' 2(')0 ' 450 ' G(I)O ' s(')o YhM)‘w:va?:)ﬂ() ' 12‘00
Channels

Prediction of the theory in bin i:
1) Value of the function at the center Z; of the bin Yi = y(xz / Q) 0F
multiplied by the bin width 0x (note: [y]=[dN/dx])

2) tly integrati the bin i Zitoz/2
Or more €xac mteeratin Oover tne tin 1
Xactly g gyov Y = / y(gj/Q)de

M T;—0x / 2
The predicted total number Z yi = No
of events is: i—1

The two definitions are equivalent in the limit of small bin size wrt to the typical

scale of variations in the distribution



Choice of test statistics: binned data

Which statistics for the n. data in the histogram?
two possibilities:

e We repeat the experiment holding the total number of events IV fixed. In this

case n; has a multinomial distribution. The joint distribution of the n;, with
1=1,...,M is

P
p(nl, nM) = N! H !

where p; is the probability associated to the bin 7. Notice that the joint distribu-
tion cannot be factorized in a product of single bin probability distributions, since
the fixed value of events N determines a correlation between the bin contents.

Eln;] = Np;
Varn;] = Npi(1—p;)
covlni,nj] = —Np;p;

Correlation negligible for events distributed over a large number of bins



Choice of test statistics: binned data

Which statistics for the n. data in the histogram?
two possibilities:

e We repeat the experiment holding fixed the integrated luminosity or the obser-
vation time of the experiment. In this case IV is not fixed and fluctuates in

general between an experiment and another. The n; are independent and have
poissonian distributions:

M )\nie—ki
p(nl, nM) = H Z—'
1 n;.

where )\; is the expected counting in each bin.

Varln;] = N\

covln;,nj] = 0




Choice of test statistics: binned data
Fit: we impose the condition ¥; = F/|n;]

Definition of the test statistics t :

2 __
Neiman 2 XN =




Choice of test statistics: binned data

Fit: we impose the condition Y; = E[nz]

Definition of the test statistics t :

M 2
2 _ Z (ni — yi)
Neiman 2 XN = N

Pearson 72



Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random
variable that is a sum of a large number of small contributions
follows 1t. This follows from the Central Limit Theorem:

For n independent r.v.s x; with finite variances 6%, otherwise
arbitrary pdfs, consider the sum

n
y= >
i=1
In the limit » — oo, y 1s a Gaussian r.v. with

Elyl = 3 u Viyl = Y o?
1=1 =1

1=

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s.



Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier
transforms), see, e.g., SDA Chapter 10.

For finite n, the theorem 1s approximately valid to the
extent that the fluctuation of the sum is not dominated by
one (or few) terms.

A Beware of measurement errors with non-Gaussian tails.

Good example: velocity component v_of air molecules.

OK example: total deflection due to multiple Coulomb scattering.
(Rare large angle deflections give non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin

gas layer. (Rare collisions make up large fraction of energy loss,
cf. Landau pdf.)



Chi-square (¥?) distribution

The chi-square pdf for the continuous r.v. z (z > 0) is defined by

: _ 1 n/2—1_—z/2 E N ] =1
FEm = iy |
n=1,2,..= number of ‘degrees of :

freedom’ (dof) Vs
Elzl=n, V[zl=2n. [/ > M e

- 1 —ml
0 5 10 15 20

For independent Gaussian x, i = 1, ..., n, means U, variances 07,

n 02
z= > (@i O'QMZ) follows y? pdf with n dof.
i=1 ;
Example: goodness-of-fit test variable especially in conjunction
with method of least squares.




Choice of test statistics: binned data
Fit: we impose the condition ¥; = F/|n;]

Definition of the test statistics t :

M 2
2 _ Z (ni — yi)
Pearson 2 XP = Vi
1=1

In case of n; being poissonian variables in the gaussian limit, the Pearson y? is a statistics
following a y? distribution with a number of degrees of freedom equal to M — K. Infact
we know that a y? variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for X%D- However we know that the gaussian limit
is reached for n; at least above 10+20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of x% is not exactly a x* so that care is
needed in the result interpretation.



Choice of test statistics: binned data

Fit: we impose the condition ¥;

Definition of the test statistics t :

Neiman 2

= Elng]

XN =




Choice of test statistics: binned data
Fit: we impose the condition ¥; = F/|n;]

Definition of the test statistics t :

M 2

2 (7% — yz)
Neiman 2 XN = z : N,
i=1 ¢

The Neyman ? is less well defined. In fact a x? variable requires the gaussian o
in each denominator. By putting n; we make an approximation'®. However in case of
large values of n; to a good approximation the Neyman y? has also a x? distribution. A
specific problem of the Neyman y? is present when n; = 0. But again, for low statistics
histogram a different approach should be considered.

18The Neyman y? was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.



Choice of test statistics: binned data
Fit: we impose the condition ¥; = F/|n;]

More general the test statistics t : Likelithood

N fixed (multinomial case) (y’L = Nop Z)
(negligible bin correlation assumed)

_ I T | 7
Ly (n/y) = N! | | P N! | | —ni!N(?"



Choice of test statistics: binned data
Fit: we impose the condition ¥; = F/|n;]

More general the test statistics t : Likelithood

N not fixed (poisson case) y=A

M .

Ly(n/y) = [ 2

1=1




Choice of test statistics: binned data

Fit: we impose the condition Y; = E[nz]

More general the test statistics t : Likelithood

N not fixed (poisson case) y=A
n;!
1=1
M ng M
— NI Yi N Y
Lin(n/y) = N! LN NG !
M n; —No NN
_ i €
Ly(n/y) = e NOH%, = Lm(n/y)
i=1 " '

L, is essentially L,, multiplied by the poissonian fluctuation of N with mean Ny



Choice of test statistics: binned data

Fit: we impose the condition Y; = E[nz]

More general the test statistics t : Likelthood method

Which test statistics for the Likelihood function?

The pdf of a likelihood function in general depends on the

specific problem, and can be evaluated by means of

a MonteCarlo simulation of the situation we are

considering (TOY MC), i.e. simulations done for different values of

the parameters Gi



Choice of test statistics: binned data

WILKS THEOREM

expectation values v; = E|n;] of the contents of each bin

L(n/y)
L(n/v)

X5 = —2In

has a y? pdf with M — K degrees of freedom in the asymptotic limit

('V; gaussians)

=> We can use Likelihood ratios as test statistics with known pdf, more general

than Pearson (2, it holds in asymp. limit but whatever is the stat. model.



Connection with the

Neyman—Pearson Lemma

P(type — Ierrors) =1 —€ =«

1
P(type — Ilerrors) = 7= B

Given the two hypotheses Hs and Hp and given a set of K discriminating variables x,
x9,...x K, we can define the two ”likelihoods”

(66) L(azl,...,a:K/Hs) :P(afl,...LIjK/HS)
(67) L(a:l,...,acK/Hb) IP(wl,...ZBK/Hb)

equal to the probabilities to have a given set of values x; given the two hypotheses, and
the likelihood ratio defined as

(68) ey, ag) = 2L TR/ Hy)

L(CIJl, ...,a:K/Hb)

Neyman-Pearson Lemma:

For fixed o value, a selection based on the discriminant variable A has the lowest [} value.

=> The “likelihood ratio” is the most powerful quantity to discriminate between hypotheses.
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Choice of test statistics: binned data

WILKS THEOREM

In the following we evaluate Xi for the poissonian histogram.

(110) :—21nH yz +21nH v

Notice that the first term includes the theory (through the y;), while the second requires
the knowledge of the expectation values of the data. If we make the identification v; = n;,
we get:

M M
2 _ Mmoo —n)) = — n 2 _
(111) X5 = —QZ (nZ In o (vi nz)> = 2; (nz In nz) + 2(Ng — N)

By imposing v; = n; eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is Xi the better is the agreement between data and theory. For
y; = n; (perfect agreement) x5 = 0.

If we make the same calculation for the multinomial likelihood we obtain the same
expression but without the Ny — IV term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.



