Other Proposed exercises

We perform a cross-section measurement and obtain the following values: N gnqg
=128, N = 14 + 2, ¢ = 0.523 + 0.002, L;; = 2.43 pb~! + 1.8 %: calculate the
resulting cross-section with its uncertainty. In case this is a measurement of ete™ —
7tr~ at /s = 1 GeV, determine the value of the pion time-like form factor with its
uncertainty. The formula relating the cross-section to the form factor Fy(s) is the
following;:

2
o(s) = 5B Fa(s)]

Consider the reaction ete™ — KTK~ at a ®-factory. Which fraction of events have
at least one kaon decaying within a sphere of R = 20 cm ? In which fraction of events
both kaons decay within the same sphere ?

The SM expected semi-leptonic Kg charge asymmetry is 3x1073. At Dafne we expect
to produce a sample of 1.2x10° tagged Kgs. If the BR(Ks — mev)=BR(Kgs —

7te U)+BR(Kg — 7 eTv)=6.95x10~* which error can we reach on the asymmetry
?

Which average instantaneous luminosity is required to improve by a factor 3 such an
uncertainty in one year of data takine (assuming a duty cicle of 50% and a tagging
efficiency of 30%) 7 [o(eTe™ — ¢)= 3 ub at the ¢ peak].
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Proposed exercises

Consider the parameters of the three accelerators:

e LHC: protons, R = 4.3 km, E,,,. = 7 TeV, Tgc = 25 ns;
e LEP: electrons, R = 4.3 km, E,,4. = 100 GeV, Tsc = 22 us;
e DAFNE: electrons, R = 15 m, E,,,, = 500 MeV, Tgc = 2.7 ns;

Evaluate for each accelerator the following quantities: the revolution frequency f;
the number of bunches ny; the minimum value of the magnetic field B,,;, required
to hold the particles in orbit. From the luminosity and current profile plots shown as
examples in the course slides, determine for DAFNE and LHC, the products o, X oy

Design a pp machine at /s = 40 TeV and L = 10 cm~2s~!. Which values of o
and oy are needed 7 The following limits have to be respected:

e B<5HT

e Ny, Ny < 10! /bunch

e Tsc > 10 ns

Evaluate the maximum ,/syn that can be obtained at LHC for Cu-Cu and Pb-Pb
collisions respectively.

Evaluate the value of /syn for Au-Au collisions if the energy of the Au ions is 10.5
TeV. In case these collisions are done at RHIC for which value of the luminosity the
pile-up becomes of order 1 7 (RHIC circumference = 3.834 km, ny=111)
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Choice of test statistics: binned data

WILKS THEOREM

expectation values v; = E|n;] of the contents of each bin

L(n/y)
L(n/v)

X5 = —2In

has a y? pdf with M — K degrees of freedom in the asymptotic limit

('V; gaussians)

=> We can use Likelihood ratios as test statistics with known pdf, more general

than Pearson (2, it holds in asymp. limit but whatever is the stat. model.



Connection with the

Neyman—Pearson Lemma

P(type — Ierrors) =1 —€ =«

1
P(type — Ilerrors) = 7= B

Given the two hypotheses Hs and Hp and given a set of K discriminating variables x,
x9,...x K, we can define the two ”likelihoods”

(66) L(azl,...,a:K/Hs) :P(afl,...LIjK/HS)
(67) L(a:l,...,acK/Hb) IP(wl,...ZBK/Hb)

equal to the probabilities to have a given set of values x; given the two hypotheses, and
the likelihood ratio defined as

(68) ey, ag) = 2L TR/ Hy)

L(CIJl, ...,a:K/Hb)

Neyman-Pearson Lemma:

For fixed o value, a selection based on the discriminant variable A has the lowest [} value.

=> The “likelihood ratio” is the most powerful quantity to discriminate between hypotheses.
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Choice of test statistics: binned data

WILKS THEOREM

In the following we evaluate Xi for the poissonian histogram.

(110) :—21nH yz +21nH v

Notice that the first term includes the theory (through the y;), while the second requires
the knowledge of the expectation values of the data. If we make the identification v; = n;,
we get:

M M
2 _ Mmoo —n)) = — n 2 _
(111) X5 = —QZ (nZ In o (vi nz)> = 2; (nz In nz) + 2(Ng — N)

By imposing v; = n; eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is Xi the better is the agreement between data and theory. For
y; = n; (perfect agreement) x5 = 0.

If we make the same calculation for the multinomial likelihood we obtain the same
expression but without the Ny — IV term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.



Choice of test statistics: binned data

WILKS THEOREM

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements z; all characterized by gaussian fluctuations with uncertainties o; done
for different values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/0) possibly depending
on a set of parameters 6, in case of no correlation between the measurements z;, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(2 f(2/0))?
20.2

Z/H H \/%O_z



Choice of test statistics: binned data

WILKS THEOREM

Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification v; = E|z;] = 2z; and we get:
(113)

M (25— f(2;/0))* C(zim=)? M 2
I - Ty e (2s — f(z:/0))
2 20.2 202 -
= —21n e i + 21n i =
N | g Mo = -2

The test statistics obtained here is a x?2, typlcally used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.




Choice of test statistics: unbinned data

5.2.3. Unbinned data. In case we have a limited number NV of events so that any binning
will bring us to small values of bin contents, a different approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters 6), x; with
=1, ...N the values of the variable x for the N events and f(xz /) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(z/H) = H f(x:i/8)

valid in case the events are not correlated. Notlce that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call Ny (eventually an additional parameter to be fit)2°

(115) L{z/H) = _NONO [/

This is called extended likelihood.

The - logarithm of the likelihood is used in most cases?!:

(116) —InL(z/H) = Zlnf x;/0)



Choice of test statistics: correlations
5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
z; (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /) is defined, including
the covariance matrix V;; between the measurements. The covariance matrix has the

parameters variances in the diagonal elements and the covariances in the off-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final x?:

M

(117) X° = (2 — f(2/0) Vit (2 — f(a1/0))
jk=1

that is still a x? variable with M — K degrees of freedom.



