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Other Proposed exercises 

5. The most updated values of the parameter µ = �/�SM for the Higgs boson from
ATLAS for the three main decay channels (in 2014) were:

µ�� = 1.55± 0.30

µZZ = 1.43± 0.37

µWW = 0.99± 0.29

Evaluate the compatibility among the three independent ATLAS results and calculate
the best overall estimate of µ from ATLAS. Then evaluate the compatibility with the
SM expectation (µ=1).

6. In the 2011+2012 LHC dataset (corresponding to about 25 fb�1), a sample of 2.24⇥105

tt events has been collected. We know that �(pp ! tt+X) is 177 ± 5 pb. How large
was the e�ciency for tt events assuming no background ?

7. We perform a cross-section measurement and obtain the following values: Ncand

=128, Nb = 14 ± 2, ✏ = 0.523 ± 0.002, Lint = 2.43 pb�1 ± 1.8 %: calculate the
resulting cross-section with its uncertainty. In case this is a measurement of e+e� !
⇡+⇡� at

p
s = 1 GeV, determine the value of the pion time-like form factor with its

uncertainty. The formula relating the cross-section to the form factor F⇡(s) is the
following:

�(s) =
⇡↵2

3s
�3
⇡|F⇡(s)|2

8. The Higgs boson production at a linear collider happens mainly through the reac-
tion e+e� ! ZH. If MH = 125 GeV, and the cross-section �(e+e� ! ZH,

p
s =

300GeV)= 220 fb, which value of luminosity do we need to get O(106) events in 1
year of data taking ? How many final states with two muons and two photons from
the Z ! µ+µ� and H ! �� simultaneous decays do we get in the same period ?
Evaluate the maximum and minimum photon energies from the Higgs.

9. Consider the reaction e+e� ! K+K� at a �-factory. Which fraction of events have
at least one kaon decaying within a sphere of R = 20 cm ? In which fraction of events
both kaons decay within the same sphere ?

10. The SM expected semi-leptonicKS charge asymmetry is 3⇥10�3. At Dafne we expect
to produce a sample of 1.2⇥109 tagged KSs. If the BR(KS ! ⇡e⌫)=BR(KS !
⇡+e�⌫)+BR(KS ! ⇡�e+⌫)=6.95⇥10�4 which error can we reach on the asymmetry
?

11. Which average instantaneous luminosity is required to improve by a factor 3 such an
uncertainty in one year of data taking (assuming a duty cicle of 50% and a tagging
e�ciency of 30%) ? [�(e+e� ! �)= 5 µb at the � peak].
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12. We want to set-up a trigger to detect Z ! µ+µ� decays in pp collisions at LHC.
We have a low threshold (LT, pT >4 GeV) and a high threshold (HT, pT > 20 GeV)
single muon triggers. The e�ciencies of the two triggers for the muons coming from
Z decays are ✏(LT)=89.2%, ✏(HT)=62.1%. Determine the e�ciencies for triggering
on Z decays in the two configurations: (1) LT1 AND LT2, (2) HT1 OR HT2 .

13. The fraction of KL produced in e+e� collisions at the � peak interacting in the
KLOE calorimeter is approximately 5%. Determine the KL-lead cross-section, using
the following assumptions: The KLOE calorimeter is a single lead spherical layer 12
cm thick; the inner surface of the KLOE calorimeter is 2 m away from the e+e�

interaction region.

14. Consider the decay � ! ⌘� in the center of mass frame of the �. Calculate the energy
of the photon and the maximum and minimum energy of the photons in case the ⌘
decays in ��. We want to identify this decay looking at the inclusive radiative photon
spectrum from a sample of 106 � produced at rest. If we know that the combinatorial
photon spectrum in the energy region between 300 and 400 MeV is almost flat with
a number of events equal to 300 evts/MeV/104�, determine the energy resolution
required to observe with enough significance the searched decay.

15. Consider the parameters of the three accelerators:

• LHC: protons, R = 4.3 km, Emax = 7 TeV, TBC = 25 ns;

• LEP: electrons, R = 4.3 km, Emax = 100 GeV, TBC = 22 µs;

• DAFNE: electrons, R = 15 m, Emax = 500 MeV, TBC = 2.7 ns;

Evaluate for each accelerator the following quantities: the revolution frequency f ;
the number of bunches nb; the minimum value of the magnetic field Bmin required
to hold the particles in orbit. From the luminosity and current profile plots shown as
examples in the course slides, determine for DAFNE and LHC, the products �x ⇥ �y

16. Design a pp machine at
p
s = 40 TeV and L = 1036 cm�2s�1. Which values of �x

and �y are needed ? The following limits have to be respected:

• B < 5T

• N1, N2 < 1011/bunch

• TBC > 10 ns

17. Evaluate the maximum
p
sNN that can be obtained at LHC for Cu-Cu and Pb-Pb

collisions respectively.

18. Evaluate the value of
p
sNN for Au-Au collisions if the energy of the Au ions is 10.5

TeV. In case these collisions are done at RHIC for which value of the luminosity the
pile-up becomes of order 1 ? (RHIC circumference = 3.834 km, nb=111)

3

Proposed exercises 



Choice of test statistics: binned data 

 
WILKS THEOREM 34

The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity

(109) �2
� = �2 ln

L(n/y)

L(n/⌫)

has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.

(110) �2
� = �2 ln

MY

i=1

e�y
iyni

i

ni!
+ 2 ln

MY

i=1

e�⌫
i⌫ni

i

ni!

Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:

(111) �2
� = �2

MX

i=1

✓
ni ln

yi
ni

� (yi � ni)

◆
= �2

MX

i=1

✓
ni ln

yi
ni

◆
+ 2(N0 �N)

By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(112) Lg(z/✓) =
MY

i=1

1p
2⇡�i

e
� (z

i

�f(x
i

/✓))2

2�2
i

This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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( νi gaussians) 

⇒ We can use Likelihood ratios as test statistics with known pdf, more general 
than Pearson χ2, it holds in asymp. limit but whatever is the stat. model. 



21/11/18 Methods in Experimental Particle Physics 4 

Connection with the 
Neyman-Pearson Lemma 

23

and type-II errors. We call ↵ and � respectively the probabilities associated to the two
kinds of errors:

(64) P (type� Ierrors) = 1� ✏ = ↵

(65) P (type� IIerrors) =
1

R
= �

Given the two hypotheses Hs and Hb and given a set of K discriminating variables x1,
x2,...xK , we can define the two ”likelihoods”

(66) L(x1, ..., xK/Hs) = P (x1, ...xK/Hs)

(67) L(x1, ..., xK/Hb) = P (x1, ...xK/Hb)

equal to the probabilities to have a given set of values xi given the two hypotheses, and
the likelihood ratio defined as

(68) �(x1, ...xK) =
L(x1, ..., xK/Hs)

L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once ↵
is fixed, a selection based on � is the one that allows to have the lowest � value. This
theorem, even if of somehow di�cult use in practice, shows that the ”likelihood ratio”
is the most powerful quantity to discriminate between hypotheses. In the following we’ll
see several examples of likelihood ratios.
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Neyman-Pearson Lemma: 
For fixed α value, a selection based on the discriminant variable λ has the lowest β value. 
 
=> The “likelihood ratio” is the most powerful quantity to discriminate between hypotheses. 
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(112) Lg(z/✓) =
MY

i=1

1p
2⇡�i

e
� (z

i

�f(x
i

/✓))2
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i

This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification ⌫i = E[zi] = zi and we get:
(113)
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The test statistics obtained here is a �2, typically used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.

5.2.3. Unbinned data. In case we have a limited number N of events so that any binning
will bring us to small values of bin contents, a di↵erent approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters ✓), xi with
i=1, ...N the values of the variable x for the N events and f(x/✓) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(x/H) =
NY

i=1

f(xi/✓)

valid in case the events are not correlated. Notice that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call N0 (eventually an additional parameter to be fit)20:

(115) L(x/H) =
e�N0NN

0

N !

NY

i=1

f(xi/✓)

This is called extended likelihood.
The - logarithm of the likelihood is used in most cases21:

(116) � lnL(x/H) = �
NX

i=1

ln f(xi/✓)

5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
zi (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /✓) is defined, including
the covariance matrix Vij between the measurements. The covariance matrix has the

20Notice the similarity with the considerations done for eq.108.
21The use of the logarithm of the likelihood that we have seen here and also in previous examples,

is motivated by the logarithm properties. In particular the fact that a product becomes a sum, and the
exponential becomes linear. On the other hand taking the logarithm of a function doesn’t change the
positions of its maxima and minima.
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Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification ⌫i = E[zi] = zi and we get:
(113)
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The test statistics obtained here is a �2, typically used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.

5.2.3. Unbinned data. In case we have a limited number N of events so that any binning
will bring us to small values of bin contents, a di↵erent approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters ✓), xi with
i=1, ...N the values of the variable x for the N events and f(x/✓) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(x/H) =
NY

i=1

f(xi/✓)

valid in case the events are not correlated. Notice that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call N0 (eventually an additional parameter to be fit)20:

(115) L(x/H) =
e�N0NN

0

N !

NY

i=1

f(xi/✓)

This is called extended likelihood.
The - logarithm of the likelihood is used in most cases21:

(116) � lnL(x/H) = �
NX

i=1

ln f(xi/✓)

5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
zi (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /✓) is defined, including
the covariance matrix Vij between the measurements. The covariance matrix has the

20Notice the similarity with the considerations done for eq.108.
21The use of the logarithm of the likelihood that we have seen here and also in previous examples,

is motivated by the logarithm properties. In particular the fact that a product becomes a sum, and the
exponential becomes linear. On the other hand taking the logarithm of a function doesn’t change the
positions of its maxima and minima.
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Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification ⌫i = E[zi] = zi and we get:
(113)
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The test statistics obtained here is a �2, typically used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.

5.2.3. Unbinned data. In case we have a limited number N of events so that any binning
will bring us to small values of bin contents, a di↵erent approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters ✓), xi with
i=1, ...N the values of the variable x for the N events and f(x/✓) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(x/H) =
NY

i=1

f(xi/✓)

valid in case the events are not correlated. Notice that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call N0 (eventually an additional parameter to be fit)20:

(115) L(x/H) =
e�N0NN

0

N !

NY

i=1

f(xi/✓)

This is called extended likelihood.
The - logarithm of the likelihood is used in most cases21:

(116) � lnL(x/H) = �
NX

i=1

ln f(xi/✓)

5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
zi (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /✓) is defined, including
the covariance matrix Vij between the measurements. The covariance matrix has the

20Notice the similarity with the considerations done for eq.108.
21The use of the logarithm of the likelihood that we have seen here and also in previous examples,

is motivated by the logarithm properties. In particular the fact that a product becomes a sum, and the
exponential becomes linear. On the other hand taking the logarithm of a function doesn’t change the
positions of its maxima and minima.
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called


