Proposed exercise

Extract N random numbers distributed as an
exponential function with lifetime t

Fill an histogram

Write the likelihood L(t|t) in the binned and unbinned cases



N=100; x<-runif(N) ; x

[1] 0.405059710 0.028044254 0.758571449 0.382914253 0.231949128 0.457176317

[7] 0.736658152 0.038088207 0.104203774 0.513283288 0.742335360 0.368812945
[13] 0.898926650 0.884993284 0.029905424 0.510855547 0.976764989 0.163296696
[19] 0.312905139 0.172199152 0.789298260 0.518792378 0.076755612 0.187093519
[25] 0.613189997 0.007589616 0.476067148 0.091391122 0.254679165 0.642145047
[31] 0.068187724 0.213190998 0.284391620 0.652574104 0.375936000 0.938753973
[37] 0.768648992 0.934079373 0.576549295 0.822300084 0.963397188 0.677318145
[43] 0.804149516 0.278122875 0.918408046 0.161690666 0.816283114 0.219679127
[49] 0.247514679 0.144359027 0.238819577 0.499138632 0.801599954 0.882881265
[55] 0.817341159 0.484859340 0.865183191 0.866059658 0.375084123 0.287952191
[61] 0.832247817 0.392507337 0.292606502 0.018239798 0.980023583 0.892270450
[67] 0.843237637 0.927634800 0.204098272 0.763523759 0.545941953 0.600462520
[73] 0.078878091 0.445519178 0.375912647 0.614324038 0.194723071 0.839467755
[79] 0.265073122 0.870599505 0.696728359 0.085964346 0.004559065 0.710412472
[85] 0.824518329 0.868817609 0.730170102 0.016328960 0.087571226 0.173662371
[91] 0.367700928 0.491316323 0.085512807 0.738371863 0.977629644 0.378448315
[97] 0.194459494 0.754219429 0.376693783 0.939928670
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Likelihood is NOT a PDF

A Poisson distribution describes
a discrete ev-ent count n for
a real vralued Meqy.

. e H
Pois(n|p) = p"™ ——

Say, we observe n_events

What is the likelihood of u?
The likelihood of u is given by

L(u)=Pois(n |u)

[t is a continues function
of uw butitis NOT a PDF
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Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)



Testing an Hypothesis (uikipedia...)

o The first step in any hypothesis test is to state the relev-ant
null, H, and alternativ-e hypotheses, say, H,

» The next step is to define a test statistic, q, under the null
hypothesis

« Compute from the observ-ations the observ-ed value q , of the
test statistic q.

« Decide (based on q , ) to either

fail to reject the null hypothesis or
reject it in fav-or of an alternativ-e hypothesis

o next: How to construct a test statistic, how to decide?



Basic Definitions: type I-ll errors

o By defining x you determine your
tolerance towards mistakes...
(accepted mistakes frequency) * Thepdf of q....

o type-lerror: the probability to i
reject the tested (null) hypothesi: foA
(Ho) when it is true I

. o =Prob(rejectH,|H,) [
a = typel error L

» Typell: The probability to accept s \
null hypothesis when it is wrong | h

B =Prob(accept H, | H)) — /

S50 -3.0 10 1 30

P =typell error ' : | : J;|\hhh:.0 -

o=significance 1-B



Basic Definitions: POWER

* o =Prob(rejectH,|H,)

o« The POWER of an hypothesis POWER=Problreject H, | H,)
test is the probability to reject - Moz
the null hypothesis when it is indeed .
wrong foy
(the alternate analysis is true) [

POWER = Prob(reject H, | H,) oo
p = Prob(accept H,| H,)
1- B = Prob(reject H,| H,) ] ".

H =H ." ‘.
,[(

H,

0 1 /

1- B = Prob(reject H | H)) ; i

/ ;
/
o The power of a test increases as A § “hhn ,
the rate of type ll error decreases <o 20 a0 44 30 fﬁ\ 0w

o=significance 1-B



Basic Definitions: POWER

o ao=Prob(reject H,| H))

¢ The POWER of an hypothesis test is the probability to reject the
null hypothesis when the alternate analysis is true!

« POWER = Prob(reject H, | H,)
B =Prob(reject H | H)=
1- [ =Prob(accept H, | H)) =
1- [ =Prob(reject H)| H)=
POWER=1-p

e The power of a test increases as the rate of type Il error decreases



p-Value

« The observ-ed p-v-alue is a measure of the
compatibility of the data with the tested
hy.pothesis.

o It is the probability, under assumption of the null
hypothesis H,,, of finding data of equal or

greater incompatibility with the predictions of H

null

o An important property of a test statistic is that its
sampling distribution under the null hypothesis be
calculable, either exactly or approximately, which
allows p-v-alues to be calculated. wu



PDF of a test statistic
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PDF of a test statistic

If psa reject null
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PDF of a test statistic

If p<a reject null
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PDF of a test statistic

If p<o reject null
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Power and Luminosity

For a givren significance the power increases with increased luminosity.

Luminosity ~ Total number of events in an experiment
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N experiments
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Parameter estimation: Maximum likelihood method

N\

Best estimate of parameters to fit theory to data 6,-

It is obtained maximizing the likelihood L(x/Q) = L(Q)
Weget ¥ (é)

Problem of finding the maxima of a K-dimensional function

e Analytically, by doing the derivatives of the function (of the logarithm of the
function to simplify the calculations) with respect to the parameters and putting
them equal to 0.

Oln L
=0
00

system of M equations with M unknowns

e Numerically, in all cases. The ”hystorical” program MINUIT developed at CERN
in the ’70s is still now the most used package for this kind of problems.



Parameter estimation: Maximum likelihood method

ML estimators properties:

(1) Unbiasness: the mean of the estimator should be equal to the ”true” value of
the parameter F [é] = Otrye-

(2) Consistency: the estimator should converge to the ”true” value once the num-
ber of measurements increases Var[d] — 0 for N — oco.

(3) Efficiency: the estimator variance should be the minimum, any other estimator

of the same parameter should have a larger variance.



Parameter estimation: Maximum likelihood method

AN A

HA Is a random variable with its own pdf’s: E[e] Var[@]

Central values of the parameter estimation ) + 5
and interval estimation 0
(for the moment with probability content in the frequentist approach)

In general maximizing : L (,CE |Q)

A

We get central values : 9

AN A

Vi = cov|0;, 0]

with covariance matrix :



Parameter estimation: Maximum likelihood method
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Parameter estimation: Cramer-Rao inequality

(K=1). The variance of an unbiassed estimator 0 obeys the following inequality:

A 1
Var|0] > e
B |-
the denominator is also called Fisher information factor, and is usually indicated as
1(6).
(K >1). Given the ”Fisher information” matrix
9*In L
10);r=FE |—
()i [ 00,0, ]

each term of the covariance matrix V;; obeys the following inequality
Vik > I71(0)

The Fisher information matrix is also called Hessian matrix of the function L

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully efficient.

I7'(0);1 isthe inverse of the Hessian matrix.



ML Parameter estimators:

Theorems:

e If, for a given parameter, at least a fully efficient estimators exists, such an
estimator is the ML estimator.
e For estimators based on a large number of observation N — oo, ML estimators
are fully efficient.
e In case of fully efficient estimators, it is possible to replace the mean of the second
derivative with the second derivative evaluated at the estimator central value:
> 0%InL 0%1n L
[ 062 ] B 06?2

A

0=0

The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.



ML Parameter estimators:

1-dimensional example:
£(0)=-In L(x|0)
Taylor expansion around the minimum § — {

d . 1d?
LY y /

£(0) = f(0) 70 e:é(e_ )+§W »

The first order term vanishes, the second order coefficient (~ 1/width of the parabola),
according to ML estimators and Cramer-Rao inequality:

Varld] > ;21 .
B -] 2f 1
2 — 2
0?InL B 0%InL d@ O-Q
{_ 06" ]__ 06% |g—p




ML Parameter estimators: profile likelihood method

1-dimensional example:

A df A 1d%f ~
£(8)=-In L(x|0) F(0) = f(0) +—5 Qzé(H —0)+ 53 Qzé(e —0)" + ...
Profile Likelihood
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N FIGURE 11. Scheme of principle of a profile likelihood method. A —1In L

H :I: no'e with parabolic shape is shown for a given variable X. Horizontal lines
are shown for —1In L4 + %nz forn=0,1,2,3 and a = 1 ¢ is shown for
the X wvariable.



ML Parameter estimators: profile likelihood method
Profile Likelihood

-InL

1-dimensional example: 0
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FIGURE 11. Scheme of principle of a profile likelihood method. A —In L
with parabolic shape is shown for a given variable X. Horizontal lines
are shown for —1In L,,q: + %nz forn=20,1,2,3 and a = 1 ¢ is shown for
the X variable.
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If 2" order terms can be neglected => gaussian limit => confidence intervals with
gaussian probability content (n=1,2,3 => 68%, 95%, 99.7%)



ML Parameter estimators: profile likelihood method
1-dimensional example:

If we are not in the gaussian limit, the profile likelihood method can be used as well,

and the probability content remains to a good approximation the same of the gaussian
case. In this case, as shown in the example of fig.12, the intervals can be asymmetric
and the result will be written as
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FIGURE 12. Example of a profile likelihood method when — In L has not
a parabolic shape. As in fig.11, horizontal lines are shown for — In L4, +
%n2 for n = 0,1,2,3. A ”2sigma” interval is shown for X clearly asym-
metric.



ML Parameter estimators: profile likelihood method

1-dimensional example:
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FIGURE 13. 1-dimensional x2 of the Standard Model fit to get an interval
for the unknown Higgs boson mass. Notice that the horizontal axis is in
logarithmic scale, so that the minimum is strongly asymmetric. (very
"popular” plot, taken e.g. from www.zfitter.com).

If the likelihood profile
is far from the parabolic shape
=> far from the gaussian limit



ML Parameter estimators: contour likelihood method
2-dimensional example:

5.5.4. Contour Likelthood. The Profile Likelihood method described above can be ap-
plied to the single parameter case only. However when K = 2 a graphical method is
also available providing an interesting insight into the fit result: the so called contour
likelihood method. The function —1In L is, in this case, a 2D function f(61,62) that,
around the minimum él, 05 has a 2-D paraboloid shape. For a given probability content
B, regions Sg can be defined in the §; — 0> plane with the property:

(134) p([6h,02] C Sg) =B

that is regions containing the point 61,62 with probability 8. Such regions can be
obtained by intersecting the surface f(61,62), with planes of constant —In L at values
(compare to eq.130)

(135) —1n Lypaz + Aln Lg

The equivalent of eq.128 for the two parameters case, is, in the gaussian limit

1 . R
(136) ~L ==L+ (0 - OV —6)

where we have used directly the matrix formalism (7" means transposed). By comparing
eq.136 with eq.117 we see that —In L + In L,,,4, has a 2 distribution with 2 degrees of
freedom. This allows to evaluate the values of Aln Lg of eq.135. Table 2 gives the values
of AlnLg for K =1, 2 and 3 for three different values of 3. For K = 3 or more, the

graphical contour representation is not available, but regions Sg can be built with the
same method.



ML Parameter esti
2-dimensional example:

mators:

contour likelihood method

TABLE 2. For 3 different values of probability levels (corresponding to
the usual 1,2 and 3 gaussian std.deviations) the values of AlnLg are
given for one-parameter (K=1) and two or three-parameters fits.

B (%) | 2AInLg (K=1) | 2Aln Lg (K=2) | 2Aln L (K=3)
68.3 1 2.30 3.53
95.4 4 6.18 8.03
99.7 9 11.83 14.16
contour
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F1GURE 14. Contour plot of two correlated parameters in the gaussian
limit. The ellipse shown in yellow, is the Sg region described in the text.
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the two variables. The probability contents of these intervals is different

from S.
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FiGURE 15. From the ATLAS experiment. Results of the fits of 3 differ-
ent Higgs decay channels (namely vy, ZZ and WW) in a 2-dimensional
plane, mass vs. signal strength. For each fit, both 68% and 95% probabil-
ity regions are shown. Notice that in all the cases apart from the v+, we
are very far from the gaussian limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29).



