Proposed exercise

Extract N random numbers distributed as an
exponential function with lifetime t

Fill an histogram

Write the likelihood in the L(t|T) in the binned and unbinned case



N=100; x<-runif(N) ; x

[1] 0.405059710 0.028044254 0.758571449 0.382914253 0.231949128 0.457176317

[7] 0.736658152 0.038088207 0.104203774 0.513283288 0.742335360 0.368812945
[13] 0.898926650 0.884993284 0.029905424 0.510855547 0.976764989 0.163296696
[19] 0.312905139 0.172199152 0.789298260 0.518792378 0.076755612 0.187093519
[25] 0.613189997 0.007589616 0.476067148 0.091391122 0.254679165 0.642145047
[31] 0.068187724 0.213190998 0.284391620 0.652574104 0.375936000 0.938753973
[37] 0.768648992 0.934079373 0.576549295 0.822300084 0.963397188 0.677318145
[43] 0.804149516 0.278122875 0.918408046 0.161690666 0.816283114 0.219679127
[49] 0.247514679 0.144359027 0.238819577 0.499138632 0.801599954 0.882881265
[55] 0.817341159 0.484859340 0.865183191 0.866059658 0.375084123 0.287952191
[61] 0.832247817 0.392507337 0.292606502 0.018239798 0.980023583 0.892270450
[67] 0.843237637 0.927634800 0.204098272 0.763523759 0.545941953 0.600462520
[73] 0.078878091 0.445519178 0.375912647 0.614324038 0.194723071 0.839467755
[79] 0.265073122 0.870599505 0.696728359 0.085964346 0.004559065 0.710412472
[85] 0.824518329 0.868817609 0.730170102 0.016328960 0.087571226 0.173662371
[91] 0.367700928 0.491316323 0.085512807 0.738371863 0.977629644 0.378448315
[97] 0.194459494 0.754219429 0.376693783 0.939928670
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Rate measurement
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Lifetime measurement
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Gaussian measurement

Estimate u, known o
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Linear fit

e cach measurement of y; is characterized by a gaussian pdf with a known variance
o2;

e the z; values are assumed to be known with no or negligible uncertainty?°

e the y; measurements are not correlated; (o(z:) << (yz)/ m)

e we make the hypothesis that the two physics quantities y and x are related by
Yy=mx—+c

where m (the slope) and ¢ (the intercept) are free parameters we want to measure
from the data.
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that we have called X% since, within the hypotheses done and discussed above, it is a
test statistics with a y? pdf with N — 2 degrees of freedom.



Linear fit

Minimizing X2
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Linear fit

The covariance matrix of the 2 parameters is determined evaluating first the Hessian
matrix (see eq.125), and by inverting it with the usual methods of matrix inversions.
The Fisher matrix is:
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and the covariance matrix is:
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where the variance of z is not the uncertainty on x but the lever arm of the fit, namely
the spread of the x values on the x axis.
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Generic linear fit
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Generic linear fit

| runs on events ék = Z Z ijmgxi)
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Analytical solution



Nuisance parameters 30
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We define?® N, and N, the total number of signal and background events respectively,
fs(x/M) and fy(x/a) the two functions of the mass = describing the signal and back-
ground respectively. fs is assumed to be gaussian with mean M and a width o assumed
to be known?’:
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fy is assumed to be a polynomial function®?, a being the vector of parameters describing
the polynomial background (together with IN;). Both functions are normalized to 1. The
parameters describing the background are free parameters and have to be evaluated by
the fit or have to be known independently (e.g. from Montecarlo). However, since they

have not a deep physical meaning they are called generically nuisance parameters.
On the other hand Ny and M are the parameters we are interested in.



Nuisance parameters

Let’s consider first the unbinned case. The test statistics can be written as an extended
likelihood (N is the number of events entering the histogram):
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For the histogram fit we have to define the signal and background contents s; and b;
in each of the M bins of width dx:
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where n; is the experimental content in the bin 1.



Nuisance parameters

In both cases the minimization and the evaluation of the hessian matrix of this like-
lihood will be done numerically. As a result we’ll have estimates of the 2 relevant
parameters Ny and M and of the nuisance parameters. Moreover the value of L at the
minimum will be used for hypothesis test.

The possibility to move the nuisance parameters in the fit, allows to obtain a better
agreement between data and theory at the expense of having larger uncertainties on
the relevant parameters Ny and M. Any knowledge of the nuisance parameters can
be added in the likelihood as additional constraint. For example if Ny is known to be
Ny, & o(Ny) with a gaussian shape, an additional gaussian factor can be added to the
likelihood forcing N, to stay within its gaussian limits. The lower is o (V) the lower will
be its impact on the final uncertainties on Ny and M. From this example we see that the
method of the nuisance parameters can be used to include the evaluation of systematic
uncertainties directly in the fit.




Proposed exercise

X=-0.6,-0.2,0.2,0.6
Y(X)= 542, 3+1, 51, 8+2

1) Find the best fit for Y(X)=a+bX+cX?

2) Find the best estimate for Y(1)

3) Find the the uncertainty of the best estimate for Y(1)
4) Find the p-value for the best fit

5) Find the best fit and p-value for Y(X)=a+bX



Hadron colliders
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The proton is a complex object done by “partons’:

valence quarks / sea quarks / gluons

s = (center of mass energy of interaction)’
§ = (center of mass energy of elementary interaction)’
e"e’: interactions btw point-like particles with V8 ~ Vs

pp: interactions btw point—like partons With\/§ << \/s
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Parton-parton collision: a+b =2 d+c.

fy (X2, Q2)

a,b = quarks or gluons;

d,c = quarks, gluons, or

leptons, vector bosons,...

d
x = fraction of proton
momentum carried by
. each parton;
Zi“' S — parton—parton Cc.0.m.
@ energy = x,x,s (see later);

f, (X, Q?)

Theoretical method: the factorization theorem

do(pp = cd) = [ dxdx, Y f,(x,.0") f, (x,.0")d6(ab — cd)

Two ingredients to predict PP Cross-sections:

—> proton pdfs (f, and f,)
Meods i RO fundamental process” cross-section 07/12/18



parton-parton collisions - let’s define
the relevant variables

pl = lel = ‘xl g(l,o’oal)
® Parton momentum fractions: x, and x, N
S
® Assume no transverse momentum Py =Xpby =% 7(1’0’0’_1)
. . A 2
® Assume proton mass negligible S=(p+p,) =xx,8

° Rapidity: [ evaluate the “Velocity” of the parton system in the

Lab frame: p._(p*p), x-x,
E
® It measures how fast the parton (P+py), x+x
11 E+p, 11 1+ 1. x
c.o.m. frame moves alongz y=3 nE_p =3 nﬁ=5 =
b4 2

e Relation between parton rapidity and each single X:
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Rapidity limit for a resonance of mass
M

® Suppose that we want to produce in a partonic interaction a
resonance of mass M then decaying to a given final state (e.g.
pp=2Z+X with Z>uu. Limits in x and y of the collision ?

* Completely symmetric case: x,=x,=x
x’ =M2;x=\/5417;ey =L;y=0
® Maximally asymmetricf case: X1S: 1, x,=x_.
x=Lx,=x_ = M—z;ymax = llni2
S 2 M

® Z production at LHC, Tevatron and SpS

- LHC (14TeV) Tevatron (1.96 TeV) SpS (560 GeV)

X . 4.2x10° 2.1x103 0.026

min

Youe  5.03 3.07 1.82
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