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Exercise: 
 
Determine the tracking efficiency for charged pions as a function of momentum  
in the KLOE detector exploiting the decay: 
 
φ -> π+π-π0
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Fig. 2. Data (dots) and MC (filled histogram) comparison of the difference between trans-
verse momentum of the pointer Ptmiss and of the second track (if any) Pttrk. Left: without
any correction. Center: with the MC cluster energy linearization only Right: with the MC
cluster energy linearization and the kinematic fit (for both data and MC).
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Fig. 3. Data (dots) and MC (filled histogram) comparison. Difference between the missing
momentum and the momentum of the second track (when found), Pt (left) and Pz (right).
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Given the momentum of the π0 (reconstructed using the golden pair clusters), and

the momentum of one of the two charged pions, it is possible to define an “observed

momentum”. Combining this with the colliding beam information and imposing the

closure of the event’s kinematic, a pointer (Pmiss) to the second track is defined.

We look for the second track in the cone around the pointer having an opening

angle ϑthr (ϑtrk < ϑthr). The reference value for the angle ϑthr is about 37◦, or more

precisely, cos(ϑthr) = 0.8.

The efficiencies obtained as a function of the missing Pt and Pz, are shown in figure

6. A scatter plot of the pointer spectrum is shown in the top left of figure 7; the

top right shows the 2D ratio of Data over MC efficiency. This ratio represents the

correction to be applied to the MC to better describe the data. The application of a

bin by bin correction would have left us to cope with a statistics problem, therefore

we have decided to work using slices of Pz and applying a 1D correction as function

of Pt.
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Fig. 6. Top: data. Bottom: MC. Left: efficiency as a function of Pt divided per charge.
Right: normalized residual distribution divided per charge with respect to the non charged
efficiency curve.
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Fig. 7. Top left: Pointer spectrum. Top right: ratio of Data/MC tracking efficiency as a
function of Pt and Pz. Two slices have been highlighted as examples (slice A corresponds
to −20 < Pz < 20 MeV, slice B to 120 < Pz < 160 MeV). Bottom: ratio of Data/MC
tracking efficiency as a function of Pt for slice A (left) and B (right). The ratio has been
fitted using the function defined in equation (5); the fit functions and the parameters are
shown.
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7 MC correction

The ratio of the Data/MC tracking efficiency as function of Pt, hereafter called

correction, can be fitted using the step function:

Cε(X) = A

(

1 − 1

1 + e
X−X0

δ

)

(5)

where A is the plateau value, X0 is the central value of the step and δ is proportional

to the length of the step (the smaller the steeper). The figure 7 shows the correction

and its fit for two slices of Pz.

When the fit has a very poor result, a different fit is performed with a constant

instead. The failure of the fit is due to the lack of statistics on the border of the

Pt − Pz distribution.

Comparing the fit results of charge separated efficiencies demonstrates that there is

no difference due to the charge of the tracks, as can be seen in figure 8.
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Fig. 8. Left: Correction and fit for the slice A previously defined: −20 < Pz < 20 MeV
for the two different charges. Right: value of the fit parameter A evaluated separately per
charge and with the two charge together.
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Proposed exercises 

In DAFNE operations for KLOE-2 experiment: 
 
Top-up injection 
2 mA injections at a rate of 2 Hz with 60% duty cycle 
Veto of KLOE-2 DAQ for 50ms at each single injection 
Dead time DAQ 4 µs 
Trigger rate ~ 8 kHz 
 
Determine DAQ inefficiency 
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Proposed exercises 

A. Di Domenico  104 Congresso SIF, Cosenza e Rende – 20 settembre 2018  
 
 
 

•  1999: first events collected by KLOE 
•  2000 – 2006: KLOE data-taking 
       ⇒   2.5 fb-1@√s=Mf 
     + 250 pb-1 off-peak @ √s=1000 MeV 

 
•  2008: DAΦNE upgrade: new interaction scheme 
•  Dec.2012-July 2013: installation of the new detectors  
 

Integrated luminosity (pb-1) 

Goal: 
5 fb-1 

Run I 
L = 0.8 fb-1 

eff. =77%    

Run II 
L = 1.6 fb-1 

eff.=  82% 

Run III 
L = 1.7 fb-1 

eff.= 82%  

Run IV 
L = 1.4 fb-1 

eff.=  81% 

•    July 2013: DAΦNE operations restarted   
•    November 2014: start of KLOE-2 run  
•  2014 � 2018: KLOE-2 data-taking 
•  March 30, 2018: End of KLOE-2 
                                data-taking 
      � 5.5 fb�1 collected @√s=Mφ 

The KLOE experiment at DAΦNE 

3 
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Proposed exercise 

12. We want to set-up a trigger to detect Z ! µ+µ� decays in pp collisions at LHC.
We have a low threshold (LT, pT >4 GeV) and a high threshold (HT, pT > 20 GeV)
single muon triggers. The e�ciencies of the two triggers for the muons coming from
Z decays are ✏(LT)=89.2%, ✏(HT)=62.1%. Determine the e�ciencies for triggering
on Z decays in the two configurations: (1) LT1 AND LT2, (2) HT1 OR HT2 .

13. The fraction of KL produced in e+e� collisions at the � peak interacting in the
KLOE calorimeter is approximately 5%. Determine the KL-lead cross-section, using
the following assumptions: The KLOE calorimeter is a single lead spherical layer 12
cm thick; the inner surface of the KLOE calorimeter is 2 m away from the e+e�

interaction region.

14. Consider the decay � ! ⌘� in the center of mass frame of the �. Calculate the energy
of the photon and the maximum and minimum energy of the photons in case the ⌘
decays in ��. We want to identify this decay looking at the inclusive radiative photon
spectrum from a sample of 106 � produced at rest. If we know that the combinatorial
photon spectrum in the energy region between 300 and 400 MeV is almost flat with
a number of events equal to 300 evts/MeV/104�, determine the energy resolution
required to observe with enough significance the searched decay.

15. Consider the parameters of the three accelerators:

• LHC: protons, R = 4.3 km, Emax = 7 TeV, TBC = 25 ns;

• LEP: electrons, R = 4.3 km, Emax = 100 GeV, TBC = 22 µs;

• DAFNE: electrons, R = 15 m, Emax = 500 MeV, TBC = 2.7 ns;

Evaluate for each accelerator the following quantities: the revolution frequency f ;
the number of bunches nb; the minimum value of the magnetic field Bmin required
to hold the particles in orbit. From the luminosity and current profile plots shown as
examples in the course slides, determine for DAFNE and LHC, the products �x ⇥ �y

16. Design a pp machine at
p
s = 40 TeV and L = 1036 cm�2s�1. Which values of �x

and �y are needed ? The following limits have to be respected:

• B < 5T

• N1, N2 < 1011/bunch

• TBC > 10 ns

17. Evaluate the maximum
p
sNN that can be obtained at LHC for Cu-Cu and Pb-Pb

collisions respectively.

18. Evaluate the value of
p
sNN for Au-Au collisions if the energy of the Au ions is 10.5

TeV. In case these collisions are done at RHIC for which value of the luminosity the
pile-up becomes of order 1 ? (RHIC circumference = 3.834 km, nb=111)

3
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5. The most updated values of the parameter µ = �/�SM for the Higgs boson from
ATLAS for the three main decay channels (in 2014) were:

µ�� = 1.55± 0.30

µZZ = 1.43± 0.37

µWW = 0.99± 0.29

Evaluate the compatibility among the three independent ATLAS results and calculate
the best overall estimate of µ from ATLAS. Then evaluate the compatibility with the
SM expectation (µ=1).

6. In the 2011+2012 LHC dataset (corresponding to about 25 fb�1), a sample of 2.24⇥105

tt events has been collected. We know that �(pp ! tt+X) is 177 ± 5 pb. How large
was the e�ciency for tt events assuming no background ?

7. We perform a cross-section measurement and obtain the following values: Ncand

=128, Nb = 14 ± 2, ✏ = 0.523 ± 0.002, Lint = 2.43 pb�1 ± 1.8 %: calculate the
resulting cross-section with its uncertainty. In case this is a measurement of e+e� !
⇡+⇡� at

p
s = 1 GeV, determine the value of the pion time-like form factor with its

uncertainty. The formula relating the cross-section to the form factor F⇡(s) is the
following:

�(s) =
⇡↵2

3s
�3
⇡|F⇡(s)|2

8. The Higgs boson production at a linear collider happens mainly through the reac-
tion e+e� ! ZH. If MH = 125 GeV, and the cross-section �(e+e� ! ZH,

p
s =

300GeV)= 220 fb, which value of luminosity do we need to get O(106) events in 1
year of data taking ? How many final states with two muons and two photons from
the Z ! µ+µ� and H ! �� simultaneous decays do we get in the same period ?
Evaluate the maximum and minimum photon energies from the Higgs.

9. Consider the reaction e+e� ! K+K� at a �-factory. Which fraction of events have
at least one kaon decaying within a sphere of R = 20 cm ? In which fraction of events
both kaons decay within the same sphere ?

10. The SM expected semi-leptonicKS charge asymmetry is 3⇥10�3. At Dafne we expect
to produce a sample of 1.2⇥109 tagged KSs. If the BR(KS ! ⇡e⌫)=BR(KS !
⇡+e�⌫)+BR(KS ! ⇡�e+⌫)=6.95⇥10�4 which error can we reach on the asymmetry
?

11. Which average instantaneous luminosity is required to improve by a factor 3 such an
uncertainty in one year of data taking (assuming a duty cicle of 50% and a tagging
e�ciency of 30%) ? [�(e+e� ! �)= 5 µb at the � peak].

2

The values of the parameter µ=σ/σSM for the Higgs boson for the three main decay channels 
measured in 2014 by ATLAS were: 

Proposed exercise 

19. Consider the Higgs production (MH =125 GeV) at a pp collider at
p
s = 14 TeV.

Evaluate the interval in rapidity y and the minimum value of x for direct Higgs
production.

20. The VLHC program (Very Large Hadron Collider) proposes proton-proton collisions
at a center of mass energy between 40 and 50 TeV and a luminosity larger than
1035cm�2s�1, in a ring with a radius of 17.5 km. The project requires a time between
bunch crossings not smaller than 25 ns (as it is for LHC). How many bunches can be
put ? If we know that the total proton-proton cross-section at this energy is about 100
mb, evaluate the average value of the pile-up. Finally evaluate the minimum value
of x and the maximum value of y for the production of an Higgs boson (MH=125
GeV) and of a second exotic Higgs boson having a mass of 5 TeV.

21. Estimate the space resolution needed to discriminate the charge of 1 TeV muons with
3 detector layers in a B=1 T magnetic field with an overall lever arm of 5 m.

22. Estimate the time resolution needed to discriminate between muons and electrons of
the same momentum, 500 MeV/c with two detectors at a distance of 3 m.

23. Define the thickness (in cm) of a lead absorber for:

• E=10 GeV photons

• E=10 GeV muons

• E=10 GeV protons

24. Estimate the mass resolution required to observe a signal of J/ production if the
number of expected candidates is S=54 and the background per unit of mass is b =
13 MeV�1.

25. A high intensity pulsed proton beam is directed onto a target. Downstream the
target a magnet system sweeps away all the charged particles so that only neutral
particles reach the experimental region, namely photons and neutrons in the kinetic
energy range between 5 and 100 MeV. The detector is located 5 m from the target
and measures the Time of Flight of photons and neutrons. Draw schematically the
arrival time distribution of all the particles. If the repetition rate of the proton beam
is 10 MHz, determine the kinetic energy of the neutrons that can be confused with
the photons.

26. We study antiproton annihilations at rest in an hydrogen target and we want to dis-
criminate the two processes pp ! ⇡+⇡� and pp ! K+K� . Calculate the momenta
of the pions and of the kaons and estimate the ratio of the rates of the two processes
(assuming only phase-space). Compare two possible systems to discriminate between
the two final states: one based on 3 stations in a 0.3 T magnetic field and one based

4
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Figure 15. From the ATLAS experiment. Results of the fits of 3 di↵er-
ent Higgs decay channels (namely ��, ZZ and WW ) in a 2-dimensional
plane, mass vs. signal strength. For each fit, both 68% and 95% probabil-
ity regions are shown. Notice that in all the cases apart from the ��, we
are very far from the gaussian limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29).

For most of the problems that are normally encountered in data analysis, the two ap-
proaches give the same practical results. However for a certain number of applications,
like the analysis of small signals, or the analysis of parameters close to the physical limit,
(some of these problems will be considered below), di↵erent results can be obtained de-
pending on the approach used.

In this section we briefly outline the two approaches putting in evidence the main
di↵erences between the two.

5.6.1. Bayesian intervals. We consider for simplicity the measurement of a physical
quantity x and a likelihood depending on a single parameter ✓, L(x/✓). x can be either
a single measurement or a set of measurement, and we call x0 the outcome of the mea-
surement. We aim to estimate ✓true with its uncertainty. The idea is to use directly the
Bayes theorem:

(137) p(✓true/x0) =
L(x0/✓true)⇡(✓true)R

d✓trueL(x0/✓true)⇡(✓true)

where ⇡(✓true) is the prior probability of ✓true. The Bayes theorem provides a pdf
of ✓true. Through the Bayes formula, the result of a measurement allows to update the

Bayesian	
  intervals	
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a-priori pdf, giving an a-posteriori pdf of ✓true. Notice the key-point of the bayesian
approach: the true value of the parameter is regarded as a random variable and the aim
of the analysis is to get informations on its pdf. Based on the pdf, it is possible to build
probability intervals for ✓true with content �:

(138)

Z ✓2

✓1

p(✓true/x0)d✓true = �

The interval [✓1, ✓2] is called credible interval. Eq.138 doesn’t define the edges of the
interval ✓1 and ✓2 in an unique way. For a given � several choices can be done to define
✓1 and ✓2. We quote here the most typical.

• Central intervals: the pdf integral is the same above and below the interval:
Z ✓1

�1
p(✓true/x0)d✓true =

1� �

2
(139)

Z +1

✓2

p(✓true/x0)d✓true =
1� �

2
(140)

• Upper limits: ✓true is below a certain value. In this case the interval is between
0 (if ✓ is a non-negative quantity) and ✓up:

(141)

Z ✓
up

0
p(✓true/x0)d✓true = �

• Lower limits: ✓true is above a certain value ✓low:

(142)

Z +1

✓
low

p(✓true/x0)d✓true = �

We insist that the key-point of this approach is that the true value of the parameter is
considered as a random variable, with a pdf, a mean and a variance.

5.6.2. Frequentist intervals. In order to define the frequentist confidence intervals we
use the so called Neyman construction. We start from the same experimental situa-
tion described above: a physical quantity, or a set of physical quantities x, a parameter
✓ and a likelihood function L(x/✓). For each value of ✓ it is possible to evaluate an
interval [x1(✓), x2(✓)] characterized by a probability content �:

(143)

Z x2(✓)

x1(✓)
L(x/✓)dx = �

This interval is not unique, we can consider a central interval (see above), but the
argument applies to any specified kind of interval.

Eq.143 is expressed graphically in fig.16. The measured quantity x is on the horizontal
axis while the parameter ✓ is on the vertical axis. For each ✓ we draw the segment
[x1(✓), x2(✓)] according to eq.143. We have obtained in this way the so called confidence
belt. Now we perform the measurement of x and we get x0. We draw a vertical line
at x0 and the intercepts of this line with the confidence belt give rise to an interval
[✓1(x0), ✓2(x0)]. What is the meaning of such an interval? The position of ✓true is not
known, however we know, by construction, that if we repeat the measurement a certain
amount of times, in a fraction � of the experiments x0 will be in the [x1(✓true), x2(✓true)]

prior	
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[x1(✓), x2(✓)] according to eq.143. We have obtained in this way the so called confidence
belt. Now we perform the measurement of x and we get x0. We draw a vertical line
at x0 and the intercepts of this line with the confidence belt give rise to an interval
[✓1(x0), ✓2(x0)]. What is the meaning of such an interval? The position of ✓true is not
known, however we know, by construction, that if we repeat the measurement a certain
amount of times, in a fraction � of the experiments x0 will be in the [x1(✓true), x2(✓true)]
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a-priori pdf, giving an a-posteriori pdf of ✓true. Notice the key-point of the bayesian
approach: the true value of the parameter is regarded as a random variable and the aim
of the analysis is to get informations on its pdf. Based on the pdf, it is possible to build
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• Upper limits: ✓true is below a certain value. In this case the interval is between
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axis while the parameter ✓ is on the vertical axis. For each ✓ we draw the segment
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interval so that in the same fraction of experiments, [✓1(x0), ✓2(x0)] will contain ✓true.
How it is normally said, the interval defined in this way, covers the true value with a
probability �.

(144) p(✓1(x0) < ✓true < ✓2(x0)) = �

The frequentist interval is built in such a way that, by repeating several times the
experiment, in a fraction � of the experiments the interval covers the true value of the
parameter. This property of the frequentist confidence intervals is called coverage.

Figure 16. Neyman construction. A segment between x1(✓) and x2(✓) is
evaluated for each value of the parameter ✓ as described in the text. The
segments define the confidence belt. Once a value of x, x0 is obtained,
the interval [✓1(x0), ✓2(x0)] is built.

It is important to understand properly eq.144. The probability statement is not
relative to ✓true that, in this context, is not a random variable but a fixed parameter.
The probability statement is referred to the outcome of the experiment: the probability
that our interval covers ✓true is �.

5.6.3. Comparison of the approaches. At first view the bayesian method appears simpler
and more similar to the logic of our normal reasoning. However the main criticism to
the bayesian method, is the fact that it requires the prior pdf of the parameter. This is
considered by the frequentists a problem, since it means that intervals can be defined only
if one has a prejudice on the parameter. Several authors have addressed the problem
of defining the ”non-informative” prior pdf, that is that pdf that corresponds to no
prejudice at all. It can be shown that a uniform pdf is not necessarily non-informative.
Priors with dependence like 1/✓ or 1/

p
✓ can be considered for specific problems. But

there is not consensus on how a non-informative prior can be defined.
On the other hand the frequentist approach has problems in some specific cases, when

the confidence intervals under-covers or over-covers the true value, that is in other words
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Fixed state
Evolving state
Kalman filter

Particle filters

We may summarize these facts by replacing the usual expression
for a Bayesian updating scheme

posterior / prior⇥ likelihood

with
revised / current⇥ new likelihood

represented by the formula

⇡n+1(✓) / ⇡n(✓)⇥ Ln+1(✓) = ⇡n(✓)f (xn+1 | xn, ✓).

In this dynamic perspective we notice that at time n we only need
to keep a representation of ⇡n and otherwise can ignore the past.

The current ⇡n contains all information needed to revise knowledge

when confronted with new information Ln+1(✓).

We sometimes refer to this way of updating as recursive.

Ste↵en Lauritzen, University of Oxford Sequential Bayesian Updating
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7. Search for ”new physics”: upper/lower limits

7.1. Introduction. Several analyses of experimental data in Elementary Particle Physics
concern the search for new physics. This means to set-up an experiment to identify
new phenomena that cannot be accounted for by the Standard Model. Common ex-
amples are all the searches for new particles where one has to find a ”signal” out of a
known background, or the detection of unpredicted decays.

In general a distinction is done between ”discovery” and ”exclusion”.

• Discovery: the Null Hypothesis H0, based on the Standard Model is falsified
by a goodness-of-fit test. This means that new physics should be included to
account for the data. This is an important discovery.

• Exclusion: the Alternative Hypothesis H1, based on an extension of the Stan-
dard Model (or on a new theory at all), doesn’t pass the goodness-of-fit test. H1

is excluded by data.

Both require goodness-of-fit tests as discussed in the previous section.
Exclusion means that the search has given a negative result. However a negative result

is not a complete failure of the experiment, but it gives important informations that have
to be expressed in a quantitative way so that theorists or other experimentalists can use
them for further searches. These quantitative statements about negative results of a
search for new phenomena are normally the ”upper limits” or the ”lower limits”.

By upper limit we mean a statement like the following: such a particle, if it exists,
is produced with a rate (or cross-section) below this quantity, with a certain probability.
On the other hand, by lower limit statements like: this decay, if exists, takes place
with a lifetime larger than this quantity, with a certain probability. Both statements
concern an exclusion.

We have already seen above how, in the context of the interval estimation, upper/lower
limits can be defined together with central intervals. In this Section we outline the meth-
ods to evaluate upper/lower limits in present experiments. We refer to the most common
case, namely the case of a counting experiment, where we want to make statements about
the rate of signal events out of a background.

First, the bayesian and frequentist approaches to the problem are briefly presented
and compared. Then the so called ”modified frequentist” CLs method will be described,
based on the profile likelihood ratio, and finally the case of the search for the Higgs
boson in the LHC experiments is discussed with some detail.

7.2. Bayesian limits. In the bayesian context, the result of the search is given as the
pdf of the variable we are looking for, that can be s (signal rate), or ⌧ (particle lifetime).
We define first the Likelihood function for the problem, and then we evaluate the pdf of
the signal rate using the Bayes theorem.

Let’s start with the simple case of a search where b = 0, b being the expected back-
ground. We call s the number of signal events. In this case the likelihood is:

(189) L(n0/s) =
e�ssn0

n0!

If we count n0 = 0 in a certain amount of time, the likelihood is:

(190) L(0/s) = e�s
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In order to use the Bayes theorem we need to have the prior probability ⇡(s). We have
already discussed this point above and we have seen that it is di�cult to define in a
general sense a non-informative prior. However in this case we assume a prior that is
flat for positive values of s and 0 for negative values of s. In this case the Bayes theorem
simplifies to:

(191) p(s/0) =
L(0/s)⇡(s)R
L(0/s)⇡(s)ds

= L(0/s) = e�s

Given a probability content ↵ (e.g. ↵=95%) the upper limit sup will be such that:

(192)

Z 1

s
up

p(s/0)ds = 1� ↵

that gives:

(193)

Z 1

s
up

e�sds = e�s
up = 1� ↵

We easily find sup=2.3 for ↵=90% and sup=3 for ↵=95%.
In case b is not equal to 0 (but is known with negligible uncertainty), and n0 is any

value, assuming the same prior for s, the Bayes theorem gives

(194) p(s/n0) =
e�(s+b)(s+ b)n0

n0!

The upper limit sup will be in this case such that:

(195)

Z 1

s
up

e�(s+b)(s+ b)n0

n0!
ds = 1� ↵

Numerical solutions of sup are given as a function of b for di↵erent values of n0 in fig.18.
In case n0 = 0 the results given above are still valid even if b is larger than 0.

If b is known with a given uncertainty (e.g. we know that b is defined between bmin

and bmax and has a pdf f(b)), eq.194 can be modified by including a convolution with
f(b):

(196) p(s/n0) =

Z b
max

b
min

e�(s+b0)(s+ b0)n0

n0!
f(b� b0)db0

The width of the function f(b) a↵ects the limit. A large uncertainty on the background
increases sup for any given value of b and n0. If b is a Poisson variable, �(b) =
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If a di↵erent prior is used (e.g. 1/s or 1/
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In order to use the Bayes theorem we need to have the prior probability ⇡(s). We have
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We remind that the result of this analysis is essentially the pdf p(s/n0). When n0

is significantly larger than b, it means that we are observing a signal, so that a central
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be
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Figure 18. 90% limit sup (A in the figure) vs. b (B in the figure) for
di↵erent values of n0. These are the upper limits resulting from a bayesian
treatment with uniform prior. (taken from O.Helene, Nucl.Instr. and
Meth. 212 (1983) 319)

The transition between an upper limit statement and a central interval statement de-
pends on the problem we are considering and is arbitrary (see below).

7.3. Frequentist limits. We go back here to the Neyman construction presented in
sect. 5.6. Another way to consider the meaning of eq.144 is the following. The two
extremes ✓1(x0) and ✓2(x0) of a central interval have the following properties: if ✓true =
✓1(x0) the probability of obtaining a value of x larger than x0 is (1��)/2; if ✓true = ✓2(x0)
the probability of obtaining a value of x smaller than x0 is also (1� �)/2.

Now let’s consider the Neyman construction for the case of an upper limit and apply
the same considerations given here. We call s the parameter (namely the amount of sig-
nal) and n0 the result of the measurement (a counting experiment). The construction is
shown in fig.19. The belt is limited on one side only, and for any result of a measurement
n0 we identify sup in such a way that if strue = sup, the probability to get a counting
smaller than n0 is 1 � �31. By considering the Poisson statistics without background
(b=0) we get:

(198)
n0X

n=0

e�s
upsnup
n!

= 1� �

31Since we are dealing with upper limits we have to omit here the 1/2, see for instance eqs.141 even
if these equations refer to the bayesian case.
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observed nabs and as a function of the expected number of background events Vb. (a) The 
classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 

Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit 
at a confidence level of 1 - j3 is given by 

1- j3 = 

= 

f;:P L( nobs Ivs ) dvs 

fooo 
L(nobslvs)dvs 

(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 
or since nobs is a positive integer, they can be solved by making the substitution 
x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 
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In order to use the Bayes theorem we need to have the prior probability ⇡(s). We have
already discussed this point above and we have seen that it is di�cult to define in a
general sense a non-informative prior. However in this case we assume a prior that is
flat for positive values of s and 0 for negative values of s. In this case the Bayes theorem
simplifies to:

(191) p(s/0) =
L(0/s)⇡(s)R
L(0/s)⇡(s)ds

= L(0/s) = e�s
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In case b is not equal to 0 (but is known with negligible uncertainty), and n0 is any

value, assuming the same prior for s, the Bayes theorem gives
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e�(s+b)(s+ b)n0
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The upper limit sup will be in this case such that:
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Numerical solutions of sup are given as a function of b for di↵erent values of n0 in fig.18.
In case n0 = 0 the results given above are still valid even if b is larger than 0.

If b is known with a given uncertainty (e.g. we know that b is defined between bmin

and bmax and has a pdf f(b)), eq.194 can be modified by including a convolution with
f(b):

(196) p(s/n0) =

Z b
max

b
min

e�(s+b0)(s+ b0)n0

n0!
f(b� b0)db0

The width of the function f(b) a↵ects the limit. A large uncertainty on the background
increases sup for any given value of b and n0. If b is a Poisson variable, �(b) =

p
b, an

increase in sup of about 10% for a given n0-b point is expected.
If a di↵erent prior is used (e.g. 1/s or 1/

p
s) di↵erent numerical results are obtained

for the same n0, b point. Only in case n0 = 0, b = 0, the result doesn’t depend on the
prior.

We remind that the result of this analysis is essentially the pdf p(s/n0). When n0

is significantly larger than b, it means that we are observing a signal, so that a central
interval for s should be given rather than an upper limit. In general a good interval will
be

(197) ŝ = n0 � b±
p
n0 + �2(b)
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  prior	
  (π(s)=	
  cost,	
  1/s,	
  1/√s	
  )	
  	
  (not	
  in	
  the	
  case	
  n0=b=0)	
  
General	
  result	
  for	
  any	
  n0,	
  transi.on	
  from	
  upper	
  limit	
  to	
  central	
  interval:	
  	
  
	
  
	
  
flip-­‐flop	
  problem	
  (see	
  next)	
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In order to use the Bayes theorem we need to have the prior probability ⇡(s). We have
already discussed this point above and we have seen that it is di�cult to define in a
general sense a non-informative prior. However in this case we assume a prior that is
flat for positive values of s and 0 for negative values of s. In this case the Bayes theorem
simplifies to:

(191) p(s/0) =
L(0/s)⇡(s)R
L(0/s)⇡(s)ds

= L(0/s) = e�s

Given a probability content ↵ (e.g. ↵=95%) the upper limit sup will be such that:

(192)

Z 1

s
up

p(s/0)ds = 1� ↵

that gives:

(193)

Z 1

s
up

e�sds = e�s
up = 1� ↵

We easily find sup=2.3 for ↵=90% and sup=3 for ↵=95%.
In case b is not equal to 0 (but is known with negligible uncertainty), and n0 is any

value, assuming the same prior for s, the Bayes theorem gives

(194) p(s/n0) =
e�(s+b)(s+ b)n0

n0!

The upper limit sup will be in this case such that:

(195)

Z 1

s
up

e�(s+b)(s+ b)n0

n0!
ds = 1� ↵

Numerical solutions of sup are given as a function of b for di↵erent values of n0 in fig.18.
In case n0 = 0 the results given above are still valid even if b is larger than 0.

If b is known with a given uncertainty (e.g. we know that b is defined between bmin

and bmax and has a pdf f(b)), eq.194 can be modified by including a convolution with
f(b):

(196) p(s/n0) =

Z b
max

b
min

e�(s+b0)(s+ b0)n0

n0!
f(b� b0)db0

The width of the function f(b) a↵ects the limit. A large uncertainty on the background
increases sup for any given value of b and n0. If b is a Poisson variable, �(b) =

p
b, an

increase in sup of about 10% for a given n0-b point is expected.
If a di↵erent prior is used (e.g. 1/s or 1/

p
s) di↵erent numerical results are obtained

for the same n0, b point. Only in case n0 = 0, b = 0, the result doesn’t depend on the
prior.

We remind that the result of this analysis is essentially the pdf p(s/n0). When n0

is significantly larger than b, it means that we are observing a signal, so that a central
interval for s should be given rather than an upper limit. In general a good interval will
be

(197) ŝ = n0 � b±
p
n0 + �2(b)


