Exercise:

Determine the tracking efficiency for charged pions as a function of momentum in the KLOE detector exploiting the decay:

$$
\phi->\pi^{+} \pi^{-} \pi^{0}
$$

Fig. 3. Data (dots) and MC (filled histogram) comparison. Difference between the missing momentum and the momentum of the second track (when found), P_{t} (left) and P_{z} (right).

Fig. 7. Top left: Pointer spectrum. Top right: ratio of Data/MC tracking efficiency as a function of P_{t} and P_{z}. Two slices have been highlighted as examples (slice A corresponds to $-20<P_{z}<20 \mathrm{MeV}$, slice B to $120<P_{z}<160 \mathrm{MeV}$). Bottom: ratio of Data/MC

$$
C_{\varepsilon}(X)=A\left(1-\frac{1}{1+e^{\frac{X-X_{0}}{\delta}}}\right)
$$ tracking efficiency as a function of P_{t} for slice A (left) and B (right). The ratio has been fitted using the function defined in equation (5); the fit functions and the parameters are shown.

Proposed exercises

In DAFNE operations for KLOE-2 experiment:
Top-up injection
2 mA injections at a rate of 2 Hz with 60% duty cycle
Veto of KLOE-2 DAQ for 50 ms at each single injection
Dead time DAQ $4 \mu \mathrm{~s}$
Trigger rate $\sim 8 \mathrm{kHz}$
Determine DAQ inefficiency

Proposed exercises

Proposed exercise

We want to set-up a trigger to detect $Z \rightarrow \mu^{+} \mu^{-}$decays in pp collisions at LHC. We have a low threshold (LT, $p_{T}>4 \mathrm{GeV}$) and a high threshold (HT, $p_{T}>20 \mathrm{GeV}$) single muon triggers. The efficiencies of the two triggers for the muons coming from Z decays are $\epsilon(\mathrm{LT})=89.2 \%, \epsilon(\mathrm{HT})=62.1 \%$. Determine the efficiencies for triggering on Z decays in the two configurations: (1) LT1 AND LT2, (2) HT1 OR HT2 .

Proposed exercise

The values of the parameter $\boldsymbol{\mu}=\sigma / \sigma_{S M}$ for the Higgs boson for the three main decay channels measured in 2014 by ATLAS were:

$$
\begin{gathered}
\mu_{\gamma \gamma}=1.55 \pm 0.30 \\
\mu_{Z Z}=1.43 \pm 0.37 \\
\mu_{W W}=0.99 \pm 0.29
\end{gathered}
$$

Evaluate the compatibility among the three independent ATLAS results and calculate the best overall estimate of μ from ATLAS. Then evaluate the compatibility with the SM expectation $(\mu=1)$.

Consider the Higgs production $\left(M_{H}=125 \mathrm{GeV}\right)$ at a pp collider at $\sqrt{s}=14 \mathrm{TeV}$. Evaluate the interval in rapidity y and the minimum value of x for direct Higgs production.

Proposed exercise

Consider the Higgs production $\left(M_{H}=125 \mathrm{GeV}\right)$ at a pp collider at $\sqrt{s}=14 \mathrm{TeV}$. Evaluate the interval in rapidity y and the minimum value of x for direct Higgs production.

Bayesian vs frequentist intervals (revisited)

Bayesian intervals

posterior
prior

$$
\stackrel{\rightharpoonup}{p}\left(\theta_{\text {true }} / x_{0}\right)=\frac{L\left(x_{0} / \theta_{\text {true }}\right) \pi\left(\theta_{\text {true }}\right)}{\int d \theta_{\text {true }} L\left(x_{0} / \theta_{\text {true }}\right) \pi\left(\theta_{\text {true }}\right)}
$$

Bayesian interval $\quad \int_{\theta_{1}}^{\theta_{2}} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }}=\beta$

The interval $\left[\theta_{1}, \theta_{2}\right]$ is called credible interval.

The edges θ_{1}, θ_{2} of the Bayesian intervals are not uniquely defined

$$
\int_{\theta_{1}}^{\theta_{2}} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }}=\beta
$$

Central intervals: the pdf integral is the same above and below the interval:

$$
\begin{aligned}
\int_{-\infty}^{\theta_{1}} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }} & =\frac{1-\beta}{2} \\
\int_{\theta_{2}}^{+\infty} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }} & =\frac{1-\beta}{2}
\end{aligned}
$$

Upper limits: $\theta_{\text {true }}$ is below a certain value. In this case the interval is between 0 (if θ is a non-negative quantity) and $\theta_{u p}$:

$$
\int_{0}^{\theta_{u p}} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }}=\beta
$$

Lower limits: $\theta_{\text {true }}$ is above a certain value $\theta_{\text {low }}$:

$$
\int_{\theta_{\text {low }}}^{+\infty} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }}=\beta
$$

Frequentist intervals

Neynman construction of the confidence intervals

$$
\int_{x_{1}(\theta)}^{x_{2}(\theta)} L(x / \theta) d x=\beta
$$

Coverage: $\quad p\left(\theta_{1}\left(x_{0}\right)<\theta_{\text {true }}<\theta_{2}\left(x_{0}\right)\right)=\beta$

Comments:

Bayes:

- Non informative prior (does it exist?)
- Recursive Bayes estimation => Bayes filter

In this dynamic perspective we notice that at time n we only need to keep a representation of π_{n} and otherwise can ignore the past.
The current π_{n} contains all information needed to revise knowledge when confronted with new information $L_{n+1}(\theta)$.
We sometimes refer to this way of updating as recursive.

Confidence Interval \& Coverage

- You claim, $\mathrm{Cl}_{\mu}=\left[\mu_{1}, \mu_{2}\right]$ at the $95 \% \mathrm{CL}$ i.e. In an ensemble of experiments CL (95\%) of the obtained confidence intervals will contain the true v alue of μ.
- If your statement is accurate, you have full coverage
-If the true CL is $>95 \%$, your interval has an over coverage
-If the true CL is $<95 \%$, your interval has an undercoverage

(consider the simple example of counting experiment)

- Discovery: the Null Hypothesis H_{0}, based on the Standard Model is falsified by a goodness-of-fit test. This means that new physics should be included to account for the data. This is an important discovery.
- Exclusion: the Alternative Hypothesis H_{1}, based on an extension of the Standard Model (or on a new theory at all), doesn't pass the goodness-of-fit test. H_{1} is excluded by data.

Exclusion means that the search has given a negative result. However a negative result is not a complete failure of the experiment, but it gives important informations that have to be expressed in a quantitative way so that theorists or other experimentalists can use them for further searches. These quantitative statements about negative results of a search for new phenomena are normally the "upper limits" or the "lower limits".

By upper limit we mean a statement like the following: such a particle, if it exists, is produced with a rate (or cross-section) below this quantity, with a certain probability. On the other hand, by lower limit statements like: this decay, if exists, takes place with a lifetime larger than this quantity, with a certain probability. Both statements concern an exclusion.

Bayes limits

$$
L\left(n_{0} / s\right)=\frac{e^{-s} s^{n_{0}}}{n_{0}!}
$$

Assume background $b=0$
If we count $\mathrm{n}_{0}=0$

$$
L(0 / s)=e^{-s}
$$

Let's consider Bayes theorem and assume uniform prior ($\pi=\operatorname{cost}$ for $s>0$ and $\pi=0$ for $s<0$)

$$
p(s / 0)=\frac{L(0 / s) \pi(s)}{\int L(0 / s) \pi(s) d s}=L(0 / s)=e^{-s}
$$

Given a probability content α (e.g. $\alpha=95 \%$) the upper limit $s_{u p}$ will be such that:

$$
\begin{gathered}
\int_{s_{u p}}^{\infty} p(s / 0) d s=1-\alpha \\
\int_{s_{u p}}^{\infty} e^{-s} d s=e^{-s_{u p}}=1-\alpha
\end{gathered}
$$

We easily find $s_{u p}=2.3$ for $\alpha=90 \%$ and $s_{u p}=3$ for $\alpha=95 \%$.

Bayes limits

Assume background $b \neq 0$ with negligible uncertainty and same prior as before If we count $\mathrm{n}_{0} \geq 0$

$$
\begin{aligned}
& p\left(s / n_{0}\right)=\frac{e^{-(s+b)}(s+b)^{n_{0}}}{n_{0}!} \\
& \int_{s_{u p}}^{\infty} \frac{e^{-(s+b)}(s+b)^{n_{0}}}{n_{0}!} d s=1-\alpha
\end{aligned}
$$

Bayes limits

$$
\int_{s_{u p}}^{\infty} \frac{e^{-(s+b)}(s+b)^{n_{0}}}{n_{0}!} d s=1-\alpha
$$

Figure 18. 90% limit $s_{u p}$ (A in the figure) vs. b (B in the figure) for different values of n_{0}. These are the upper limits resulting from a bayesian treatment with uniform prior. (taken from O.Helene, Nucl.Instr. and Meth. 212 (1983) 319)

Poisson

Fig. 9.9 Upper limits $\nu_{s}^{\text {up }}$ at a confidence level of $1-\beta=0.95$ for different numbers of events observed $n_{\text {obs }}$ and as a function of the expected number of background events ν_{b}. (a) The classical limit. (b) The Bayesian limit based on a uniform prior density for ν_{3}.

Bayes limits

Assume background $b \neq 0$ with uncertainty described by a pdf $f(b)$ within interval bmin, bmax

$$
\begin{gathered}
p\left(s / n_{0}\right)=\frac{e^{-(s+b)}(s+b)^{n_{0}}}{n_{0}!} \\
\downarrow\left(s / n_{0}\right)=\int_{b_{\min }}^{b_{\max }} \frac{e^{-\left(s+b^{\prime}\right)}\left(s+b^{\prime}\right)^{n_{0}}}{n_{0}!} f\left(b-b^{\prime}\right) d b^{\prime}
\end{gathered}
$$

In general the width of $f(b)$ affects the limit, large uncertainty on $b=>$ increase of $S_{\text {up }}$ The result in general depends on the prior ($\pi(\mathrm{s})=$ cost, $1 / \mathrm{s}, 1 / \mathrm{vs}$) (not in the case $\mathrm{n}_{0}=\mathrm{b}=0$) General result for any n_{0}, transition from upper limit to central interval:

$$
\hat{s}=n_{0}-b \pm \sqrt{n_{0}+\sigma^{2}(b)}
$$

flip-flop problem (see next)

