A —— X1". X(uonsjru_c'f_io_n__ ‘ () .
Uy(Xg) =t “ " \\\\\\\\

XOX

xy (1)

j Fx/ wydx =«

xp (1)

By construction the probability to measure x,'<x, if the true value u=p,(x,) is (1-a)/2
X, >X, if the true value u=u,(x,) is (1-a)/2

Coverage: suppose u* the true value

P(x, (1) <xy<x,(()) =
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Neyman’s construction
3 T 3

yli) === ==

&

150%)

>(W) uw* \{

Xg © o)
" X, (W¥) X, (LK
j Fx/ wydx =«
xp (1)

By construction the probability to measure x,'<x, if the true value u=p,(x,) is (1-a)/2
X, >X, if the true value u=u,(x,) is (1-a)/2

Coverage: suppose u* the true value

P(x, (1) <xy<x,(()) =
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Neyman’s construction

(11)

Ml(xo) S S X

S

. \\\ Wy (Xo)
1)

XO ° X e

>(W) )

Q

*‘“’ \

7
o

nf) xo{sUp) %

—~

Xo
xy (1)
j F(x/wydx =«
xp(u)

By construction the probability to measure x,’<x, if the true value u=u,(x,) is (1-ct)/2
X, >X, if the true value u=u,(x,) is (1-a)/2

P(x, (1) <xy<x,(()) =
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Suppose Poisson variable and n=0 is measured (no background) Upper limit (lower limit =0)

=> 0x0 (freq) or 1X1 (Beyes) ?

By construction the probability to measure x,’<x if the true value W=, (x,) is (1-a) (only one limit)
or the probability to measure x> x,, if the true value U=W,(x,) is o

[} n —l
P>0/ =52 1 e —g
gy frequentist
A =-In(l-a)
_ -1
g(/l/n:()):mp(n_()/l)f()(l) — € =e—/1

Bayesian

(uniform prior)

[p(n=0/2)f,(A)dA ]oe—ﬂd/l
0 0

A _
p(A<A)= J‘e_/ld/’tzl—e_’1 =
0

g(A/n=0)

90% | 95% | 99%
23 3.0 4.6

|

° Methods in Experimental Particle Physics
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frequentist limits

The belt is limited on one side only, and for any result of a measurement
no we identify s,, in such a way that if sy = syup, the probability to get a counting
smaller than ng is 1 — 8°!. By considering the Poisson statistics without background
(b=0) we get:

10 e Sup gN
Sy
n!
n=0
If ng = 0 we have
e v =1-7
1
Sup = In

1-p

from which we get the same numbers for s,, obtained in the bayesian case.



frequentist limits
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FIGURE 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(f) and oo is drawn for each value of the
parameter . The segments define the confidence region. Once a value
of n, np is obtained, the upper limit s,, is found. (For simplicity the
discrete variable n is considered as a real number here).



frequentist limits

If b is not equal to 0 but is known,

no e—(sup—|—b)(8up_|_b)n

(201) > - —1-0

n=0

and from this equation upper limits can be evaluated for the different situations.

It has been pointed out that the use of eq.201 gives rise to some problems. In particular
negative values of s,;, can be obtained using directly the formula®?. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper

prior.

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that ng is larger than b is exactly equal to the probability that
no is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a difference between two counts. The acceptance of such results is a sort of ”philosophical”

question and is controversial.

Flip-flop problem



m? = —54 + 30 eV?

Neutrino mass square - Frequentist

0.08

Neutrino mass square - Bayesian

p(m; /m?)

[f(m?)
i 0.07

0.012—

r 0.06
0.01—

0.05
0.008

0.04

0.006

0.03

0.004

0.02

mg < 4.6 eVQ 0.002:

\\L 0.01
11 L1 1 c

- p(m?)

0 =
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F1GURE 21. Example of the square neutrino mass. Construction of the
upper limit in the frequentist approach (left plot) and in the bayesian

approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-

mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).
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FIG. 4. Plot of confidence belts implicitly used for 90% C.L.
confidence intervals (vertical intervals between the belts) quoted by
flip-flopping physicist X, described in the text. They are not valid
confidence belts, since they can cover the true value at a frequency
less than the stated confidence level. For 1.36<<u<<4.28, the cov-

erage (probability contained in the horizontal acceptance interval) is
85%.



TABLE IV. 90% C L. intervals for the Poisson signal mean wu, for total events observed n , for known mean background b ranging from

0to 5.
no\b 0.0 05 1.0 1.5 2.0 2.5 30 35 4.0 5.0
0 000,244 0.00, 194 000, 161 000,133 0.00, 1.26 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.01 0.00, 0.98
1 0.11, 436 0.00, 3.86 0.00, 3.36 0.00, 291 0.0, 2.53 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 053,591 003,541 0.00,491 000,441 000,391 0.00,345 0.00,3.04 0.00,2.67 0.00, 2.33 0.00, 1.73
3 1.10, 742 0.60, 692 0.10, 642 0.00, 592 0.00, 542 0.00, 492 0.00, 442 0.00, 395 0.00, 3.53 0.00, 2.78
4 147, 860 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 5,60 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 1.84,999 153,949 125,899 093,849 043,799 0.00, 749 0.00, 699 0.00, 649 0.00, 599 0.00, 4.99
6 221,1147 190,1097 1.61,1047 133,997 108, 947 0.65, 897 0.15, 847 0.00, 797 0.00, 747 0.00, 6.47
7 3.56,12.53 3.06,12.03 2.56,11.53 2.09,11.03 1.59,1053 1.18,10.03 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 396,1399 346,1349 296,1299 2.51,1249 2.14,1199 1.81,1149 1.51,1099 1.06,1049 0.66, 9.99 0.00, 8.99
9 436,1530 3.86,14.80 3.36,1430 291,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30
10 5.50,16.50 5.00,16.00 4.50,15.50 4.00,15.00 3.50,14.50 3.04,1400 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 591,17.81 541,1731 491,16.81 4.41,1631 391,1581 345,1531 3.04,1481 2.67,1431 2.33,13.81 1.73,12.81
12 7.01,19.00 6.51,1850 6.01,1800 5.51,1750 5.01,1700 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2.38,14.00
13 7422005 692,1955 642,1905 592,1855 542,1805 492,17.55 4.42,1705 3.95,16.55 3.53,16.05 2.78,15.05
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 9482252 8982202 84821.52 79821.02 7482052 6982002 648,1952 598,19.02 548,18.52 4.48,17.52
16 9992399 9492349 8992299 8492249 7992199 7492149 6992099 6492049 5.99,1999 499,18.99
17 11.0425.02 10.54,24.52 10042402 9542352 9042302 8542252 8.04,2202 7.5421.52 7.0421.02 6.04,20.02
18 11.4726.16 10972566 104725.16 9972466 94724.16 89723.66 84723.16 79722.66 74722.16 647.21.16
19 12512751 12012701 11.51,26.51 11.01,26.01 10.51,25.51 10.01,2501 9.51,2451 9.01,2401 8.51,23.51 7.51,22.51
20 13.55228.52 13.05,28.02 12.55,27.52 12.0527.02 11.55,26.52 11.0526.02 10.55,25.52 10.05,25.02 9.5524.52 8.5523.52
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FIGURE 20. 90% limit s,, (Upper end of confidence interval for p in the
figure) vs. b for different values of ng. These are the upper limits resulting
from a frequentist treatment in the framework of the so called ” Unified
approach”. The dotted portions of the lines correspond to configuration
where central intervals rather than upper limits should be given. The
dashed portions of the lines correspond to very unlikely configuration
(very small ng when b is quite large, so that p(ng) is below 1%). (taken
from G.Feldmann, R.Cousins, Phys.Rev.D57 (1998) 3873)



CLs method

7.4. A modified frequentist approach: the C'L; method. Now we consider a
method, developed in the last years and applied in many analyses especially from LHC
experiments, including the search for the Higgs boson. It is the modified frequentist
approach to the problem of setting upper/lower limits in search experiments.

n. events and expected events  Y; = US; + b;

o)
Signal strength W= — Theory expectation u=1

Oth

s by m



CLs method

Add histogram of control regions, mj, background enriched

E|m;| = u;(0) depending on the nuisance parameters (and not on )

m —
J U

M S N o= (us;+b;)
L(Q/M,Q)ZH(MZJFM - H

=1 71=1



CLs method

Define the test statistics

K
=
I
|
(N
[u—
-

profile likelihood ratio

~ |
/N | /N
= |®

<> |<D>>
SN— | N

symbols: ji and 6 are the best values of the parameters obtained by maximizing L; 0 are
the values of the nuisance parameters obtained by maximizing L at p fixed. The test



CLs method

7.4.2. Discovery. In order to falsify a null hypothesis Hy we need to test the background-
only hypothesis. This can be done by using the test statistics qg, that is eq. 207 for

p=20
L(0,9)
L(i1, )

If we call q(o)bs the value of ¢y obtained using the data, we can easily define a p-value

(210) go = —21In

oo

(211) po = f(q0/0)dqo

ngs

that, for what we have seen in the previous paragraph, is essentially a x? test. If pg is
below the defined limit we falsify the hypothesis and we have done the discovery.



CLs method

7.4.3. Signal exclusion: CLgy,. We consider now how the test statistics shown in eq.

207 can be used for the exclusion of a given theory. Eq. 207 is rewritten with p = 13°
L(1,8

(212) g1 = —21In (A’T)
L(f,0)

The lower is g1, the more compatible the data are with the theory, and the less compatible
the data are with the pure background expectations. The pdf of ¢; can be evaluated
starting from MC samples, either generated with = 1 or for samples of pure background
events generated with p = 0. We call respectively f(q1/1) and f(q1/0) the two pdf’s. A
graphical example of these pdf’s is shown in Figure 22. The separation between the two
pdf’s determines the capability to discriminate the searched model with respect to the
background?”.



CLs method

Test statistics distribution
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FIGURE 22. Example of ¢; distributions in the two hypotheses, namely
1 =1 and pu = 0. The separation between the two distributions indicate
the capability to discriminate the two hypotheses.



CLs method

evaluate the sensitivity of the experiment.

define §; as the median of the f(q;/0) function®

expected

CLe” = / Flan/1)dan
q

1



CLs method

Test statistics distribution
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F1GURE 23. For the same example of alternative hypotheses shown in
Fig. 22: construction of CLY, (upper plot) and of C'L%, (lower plot).
In both cases the C'L is given by the blue area. In the upper plot the
median ¢; from background experiments is indicated as ¢;; in the lower

obs

plot the ¢; obtained by data is indicated as g



CLs method

However, we have determined the median C'L only. In actual background-only ex-
periments, we will have background fluctuations, in such a way that ¢; values will be
obtained distributed according to f(q1/0). So we can evaluate an interval of confidence

levels, by repeating the procedure above for two positions of ¢q; , cﬁl) and q~§2) such that
respectively:

gt

(214) RO -
@
(215 " fa/odg = EE

with e.g. 8 = 68.3% to have a gaussian one-std.deviation interval. Confidence levels are

then evaluated applying eq. 213 to dil) and q~£2).



CLs method

Observation

(216) CLY, = /OO flar/1)dq
q

obs
1

and this is the observed confidence level. If it is below, say 5% we exclude the signal
at 95% C'L.



CLs method

Test statistics distribution
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F1GURE 23. For the same example of alternative hypotheses shown in
Fig. 22: construction of CL;Y, (upper plot) and of CL%%, (lower plot).
In both cases the C'L is given by the blue area. In the upper plot the
median ¢; from background experiments is indicated as ¢;; in the lower

obs

plot the ¢; obtained by data is indicated as g



CLs method

7.4.4. Signal exclusion: C'Ls. A problem in the procedure outlined in the previous sec-
tion has been put in evidence, and a correction to it, the so called modified frequentist
approach has been proposed. We discuss now this method, also called C'Ls method that
is now widely employed for exclusion of new physics signals.

Let’s consider the situation shown in Figure 24 where the two pdf’s f(q:1/0) and
f(q1/1) have a large overlap signaling a small sensitivity. If we evaluate in this situation

CL;Y, we find a large value, so that we do not expect to be sensitive to exclusion.

However what happens if ¢?°° is the one shown in the same Figure ? The observed

CLglfb is well below 5% and the signal has to be excluded at 95% CL. But, are we sure
that we have to exclude it 7 In the same Figure the quantity C’Lgbs is reported:

oo

(217) CLy” = (q1/0)dq

qus

that is also very small in this case. Apparently the signal is small and the background
"under-fluctuates”, so that ¢¢*° is scarcely compatible with the signal+background hy-
pothesis but also with the background-only hypothesis. So, we are excluding the signal,
essentially because the background has fluctuated.

In order to avoid this somehow unmotivated exclusion, the C'Ls procedure has been

defined. The idea is to use, as confidence level, the C'Lg quantity, either expected or



CLs method

Test statitics distribution
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FIGURE 24. Same construction of Fig. 23 for a situation where the
discrimination between the two hypotheses is particularly poor and the
overlap between the two distributions is high. The CLY is high (up-
per plot) but for a particular experiment with a under fluctuation of the
background the CLgffb can be small in such a way to reject the signal
hypothesis (lower plot). In the lower plot the magenta area shows CLgbs
from which C'Lg is built. In this case using the C'Lg prescription rather

than the C'Ls, one the signal is not rejected.



CLs method

CLS—I—b
CLy

CLs =

The C'Ls; method is also said modified frequentist approach. In fact, the confidence
interval obtained in this way has not the coverage properties required by the ”orthodox”
frequentist paradigm. So if we build a confidence interval with a C'Ls of «, the coverage
is in general larger than «, so that the Type-I errors are less than 1 — a.



Basic Definitions: POWER

* o =Prob(rejectH,| H,)

o« The POWER of an hypothesis
test is the probability to reject
the null hypothesis when it is indeed
wrong
(the alternate analysis is true)

. POWER="Prob(reject H,| H,)
S = Prob(accept H, | H,)
1— B = Prob(reject H,| H,)

H =H

0 1

POWER = Prob(reject H,| H,)

1- B = Prob(reject H,| H,)

o« The power of a test increases as
the rate of typell error decreases -o

! I X

B

H, :~H1

H,

l

hlhn:n

-3.0 10 1 30

o=significance

,;\

=0

1-B



Birnbaum (1977)
"A concept of statistical evidence 1s not plausible unless it finds
'strong evidence for H, as against H '

with small probability (o) when H, is true,

and with much larger probability ( 1— ) when H, is true. "

:J' q} ) Birnbaum (1962) suggested that o /1 -

(significance | power)should be used as a measure of

the strength of a statistical test .rather than o alone

Gimbll) peliup s

A 'Pft)b(r@) Ho) Ho) p'=CL;



If p<a reject null

1200w T T T [ W g T v T
POWER=Prob(rejH, ,|H,)
o —:
-,
400 - P
200 1 & palt
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.
p-Vralue - testing the null hypothesis

When testing the b hypotheis (null=b), it is custom to set

X =2910*%
> if p,<L.910-*the b hypothesis is rejected
->Discovery

When testing the s+b hypothesis (null=s+b), set o« =5%
if p.,,<5% the signal hypothesis is rejected at the 95%
Confidence Lev-el (CL)

- Exclusion




