

• ν : no no no no;

 v da apparente sbilanciamento dell'evento (<u>ermeticità</u>).

KLOE - I

- e^+e^- collisions at $\sqrt{s} = 1.02 \text{ GeV} = M_{\phi}$
- Low multiplicity events well suited for "exclusive" analyses.
- Particles to detect (momentum range $50 \div 500$ MeV):
 - Pions
 - Photons
 - Electrons
 - Muons
 - Charged kaons from $\phi \rightarrow K^+K^-$ (momentum = 130 MeV)
 - Neutral Kaons (see later)
- At these low momenta, there are not "hadronic showers", a pion is similar to a muon. On the other hand, electrons and photons are "e.m. showers".
- Strategy:
 - A tracking chamber in magnetic field to measure charged particles momenta (with some charged kaon discrimination through dE/dx measurement);
 - A calorimeter on its back to measure photons, and to help in the discrimination between pions, muons and electrons through time-of-flight;

KLOE - II

Specific KLOE case determines the detector overall dimensions:

 $\phi \to K_0 \overline{K}_0 \to K_S K_L$

$$p(K_0) = 110.6 \text{ MeV/c} \tau(K_S) = 0.8954 \times 10^{-10} \text{ s} \qquad \Rightarrow l(K_S) = \tau(K_S) \beta\gamma \text{ c} = 6 \text{ mm} \tau(K_L) = 5.116 \times 10^{-8} \text{ s} \qquad \Rightarrow l(K_L) = \tau(K_L) \beta\gamma \text{ c} = 3.4 \text{ m}$$

A>50% (acceptance on K_L) if
$$A = \int_{0}^{R} f(r) dr = \frac{1}{l(K_L)} \int_{0}^{R} e^{-r/(K_L)} dr = 1 - e^{-R/(K_L)}$$

R>2.3 m

SuperConducting Coil + ReturnYoke $B \approx 0.5 T$ typical curvature radii $R = p_T / 0.3B = 33 \div 330 \text{ cm}$ Drift chamber $\approx 10^4$ wires in stereo configuration momentum measurement down to 50 MeV typical track: \approx 30 hits with 200 μ m space resolution each. Calorimeter Lead-Scintillating fibers calorimeter Read-out through 4880 PMTs

Energy resolution (record for a sampling calorimeter)

$$\frac{\sigma(p_T)}{p_T} \approx 0.4\%$$
$$\frac{\sigma(E)}{E} \approx \frac{5.7\%}{\sqrt{E(GeV)}}$$

The KLOE drift chamber

Stereo wires Measurement of two coordinates in the two views:

 $Y = Y_0$

 $\eta = \eta_0$

Each measurements is a line in the X-Y plane:

$$Y = Y_0$$

$$Y = \eta_0 / \cos\theta + tg\theta X$$

Risolvo il sistema e ottengo (sin $\theta \approx \theta$, cos $\theta \approx 1$

$$X = (Y_0 \cos\theta - \eta_0) / \sin\theta \approx (Y_0 - \eta_0) / \theta$$

NB: given $\sigma(Y_0)$ and $\sigma(\eta_0)$ $\Rightarrow \sigma(X) = \sigma(Y_0) \sqrt{2/\theta}$

The KLOE calorimeter

The KLOE calorimeter

KLOE calorimeter: Time-of-flight

KLOE-2 at $DA\Phi NE$

CC

LYSO Crystal w SiPM Low polar angle

Tungsten / Scintillating Tiles w SiPM Quadrupole Instrumentation

Scintillator hodoscope +PMTs

Inner Tracker – 4 layers of Cylindrical GEM detectors

Improve track and vtx reconstr.

11 m da IP

calorimeters LYSO+SiPMs at $\sim 1 \text{ m from IP}$

KLOE event: $\phi \rightarrow K_{S}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$

26/12/18

$\mathbf{K}_{\mathbf{S}}$ and $\mathbf{K}_{\mathbf{L}}$ Tagging at KLOE

 K_S tagged by K_L interaction in EmC Efficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 2 MeV

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV

Resolution of energy measurements through e.m. calorimetry

- In general the energy resolution of an e.m. calorimeter is given in terms of $\sigma(E)/E$.
- Main contributions:
 - $a/\sqrt{E} \rightarrow$ due to statistics: sampling fluctuations and/or number of photoelectrons fluctuations;
 - *b*/E → tipically due to the fluctuations of a constant contribution to the energy (e.g. pedestal, electronic noise,...)
 - $c \rightarrow$ constant term: due to systematics, calibration, containment.
- All three terms contribute. Normally *c* dominates at high energies, and *a* at low/intermediate energies. *b* is present only in specific cases.

Electromagnetic calorimetry

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
Bi ₄ Ge ₃ O ₁₂ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E} \oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5 \text{ GeV}$	1998
PbWO ₄ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_{0}$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	5 1998
Scintillator/depleted U (ZEUS)	$20 - 30X_0$	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_{0}$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$	1996

Table 31.8: Resolution of typical electromagnetic calorimeters. E is in GeV.