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Abstract

We shall review methods used in the description of decoherence on particle
probes in experiments due to surrounding media. This will include conventional
media as well as a model for space-time foam arising from non-critical string
theory.

1 The role of decoherence

Until recently in elementary particle physics the environment was not con-

sidered. Scatterings were calculated in a vacuum background and S-matrix

elements were calculated within the paradigm of the standard gauge theory

model. The latter is a successful theory overall. However, recently systems

which oscillate coherently have been investigated with increasing precision, e.g.

neutrino and neutral meson flavour oscillations. Clearly neutrinos produced in

the sun, on going through it, encounter an obvious scattering environment. In

laboratory experiments however there does not seem to be the need for such

considerations; of course there are uncertainties in determining time and posi-

tion which lead to features akin to decoherence 1). However, triggered again

by increased precision, the effect of fluctuations in the space-time metric due

to space-time defects such as microscopic black holes, and D branes in string

theory are being estimated. Given the smallness of the gravitational coupling

compared to the other interactions in the past the search for such effects was

regarded as optimisitc. Progress in experimental techniques is making such

effects more testable 2).

In this Handbook it was considered to be desirable to split the discussion

of decoherence between two chapters.This one will render a brief account of the

methods of decoherence that are used in the analysis of experiments given in



the companion chapter 3). We shall demonstrate why there is a large univer-

sality class in the space of theories describing decoherence with most analyses

using models from this class. However we should stress that the universality

is for descriptions where the system-environment interaction is in some sense

conventional. Indeed when we introduce descriptions emanating from string

theory we can and do produce descriptions which can give qualitatively differ-

ent effects 4). Such non-conventional descriptions are to be expected since it

is natural for quantum space-time to be somewhat different from the paradigm

of Brownian phenomena in condensed matter. Moreover the manifestation of

gravitational decoherence in a theory, which is diffeomorphic covariant at the

classical level, is not just restricted to fluctuation and dissipation. It is pivotal

in the breakdown of discrete symmetries such as CPT and more obviously T.

This is an exciting role for decoherence because it gives rise to qualitatively

new phenomena 5) which is being tested now and in the next generation of

laboratory experiments.

This paper will be divided into three sections:

• decoherence in a general setting with a discussion of how coherence is lost

and the implication for discrete symmetries

• generic treatment of system-reservoir interactions and the Lindblad for-

malism from Markovian approximations

• non-critical string theory and D-particle foam and the phenomenolgy of

stochastic metrics

2 General Features of Decoherence

The fact that an environment E interacts with a system S and is affected by it

is obvious whether they interact classically or quantum mechanically. However

classically the measurement of E can only locally affect S. This is in sharp

contrast to the quantum mechanical situation where non-local effects can take

place. The associated distinguishing property is that of entanglement. For the

compound system ES Schmidt bases allow us to write the state |Ψ〉 as

|Ψ〉 =
∑

n

√
pn |φn〉 |Φn〉



where the Hilbert space HS of states |φn〉 are associated with S and the Hilbert

space HE of states |Φn〉are associated with E . In the Schmidt basis the states

for different n in the different spaces have to be mutually orthogonal i.e.

〈φn| φm〉 = 〈Φn| Φm〉 = δnm

and the non-negative coefficients pn satisfy
∑

n p2
n = 1.

The corresponding density matrix is

ρ = ρclass. +
∑

n6=m

√
pnpm |φn〉 〈φm| ⊗ |Φn〉 〈Φm|

where ρclass. =
∑

n pn |φn〉 〈φn| ⊗ |Φn〉 〈Φn|. The term ρ − ρclass. is known as

the entanglement. Clearly entanglement is a measure of the departure of the

compound system from a product state of states of S and E . A classic example

of a pure entangled state is the EPR state ( Einstein-Podolsky-Rosen) written

conventionally in terms of spin 1
2 systems

|↑〉 |↓〉 − |↓〉 |↑〉√
2

which is clearly not factorisable. Now let us see how the interaction between S
and E leads to decoherence by considering a simple interaction

λHES =
∑

n

|φn〉 〈φn| ⊗ Ân

where Ân are operators on the HE . For an initial pure unentangled state i.e. a

product state

|Ψ〉 =
∑

n

cn |φn〉 |Θ0〉

(where |Θ0〉 can be expressed in terms of the |Φn〉s) under time evolution

|φn〉 |Θ0〉 t−→ |φn〉 exp
(
−iÂnt

)
|Θ0〉 ≡ |φn〉 |Θn (t)〉

The density matrix traced over the environment ρS (t) gives

ρS (t) =
∑

n,m

c∗mcn 〈Θm (t) |Θn (t)〉 |φm〉 〈φn|



If the circumstances are such that 〈Θm (t) |Θn (t)〉 −→ δmn as t −→ ∞,

then asymptotically

ρS (t) −→
∑

n

|cn|2 |φn〉 〈φn| .

All coherences embodied by off-diagonal matrix elements have vanished, i.e.

there is complete decoherence 6).

We will now consider an associated aspect of the interaction of the sys-

tem with the environment, the lack of an invertible scattering matrix. Con-

sider schematically three spaces H1, H2 and H3 where H1 is the space of states

of the initial states, H2 is the state space for inaccessible environmental de-

grees of freedom (e.g. states inside a black hole horizon) and H3 is the space

of final states. Within a scattering matrix formalism consider an in-state∑
A xA |XA〉1 |0〉2 |0〉3 (where the subscripts 1, 2 and 3 are related to the spaces

H1, H2 and H3) this is scattered to
∑

A S
bc
A xA |0〉1

∣∣∣Y b
〉

2

∣∣∣Zc
〉

3
where the bar

above the state labels indicates the CPT transform 7). ( On introducing the

operator θ = CPT we have explicitly
∣∣∣Y b

〉
= θ |Yb〉 etc.) Now on tracing over

the inaccessible degrees of freedom ( in H2 ) we obtain

|XA〉 〈XA| −→
∑

c,c′

6 S c c′

A A

∣∣∣Zc
〉 〈

Z
c′

∣∣∣

with the effective scattering matrix 6 S given by

6 S c c′

A A =
∑

b,b′

S
bc
A S

∗ b′c′

A .

This does not factorise, which it would have to, for 6 S to be of the form

UU †. Consequently evolution is non-unitary. This is generic to environmental

decoherence. Of course with space-time defects the inaccessible degrees of

freedom can be behind causal horizons.

For local relativistic interacting quantum field theories there is the CPT

theorem. Such theories show unitary evolution. A violation of CPT for Wight-

man functions ( i.e. unordered correlation functions for fields) implies violation

of Lorentz invariance 8). However CPT invariance of course is not sufficient

for Lorentz invariance. For physical systems, which in the absence of grav-

ity show CPT invariance, the incorporation of a gravitational environment



can lead to non-unitary evolution as we have argued. In fact we shall sketch

arguments from non-critical string theory which produce such non-unitary evo-

lution. There is then a powerful argument due to Wald which argues that an

operator θ incorporating strong CPT invariance does not exist. The argument

proceeds via reduction ad absurdum. For strong CPT invariance to hold we

should have in states and out states connected by 6 S and θ and their operations

commute in the following sense. For an in state ρin there is an out state ρout

such that

ρout = 6 Sρin.

Also there is another out state ρ′out = θρin associated with ρin. If the CPT

transforms of states have the same 6 S evolution as the untransformed states

then there is strong CPT invariance. In such situations

θ 6 Sθ 6 Sρin = ρin

and so

θ 6 Sθ 6 S = I,

i.e. 6 S has an inverse. In most circumstances interaction with an envi-

ronment produces dissipation and so the inverse of 6 S would not exist. Hence

the assumption of strong CPT is incompatible with non-unitary evolution 9).

3 Particles propagating in a medium and master equations

Particles reaching us from outside a laboratory always travel through some

physical medium which can often be described by a conventional medium. For

the moment we will be general and call the medium E and the particle S. We

are ignoring particle-particle interactions and so the approximation of a single

body point of view is appropriate. This bipartite separation can be subtle since

different degrees of freedom of the same particle can be distributed between E
and S. Initially (at t = t0) the state ρ of the compound system is assumed to

have a factorised form

ρ (t0) = ρS ⊗ ρE (1)



with ρS being a normalised density operator on the Hilbert space HS of states

of S and analogously for ρE . This condition may be not hold in the very

early universe and for an ever present meidum such as space-time foam; E and

S would then always be entangled. Certainly for laboratory experiments the

condition 1 is acceptable 10) and the analysis is simplified. Write the total

hamiltonian H as

H = HS + HE + ĤSE

where HSE represents the interaction coupling the system and environment.The

Heisenberg equation is

∂ρ

∂t
= −i [HS + HE + HSE , ρ] ≡ Lρ (2)

and we will also find it useful to let −i [HS , ρ] ≡ LSρ, −i [HE , ρ] ≡ LEρ and

−i [HSE , ρ] ≡ LSEρ. ρ evolves unitarily. For measuring with operators acting

on HS it is sufficient to consider

ρS = TrBρ (3)

but given a ρS there is in general no unique ρ associated with it. Hence the

evoultion of ρS is not well defined. However by choosing a reference environ-

ment state ρE satisfying

LEρE = 0 (4)

we can associate with a ρS a unique state ρS ⊗ ρE of SE . In this way a well

defined evolution can be envisaged.

We will obtain a master equation for ρS by using the method of projectors
11). Let us define

Pρ = (TrEρ) ⊗ ρE .

Clearly

P 2ρ = [TrEρE ] (TrEρ) ⊗ ρE = (TrEρ) ⊗ ρE = Pρ

and so P is a projector. Also we define Q = 1 − P . Acting on 2 with P gives

P
∂ρ

∂t
= PLρ = PLPρ + PLQρ. (5)

Similarly

Q
∂ρ

∂t
= QLρ = QLPρ + QLQρ. (6)



These give two coupled equations for Pρ and Qρ. 6 can be solved for Qρ on

noting that (
∂

∂t
− QL

)
Qρ = QLPρ

and then on formally integrating

∫ t

0

∂

∂t′

(
e−QLt′Qρ (t′)

)
dt′ =

∫ t

0

e−QLt′QLPρ (t′) dt′

i.e.

e−QLtQρ (t) = Qρ (0) +

∫ t

0

e−QLt′QLPρ (t′) dt′. (7)

This expression for Qρ is substituted in 5 to give

TrE

[
P

∂ρ

∂t

]
=

∂ρS
∂t

= TrE [PLPρ]+TrE

[
PL

(
e−QLtQρ (0) +

∫ t

0

e−QL(t−t′)QLPρ (t′) dt′
)]

,

and can be simplified further on noting that

PLEQρ = PLE (ρ − Pρ) = PLEρ = 0 =⇒ PLE = 0 (8)

owing to the cyclic properties of traces. Also

PLSQρ = PLS (ρ − ρS ⊗ ρE) = LSPρ − (LSρS) ⊗ ρE = 0 =⇒ PLS = PLSP.

(9)

Hence

TrE (PLSPρ) = TrE (PLSρ)

= TrE (TrE (LSρ) ⊗ ρE) = TrE (LSρ) = LSρS .

Also we assume that HSE = VS ⊗VE (which is standard for local quantum field

theory) and so

TrE (PLSEPρ) = TrE (PLSEρS ⊗ ρE)

= TrE [P (VSρS) ⊗ (VEρE) − P (ρSVS) ⊗ (ρEVE)]

= TrE [VSρS ⊗ ρETrE (VEρE) − ρSVS ⊗ ρETrE (ρEVE )]

= [VS , ρS ] ⊗ ρE (TrE (VEρE))

= TrE (LSEρE) ρS .



The analysis would go through also when HSE is a sum of factorised terms.

Similarly on using 8 and 9

TrE
(
PLeQLtQρ (0)

)
= TrE

(
LSEeQLtQρ (0)

)

and

TrE

(
PLeQLt′QLPρ (t − t′)

)
= TrE

(
LSEeQLt′QLρS (t − t′) ⊗ ρE

)
.

In summary the master equation reduces to

∂

∂t
ρS (t) = Leff

S [ρS (t)] +

∫ t

0

K (t′) [ρS (t − t′)] + J (t) (10)

with

Leff
S ≡ LS + TrE (LSEρE) ,

K (t) [ρS ] = TrE
(
LSEeQLtQL [ρS ⊗ ρE ]

)
,

J (t) = TrE
(
LSEeQLtQρ (0)

)
.

In general it is an integro-differential equation with a memory kernel K. Since

the evolution of ρ is unitary, the positivity of ρ is maintained. The partial trace

ρS (t) of the positive operator ρ preserves the positivity. (10) is exact and so

guarantees a positive ρS (t). It is only when approximations (truncations) are

made that positivity may be lost. The Markov approximation occurs if there is

a timescale τE associated with K (t) which is much shorter than τS the natural

time scale of the system S i.e. τS

τE
−→ ∞. This Markov approximation has to

be done carefully for otherwise positivity can be lost 12). Mathematically there

is another singular solution of this limit, τS −→ ∞ with τE finite 13) which leads

to the phenomenonology of dynamical semi-groups and the Lindblad formalism
14).

Definition 1 Time evolutions Λt with t ≥ 0 form a dynamical semi-group if

a) Λt1 ◦ Λt2 = Λt1+t2 , b) Tr [Λtρ] = Tr [ρ] for all t and ρ and c) are positive

i.e map positive operators into positive operators.

There are other technical conditions such as strong continuity which we

will not dwell on. As far as applications are concerned the most important



characterisation of dynamical semi-groups is that they arise from the singu-

lar limit mentioned above and are governed by the following theorem due to

Lindblad:

Theorem 2 If P (H) denotes the states on a Hilbert space H, and L is a

bounded linear operator which is the generator of a dynamical semi-group (i.e.

Λt = eLt ), then

L [ρ] = −i [H, ρ] +
1

2

∑

j

([
Vjρ, V †

j

]
+

[
Vj , ρV †

j

])

where H
(
= H†) , Vj and

∑
j V †

j Vj are bounded linear operators on H.

This is the Lindblad form which has been used extensively in high energy

physics phenomenology. L [ρ] , in the absence of the terms involving the V s, is

the Liouville operator. H is the hamiltonian which generally could be in the

presence of a background stochastic classical metric 15) ( as we will discuss

later). Such effects may generally arise from back-reaction of matter within a

quantum theory of gravity 16) which decoheres the gravitational state to give

a stochastic ensemble description. In phenomenological analyses a theorem

due to Gorini, Kossakaowski and Sudarshan 17) on the structure of L, the

generator of a quantum dynamical semi-group 14, 17) is of importance. This

states that for a non-negative matrix ckl (i.e. a matrix with non-negative

eigenvalues) such a generator is given by

dρ

dt
= L[ρ] = −i[H, ρ] +

1

2

∑

k,l

ckl

(
[Fkρ, F †

l ] + [Fk, ρF †
l ]

)
,

where H = H† is a hermitian Hamiltonian, {Fk, k = 0, ..., n2 − 1} is a basis in

Mn(C) such that F0 = 1√
n
In, Tr(Fk) = 0 ∀k 6= 0 and Tr(F †

i Fj) = δij
17). In

applications we can take Fi = Λi

2 (where, for example, Λi are the Gell-Mann

matrices) and satisfy the Lie algebra [Fi, Fj ] = i
∑

k fijkFk, (i = 1, ...8), fijk

being the standard structure constants, antisymmetric in all indices. It can

always be arranged that the sum over k and l run over 1, . . . , 8. Without a

microscopic model, in the three generation case, the precise physical significance



of the matrix ckl cannot be understood. Moreover a general parametrisation

of ckl is too complicated to have any predictive power.

It is precise in formulation but gives no inkling of its SE compound system

progenitor. Therein lies its weakness 18) but nonetheless it has been useful in

providing ‘test’ theories and estimating orders of magnitudes for the strength

of effects. If the strength of effects are in accord with a theoretical picture

then it has been customary to conclude that the source of the decoherence is

compatible with the theoretical picture. Recently it has been argued that this

may be too simplistic and it is necessary to delve into the background SE to

be able to argue in favour of a picture.

4 Master Equations from (Non-critical) String Theory

When neutrinos from the Sun are produced ( e.g. from the nuclear p−p cycle)

and pass through it, the nature of E and LSE can be understood from the gauge

theories of the weak interactions 19). Consequently the programme outlined

in the previous paragraph with a perturbative evaluation of K (t) is feasible in

principle. However in recent years there has been a debate on whether micro-

scopic black holes can induce quantum decoherence at a microscopic level. The

presence of quantum-fluctuating microscopic horizons, of radius of the order of

Planck length (10−35 m), may give space-time a “foamy” structure, causing de-

coherence of matter propagating in it. In particular, it has been suggested 20)

that such Planck-scale black holes and other topological fluctuations in the

space-time background cause a breakdown of the conventional S-matrix de-

scription of asymptotic scattering in local quantum field theory.Hence when we

consider space-time foam we are on less firm ground for applying the Lindblad

formalism. Clearly gleaning an understanding of the nature of space-time itself

raises a huge number of foundational issues. String theory is one attempt to

address such questions but is still far from the goal of clarifying strong gravity.

There are some who even believe that gravity is an emergent feature and con-

sequently that an attempt to understand the quantum aspects of gravity may

be fundamentally futile. It is not appropriate to enter this debate here. As far

as experiments are concerned, both now and in the near future, it is reasonable



to ask what the current theories have to say concerning quantum effects where

a nearly flat metric gravity is clearly reasonable.

The issue of quantum-gravity-induced decoherence is controversial and

worthy of further phenomenological exploitation. We shall restrict ourselves to

a specific framework for analyzing decoherent propagation of low-energy mat-

ter in foamy space-time backgrounds in the context of string theory 21, 22),

the so-called Liouville-string 23) decoherence 24). One motivation for using

string theory is that it appears to be the best controlled theory of quantum

gravity available to date. At this juncture we should also mention that there

are other interesting approaches to quantum space-time foam, which also lead

to experimental predictions, e.g. the “thermal bath” approach advocated in
25), according to which the foamy gravitational environment may behave as a

thermal bath; this induces decoherence and diffusion in the propagating mat-

ter, as well as quantum damping in the evolution of low-energy observables,

features which are, at least in principle, testable experimentally. As we shall

see presently, similar behaviour is exhibited by the specific models of foam that

we study here; the D-particle foam model of 26, 27) may characterize modern

versions of string theory 22), and are based on point-like membrane defects in

space-time (D-particles). Such considerations have more recently again come

to the fore because of current neutrino data including LSND data 28). There

is experimental evidence, that the neutrino has mass which leads to neutrino

oscillations. However LSND results appear consistent with the dominance of

anti-neutrino oscillations νe ⇄ νµ over neutrino oscillations. In particular, pro-

vided LSND results turn out to be correct, which at present is quite unclear,

there is evidence for CPT violation. It has been suggested recently 5) that

Planck scale quantum decoherence may be a relevant contribution to the CPT

violation seen in the experiments of LSND. Other examples of flavour oscil-

lating systems with quite different mass scales are furnished by BB and KK

systems 29). The former because of the large masses involved provides a partic-

ularly sensitive system for investigating the Planck scale fluctuations embodied

by space-time foam. In all these cases, experiments, such as CPLEAR 30),

provide very low bounds on CPT violation which are not inconsistent with

estimates from dimensional analysis for the magnitudes of effects from space-

time foam. These systems have been analyzed within a dynamical semigroup

approach to quantum Markov processes. Once the framework has been ac-



cepted then a master equation for finite-dimensional systems ensued which was

characterized by a small set of parameters. This approach is somewhat phe-

nomenological and is primarily used to fit data 31, 32, 33). Consequently it is

important to obtain a better understanding of the nature of decoherence from

a more fundamental viewpoint.

Given the very limited understanding of gravity at the quantum level,

the analysis of modifications of the quantum Liouville equation implied by

non-critical strings can only be approximate and should be regarded as circum-

stantial evidence in favour of the dissipative master equation. In the context of

two-dimensional toy black holes 34) and in the presence of singular space-time

fluctuations there are believed to be inherently unobservable delocalised modes

which fail to decouple from light (the observed) states. The effective theory

of the light states which are measured by local scattering experiments can

be described by a non-critical Liouville string. This results in an irreversible

temporal evolution in target space with decoherence and associated entropy

production.

The following master equation for the evolution of stringy low-energy

matter in a non-conformal σ-model can be derived 24)

∂tρ = i [ρ, H ] + : βiGij

[
gj, ρ

]
: (11)

where t denotes time (Liouville zero mode), the H is the effective low-energy

matter Hamiltonian, gi are the quantum background target space fields, βi are

the corresponding renormalization group β functions for scaling under Liouville

dressings and Gij is the Zamolodchikov metric 35, 36) in the moduli space of

the string. The double colon symbol in (11) represents the operator ordering

: AB := [A, B] . The index i labels the different background fields as well as

space-time. Hence the summation over i, j in (11) corresponds to a discrete

summation as well as a covariant integration
∫

dD+1y
√−g where y denotes a

set of (D + 1)-dimensional target space-time co-ordinates and D is the space-

time dimensionality of the original non-critical string.

The discovery of new solitonic structures in superstring theory 22) has

dramatically changed the understanding of target space structure. These new



non-perturbative objects are known as D-branes and their inclusion leads to

a scattering picture of space-time fluctuations. Heuristically, when low energy

matter given by a closed (or open) string propagating in a (D + 1)-dimensional

space-time collides with a very massive D-particle embedded in this space-time,

the D-particle recoils as a result. Since there are no rigid bodies in general rel-

ativity the recoil fluctuations of the brane and their effectively stochastic back-

reaction on space-time cannot be neglected. On the brane there are closed

and open strings propagating. Each time these strings cross with a D-particle,

there is a possibility of being attached to it, as indicated in Fig. 1. The entan-

gled state causes a back reaction onto the space-time, which can be calculated

perturbatively using logarithmic conformal field theory formalism 37).

t<0 t>0 t=0

D−particle /String Scattering with recoil

(b)(a) (c)

Figure 1: Schematic picture of the scattering of a string matter state on a D-
particle, including recoil of the latter. The sudden impulse at t = 0, implies a
back reaction onto the space time, which is described by a logarithmic conformal
field theory. The method allows for the perturbative calculation of the induced
space-time distortion due to the entangled state in (b).

Now for large Minkowski time t, the non-trivial changes from the flat

metric produced from D-particle collisions are

g0i ≃ ui ≡
ui

ε
∝ ∆pi

MP
(12)



where ui is the velocity and ∆pi is the momentum transfer during a collision,

ε−2 is identified with t and MP is the Planck mass (actually, to be more precise

MP = Ms/gs, where gs < 1 is the (weak) string coupling, and Ms is a string

mass scale); so g0i is constant in space-time but depends on the energy content

of the low energy particle and the Ricci tensor RMN = 0 where M and N are

target space-time indices. Since we are interested in fluctuations of the metric

the indices i will correspond to the pair M, N . However, recent astrophysical

observations from different experiments all seem to indicate that 73% of the

energy of the Universe is in the form of dark energy. Best fit models give the

positive cosmological constant Einstein-Friedman Universe as a good candidate

to explain these observations. For such de Sitter backgrounds RMN ∝ ΩgMN

with Ω > 0 a cosmological constant. Also in a perturbative derivative expansion

(in powers of α′ where α′ = l2s is the Regge slope of the string and ls is the

fundamental string length) in leading order

βµν = α′Rµν = α′Ωgµν (13)

and

Gij = δij . (14)

This leads to

∂tρ = i [ρ, H ] + α′Ω : gMN

[
gMN , ρ

]
: (15)

For a weak-graviton expansion about flat space-time, gMN = ηMN +hMN , and

h0i ∝
∆pi

MP
. (16)

If an antisymmetric ordering prescription is used, then the master equation for

low energy string matter assumes the form

.

∂tρMatter= i [ρMatter , H ] − Ω
[
h0j ,

[
h0j , ρMatter

]]
(17)

( when α′ is absorbed into Ω). In view of the previous discussion this can be

rewritten as

.

∂tρMatter= i [ρMatter , H ] − Ω
[
uj ,

[
uj , ρMatter

]]
. (18)

thereby giving the master equation for Liouville decoherence in the model of a

D-particle foam with a cosmological constant.



The above D-particle inspired approach deals with possible non-perturbative

quantum effects of gravitational degrees of freedom. The analysis is distinct

from the phenomenology of dynamical semigroups which does not embody spe-

cific properties of gravity. Indeed the phenomenology is sufficiently generic that

other mechanisms of decoherence such as the MSW effect can be incorporated

within the same framework. Consequently an analysis which is less generic and

is related to the specific decoherence implied by non-critical strings is neces-

sary.It is sufficient to study a massive non-relativistic particle propagating in

one dimension to establish qualitative features of D-particle decoherence. The

environment will be taken to consist of both gravitational and non-gravitational

degrees of freedom; hence we will consider a generalisation of quantum Brow-

nian motion for a particle which has additional interactions with D-particles.

This will allow us to compare qualitatively the decoherence due to different

environments.The non-gravitational degrees of freedom in the environment (in

a thermal state) are conventionally modelled by a collection of harmonic os-

cillators with masses mn, frequency ωn and co-ordinate operator q̂n coupled

to the particle co-ordinate x̂ by an interaction of the form
∑

n gnx̂q̂n. The

master equation which is derived can have time dependent coefficients due to

the competing timescales, e.g. relaxation rate due to coupling to the thermal

bath, the ratio of the time scale of the harmonic oscillator to the thermal time

scale etc. However an ab initio calculation of the time-dependence is difficult to

do in a rigorous manner. It is customary to characterise the non-gravitational

environment by means of its spectral density I (ω)
(
=

∑
n δ (ω − ωn)

g2

n

2mnωn

)
.

The existence of the different time scales leads in general to non-trivial time

dependences in the coefficients in the master equation which are difficult to

calculate in a rigorous manner 38). The dissipative term in (18) involves the

momentum transfer operator due to recoil of the particle from collisions with

D-particles (12). This transfer process will be modelled by a classical Gaussian

random variable r which multiplies the momentum operator p̂ for the particle:

ui → r

MP
p̂ (19)

Moreover the mean and variance of r are given by

〈r〉 = 0 , and
〈
r2

〉
= σ2 . (20)

On amalgamating the effects of the thermal and D-particle environments, we

have for the reduced master equation 39) for the matter (particle) density



matrix ρ (on dropping the Matter index)

i
∂

∂t
ρ =

1

2m

[
p̂2, ρ

]
− iΛ [x̂, [x̂, ρ]] +

γ

2
[x̂, {p̂, ρ}] − iΩr2 [p̂, [p̂, ρ]] (21)

where Λ, γ and Ω are real time-dependent coefficients. As discussed in 39) a

possible model for Ω (t) is

Ω (t) = Ω0 +
γ̃

a + t
+

Γ̃

1 + bt2
(22)

where ω0, γ̃, a, Γ̃ and b are positive constants. The quantity γ̃ < 1 contains in-

formation on the density of D-particle defects on a four-dimensional world.The

time dependence of γ and Λ can be calculated in the weak coupling limit for

general n (i.e. ohmic, n = 1 and non-ohmic n 6= 1 environments) where

I (ω) =
2

π
mγ0ω

[ ω

̟

]n−1

e−ω2/̟2

(23)

and ̟ is a cut-off frequency. The precise time dependence is governed by

Λ (t) =
∫ t

0
ds ν (s) and γ (t) =

∫ t

0
ds ν (s) s where ν (s) =

∫ ∞
0

dω I (ω) coth (β~ω/2) cos (ωs).

For the ohmic case, in the limit ~̟ ≪ kBT followed by ̟ → ∞, Λ and γ are

given by mγ0kBT and γ0 respectively after a rapid initial transient. For high

temperatures Λ and γ have a powerlaw increase with t for the subohmic case

whereas there is a rapid decrease in the supraohmic case.

5 CPT and Recoil

The above model of space-time foam refers to a specific string-inspired construc-

tion. However the form of the induced back reaction (12) onto the space-time

has some generic features, and can be understood more generally in the context

of effective theories of such models, which allows one to go beyond a specific

non-critical (Liouville) model. Indeed, the D-particle defect can be viewed

as an idealisation of some (virtual, quantum) black hole defect of the ground

state of quantum gravity, viewed as a membrane wrapped around some small

extra dimensions of the (stringy) space time, and thus appearing to a four-

dimensional observer as an “effectively” point like defect. The back reaction

on space-time due to the interaction of a pair of neutral mesons, such as those



produced in a meson factory, with such defects can be studied generically as

follows: consider the non-relativistic recoil motion of the heavy defect, whose

coordinates in space-time,in the laboratory frame, are yi = yi
0 + uit, with ui

the (small) recoil velocity.One can then perform a (infinitesimal) general co-

ordinate transformation yµ → xµ + ξν so as to go to the rest (or co-moving )

frame of the defect after the scattering. From a passive point of view, for one

of the mesons, this corresponds to an induced change in metric of space-time

of the form (in the usual notation, where the parenthesis in indices denote

symmetrisation) δgµν = ∂(µξν), which in the specific case of non-relativistic de-

fect motion yields the off-diagonal metric elements (12). Such transformations

cannot be performed simultaneously for both mesons, and moreover in a full

theory of quantum gravity the recoil velocities fluctuate randomly, as we shall

discuss later on. This means that the effects of the recoil of the space-time

defect are observable. The mesons will feel such effects in the form of induced

fluctuating metrics (12). It is crucial to note that the interaction of the matter

particle (meson) with the foam defect may also result in a “flavour” change

of the particle (e.g. the change of a neutral meson to its antiparticle). This

feature can be understood in a D-particle Liouville model by noting that the

scattering of the matter probe off the defect involves first a splitting of a closed

string representing matter into two open ones, but with their ends attached to

the D-particle, and then a joining of the string ends in order to re-emit a closed

string matter state. The re-emitted (scattered) state may in general be charac-

terised by phase, flavour and other quantum charges which may not be required

to be conserved during black hole evaporation and disparate space-time-foam

processes. In our application we shall restrict ourselves only to effects that lead

to flavour changes. The modified form of the metric fluctuations (12) of each

component of the metric tensor gαβ will not be simply given by the simple

recoil distortion (12), but instead can be taken to have a 2 × 2 (“flavour”)

structure 4):

g00 = (−1 + r4) 1

g01 = g10 = r01 + r1σ1 + r2σ2 + r3σ3 (24)

g11 = (1 + r5) 1

where 1 , is the identity and σi are the Pauli matrices. The above parametri-

sation has been taken for simplicity and we can also consider motion to be



in the x- direction which is natural since the meson pairs move collinearly.

A metric with this type of structure is compatible with the view that the

D-particle defect is a “point-like” approximation for a compactified higher-

dimensional brany black hole, whose no hair theorems permit non-conservation

of flavour.(In the case of neutral mesons the concept of “flavour” refers to ei-

ther particle/antiparticle species or the two mass eigenstates). The detailed

application of this model to the ω effect for neutral mesons can be found in 4).
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