Corso di Fisica Nucleare e Subnucleare II Prof. Carlo Dionisi

Misura della luminosità al Large Hadron Collider

Ambra Provenza

Tutor: Andrea Messina

Sommario

- Definizione di luminosità
- Misure di luminosità
 - ✓ Luminosità relativa
 - ✓ Luminosità assoluta: Metodo van der Meer
- Incertezze sistematiche
- Un esempio di detector: LUCID

Luminosità

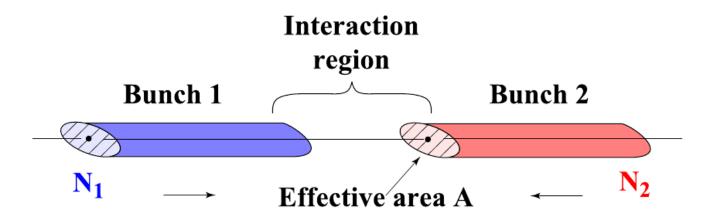
La luminosità istantanea è definita come

$$\mathscr{L} = \frac{R_{inel}}{\sigma_{inel}} \stackrel{rate}{\longrightarrow}$$
 rate di collisioni inelastiche Sezione d'urto inelastica per il processo pp

La <u>luminosità</u> ha le dimensioni di un flusso $cm^{-2}s^{-1}$

In un acceleratore la luminosità è una grandezza molto importante, poichè, fissata la sezione d'urto del processo, si riferisce al numero di particelle che attraversano la superficie di impatto per unità di tempo. Più è alta la luminosità, maggiore è il numero di conteggi nello stato finale.

La luminosità integrata è definita come


$$L = \int_0^t \mathcal{L}(t')dt'$$

Unità di misura: cm^{-2} Unità di misura utilizzata: $1 b^{-1} = 10^{24} cm^{-2}$

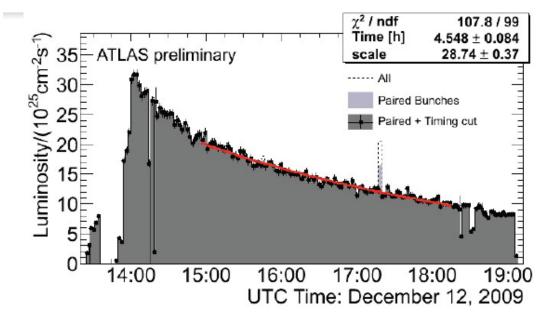
Luminosità

La luminosità può essere determinata a partire dai parametri della macchina (caratteristiche geometriche e cinematiche del fascio)

$$\mathcal{L} = n_b \frac{N_1 N_2 f}{A_{eff}}$$
 Sezione trasversa del fascio, misurabile con il metodo di Van der Meer

 N_1 : Numero medio di particelle in ciascun pacchetto del fascio 1

 N_2 : Numero medio di particelle in ciascun pacchetto del fascio 2


 n_h : Numero di pacchetti

f: Frequenza di rivoluzione dell'acceleratore

Deterioramento della luminosità

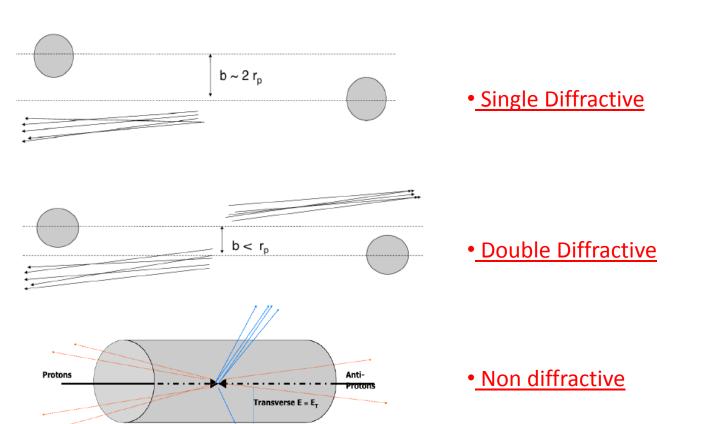
A LHC la luminosità istantanea decresce circa dell' 1% ogni 10 minuti, secondo la legge esponenziale

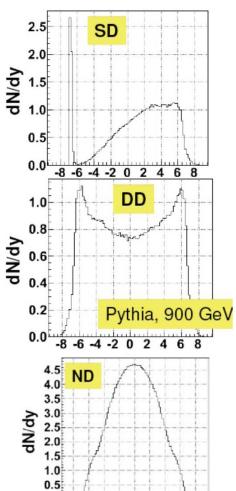
$$\tau \simeq 14 \text{ h}$$

Ipotesi: probabilità di deterioramento costante nel tempo.

Fattori che contribuiscono al deterioramento:

- decadimento dell'intensita del fascio per esempio particelle fuori orbita o collisioni con il gas
- aumento della sezione trasversa (emittance growth)


Attualmente $au\sim$ 1-2 giorni


Scattering inelastico pp

Il processo fisico viene scelto in base a L da misurare. Per $~10^{27} < L < 10^{34}~cm^{-2}s^{-1}$

sezione d'urto grande \longrightarrow processo ad alta rate ($R = L\sigma$) \longrightarrow alta statistica

Processo utilizzato: scattering inelastico pp ($\sigma \sim 100mb$)

-8 -6 -4 -2 0 2 4 Rapidity y

Misura relativa della luminosità

Abbiamo definito
$$\mathscr{L} = \frac{R_{inel}}{\sigma_{inel}}$$

Se l'acceleratore opera alla frequenza di rivoluzione

Ciò che possiamo misurare!

$$\mathcal{L} = \frac{\mu n_b f_r}{\sigma_{inel}} = \frac{\mu^{vis} n_b f_r}{\varepsilon \sigma_{inel}} = \frac{\mu^{vis} n_b f_r}{\sigma_{vis}}$$

 μ : Numero medio di interazioni inelastiche

 σ_{inel} : Sezione d'urto inelastica

 \mathcal{E} : Efficienza per una interazione inelastica pp che soddisfa determinati criteri di

selezione

 μ^{vis} = $\mathcal{E} \mu$: numero medio di interazioni visibili per *Bunch Crossing* (BC)

 σ_{vis} : sezione d'urto visibile. E' la costante che lega la quantità misurabile μ^{vis} alla

luminosità

Misura relativa della luminosità

Una misura della luminosità relativa si ottiene a partire da μ^{vis} , che non viene misurato direttamente. Si misura una grandezza che è funzione di μ^{vis} , cioè la rate di eventi visti da un rivelatore. Tecnica di conteggio :

<u>Event counting</u>: si determina la frazione di pacchetti durante i quali un determinato detector registra un <u>evento</u>

Usato da ATLAS

Almeno una interazione per attraversamento viene rivelata da almeno un detector

Event Counting

Problema: Vogliamo determinare la relazione che ci permette di ricavare $\,\mu$ a partire dal numero di conteggi.

E' più facile ragionare in termini di eventi vuoti (senza interazione).

P (interazione) = 1 - P (non interazione)

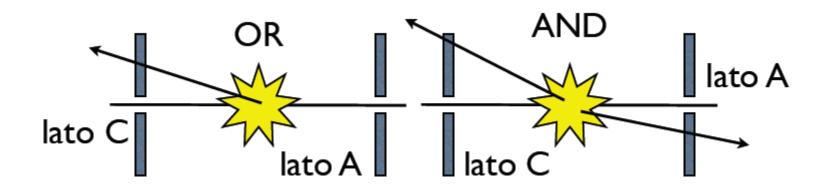
La probabilità di avere 0 interazioni è:

$$P_{\mu}(0) = \frac{e^{-\mu}\mu^0}{0!} = e^{-\mu}$$

La probabilità di osservare 0 interazioni quando ce ne sono n è

$$P_{\mu}^{0count}(n>0) = \sum_{n=1}^{\infty} \frac{e^{-\mu}\mu^n}{n!} (1-\epsilon)^n = \sum_{n=0}^{\infty} e^{-\mu} \frac{(\mu(1-\epsilon))^n}{n!} - e^{-\mu} = e^{-\mu\epsilon} - e^{-\mu}$$

La probabilità di osservare 0 interazioni per BC è


$$P_{\mu}^{0count}$$
 = $P_{\mu}(0)$ + $P_{\mu}^{0count}(n>0)$ = $e^{-\mu\epsilon}$

Event Counting

Possiamo farlo con algoritmi di tipo

Event_Or: vengono contati gli eventi sopra una determinata soglia in un dato rivelatore su almeno uno dei due lati del rivelatore;

Event_And: vengono contati gli eventi sopra una determinata soglia in un dato rivelatore su entrambi i lati del rivelatore

Ipotesi:

- Il numero di interazioni pp in ogni pacchetto segue la statistica di Poisson;
- L'efficienza per determinare una singola interazione inelastica pp è costante, cioè non cambia se si hanno più interazioni nello stesso pacchetto.

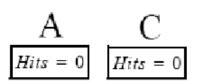
Event_OR

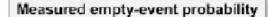
La probabilità di osservare 0 eventi per BC è

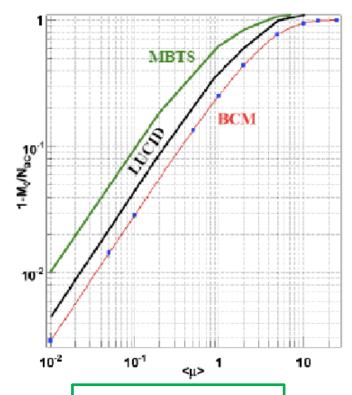
$$P_0(\mu^{vis}) = e^{-\mu^{vis}} = e^{-\mu \varepsilon^{OR}}$$

La probabilità di osservare almeno un evento è

$$P_{ ext{Event-OR}}(\mu^{vis})=rac{N_{OR}}{N_{RC}}=1-P_0(\mu^{vis})=1-e^{-\mu^{vis}}$$


Con:


 N_{OR} : Numero di pacchetti, in un dato intervallo di tempo, in cui almeno una interazione pp soddisfa i criteri di selezione dell'algoritmo OR considerato


 $N_{\!BC}$: Numero totale di pacchetti nello stesso intervallo di tempo

Da cui

$$\mu^{vis} = -\ln\left(1 - \frac{N_{OR}}{N_{BC}}\right)$$

Più alta è ε prima il rivelatore satura

11

Luminosità assoluta

La misura della rate permette di determinare μ , ma per misurare \mathcal{L} è necessario conoscere la sezione d'urto.

Problema: la sezione d'urto per lo scattering inelastico protone - protone a 7 TeV non è stata misurata.

Soluzione: calibrare la tecnica dei conteggi utilizzando la luminosità assoluta, determinata con il metodo di van der Meer.

In termini dei parametri dei fasci incidenti la luminosità è definita come

$$\mathcal{L} = n_b f_r n_1 n_2 \int \hat{\rho}_1(x, y) \hat{\rho}_2(x, y) dx dy = n_b \frac{n_1 n_2}{A_{eff}} f_r$$

 f_r nota; $n_b n_1 n_2$ misurati dai *Beam Current Transformer* (BCT)

$$\hat{
ho}_{1(2)}(x,y)$$
 = Densità dei fasci, tale che $\int \int
ho(x,y) dx dy = 1$

$$\int \int \rho(x,y)dxdy = 1$$

$$I_{x,y} = \int \hat{\rho}_1(x,y) \hat{\rho}_2(x,y) dx dy = \frac{1}{A_{eff}} \qquad \text{E' l'integrale di sovrapposizione ed è ciò che ricaviamo con il metodo di van der Meer}$$

Assumendo che le densità dei fasci siano scorrelate in x e y

$$\mathcal{L} = n_b f_r n_1 n_2 I_x(\rho_1(x), \rho_2(x)) I_y(\rho_1(y) \rho_2(y))$$

Il metodo proposto da Van der Meer per misurare la luminosità assoluta consiste nel misurare direttamente l'integrale di sovrapposizione

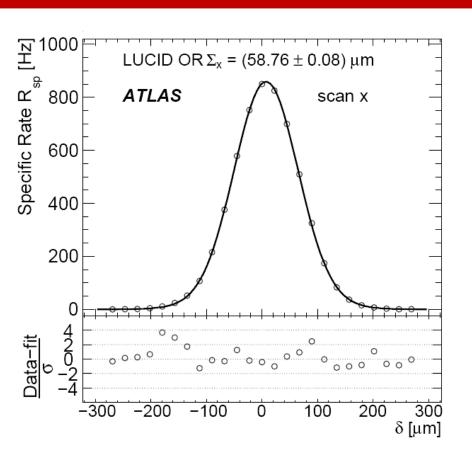
Consideriamo la direzione x. Nel caso in cui i due fasci non sono in asse ma i loro centri siano separati di una distanza Δx si ha:

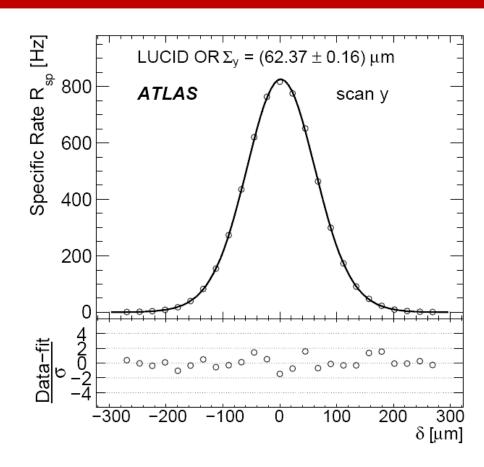
$$R(\Delta x) = CI_{x}(\rho_{1}(x)\rho_{2}(x - \Delta x))$$

Dove $R(\Delta x)$ è la *rate* di eventi quando i fasci sono separati da una distanza Δx e C è una costante da detrminare. van der Meer dimostrò che

$$\int_{-\infty}^{\infty} R(\Delta x) d(\Delta x) = C \int_{-\infty}^{\infty} d(\Delta x) \int_{-\infty}^{\infty} (\rho_1(x) \rho_2(x - \Delta x)) dx =$$

$$= C \int_{-\infty}^{\infty} \rho_1(x) \left(\int_{-\infty}^{\infty} \rho_2(x - \Delta x) d(\Delta x) \right) dx = C \int_{-\infty}^{\infty} \rho_1(x) dx = C$$


Facendo un ragionamento analogo per la direzione y otteniamo


$$A_{eff} = \frac{\int_{-\infty}^{\infty} R(\Delta x) d(\Delta x) \int_{-\infty}^{\infty} R(\Delta y) d(\Delta y)}{R(0,0)}$$

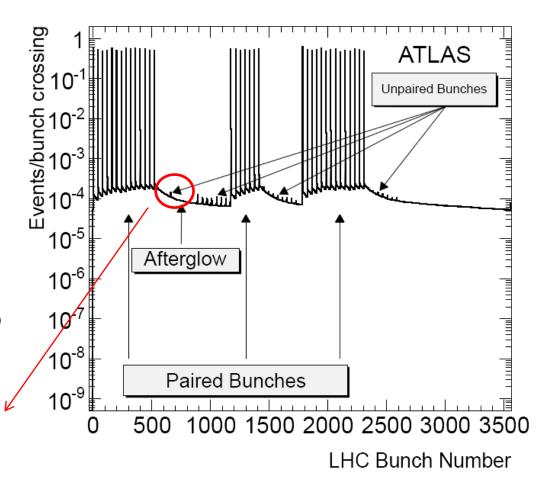
Abbiamo scritto l'area effettiva in termini di quantità misurabili.

Sperimentalmente si misura la rate di interazione in funzione della separazione tra i due fasci. Per ciascuna direzione si ottiene una curva che ha un massimo per $\Delta x = 0$ ($\Delta y = 0$). Si calcola l'area sotto la curva e l'area effettiva sarà il rapporto tra questa ed il valore della curva a $\Delta x = 0$ ($\Delta y = 0$).

I fasci possono avere uno spostamento massimo dal centro pari a 270 μm . Ad ogni scan i fasci vengono lasciati fermi per 30s e viene monitorata la luminosità.

Risultato dello scan nelle direzioni x e y per il detector LUCID. Nel pannello sottostante è mostrata la differenza tra la rate misurata e il valore predetto dal fit (doppia Gaussiana) normalizzato alle incertezze statistiche dei dati.

Fondo


In LHC si possono avere massimo 2808 pacchetti.

Pacchetti non collidenti *unpaired bunch*; pacchetti collidenti *paired bunch*.

Informazioni sul fondo si possono ottenere confrontando la rate di paired e unpaired bunch

Paired bunch seguiti da code (Afterglow): prodotti delle collisioni pp che colpiscono i rivelatori in avanti e vengono scatterati per decine di μs

Unpaired bunch collidono con molecole residue del gas o con i residui delle collisioni precedenti

Incertezze sistematiche

Le principali incertezze sistematiche nella misura della luminosità riguardano:

- L'intensità dei fasci
- Calibrazione della scala delle lunghezze
- Decentramento dei fasci
- Aumento della sezione trasversa del fascio (Emittance Growth)
- Dipendenza di μ dalla rate di conteggi
- Scelta del fit

Intensità dei fasci

La misura delle correnti n_2 e n_1 è affidata ai *DC Current Transformer* (DCCT) che misurano la corrente totale e ai *Fast Beam Current Transformer* (FBCT) che la misurano pacchetto per pacchetto

Spostamento baseline dovuto a effetti di temperatura, vibrazioni meccaniche, campi elettrici e magnetici

Incertezza di calibrazione

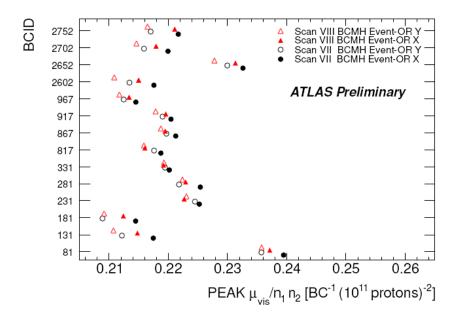
Errore commesso nel misurare la carica in ogni singolo pacchetto.

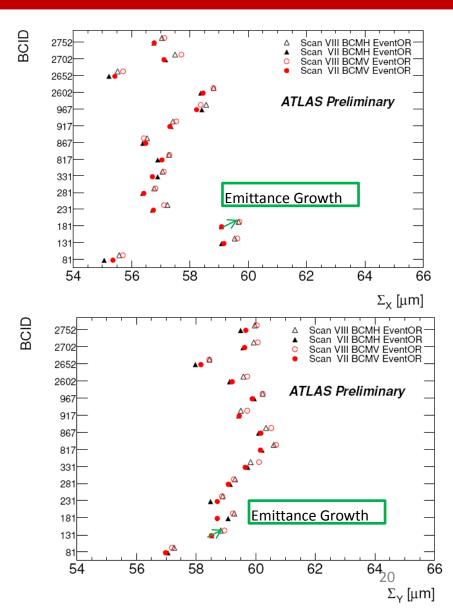
Il riempimento dei bunch non è omogeneo. La carica fuori i bunch (ghost charge) è comunque misurata dai DCCT

Scan Number	VII–VIII
Fill Number	1783
DCCT baseline offset	0.1%
DCCT scale variation	2.7%
Bunch-to-bunch fraction	1.3%
Ghost charge	0.2%
Total	3.0%

Carica per i fasci 1 (2)

$$n_{1/2}(i) = (N_{\text{tot}}^{\text{DCCT}} - N_{\text{ghost}}) \cdot \frac{S_i^{\text{FBCT}}}{\sum S_i^{\text{FBCT}}}$$


 S_i^{FBCT} : segnale osservato dagli FBCT


Emittance Growth

Aumento nel tempo della sezione trasversa del fascio comporta una degradazione della luminosità tra uno scan e il successivo.

Vengono misurate indipendendtemente le sezioni dei fasci σ_1 e σ_2 .

Incertezza attribuita 0,4%

Altre sistematiche

Calibrazione della scala delle lunghezze: |Incertezza attribuita 0,3%

Per utilizzare il Metodo Van der Meer è necessario conoscere la separazione tra i fasci ad ogni scan.

Sono stati fatti una serie di scan separando i fasci su un range di $\pm 120~\mu m$

I fasci sono rimasti in collisione \longrightarrow la posizione della regione luminosa può essere determinata con grande precisione

Decentramento dei fasci: Incertezza attribuita: 0,1%

Se i fasci non sono allineati nella direzione ortogonale a quella dello scan la rate osservata sarà più bassa di quella misurata se i fasci fossero allineati.

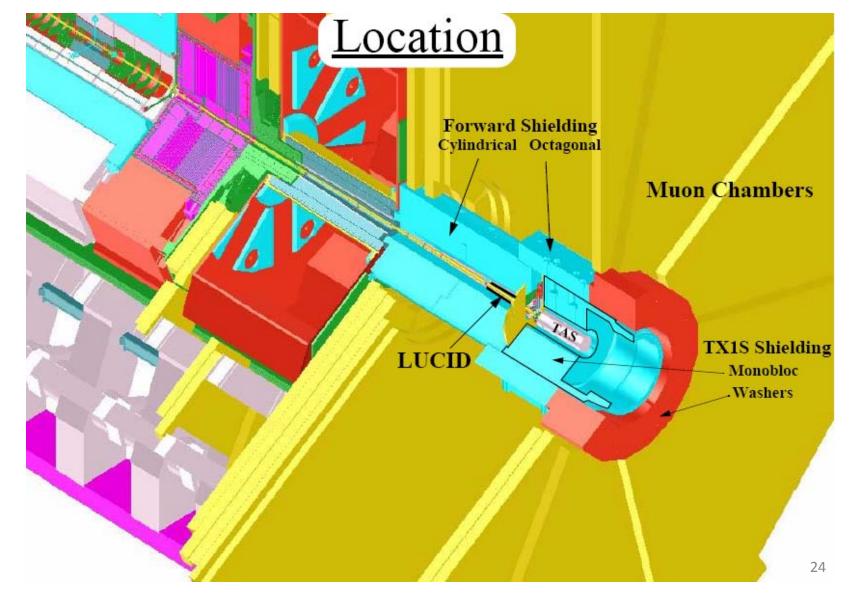
Per stimare l'incertezza: si considera lo spostamento del picco di posizione dallo zero che viene calibrato riallineando il fascio all'inizio di ogni scan.

Altre sistematiche

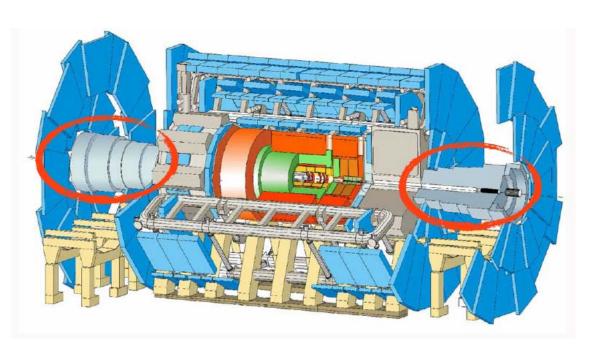
Dipendenza di μ dalla rate: Incertezza attribuita 0,5%

Il numero medio di interazioni/BC cambia lungo lo scan e $\,\mu_{max}\,$ si ha quando i fasci sono centrati $\,\Delta x = \Delta y = 0\,$.

L'incertezza sistematica sulla rate attesa in funzione di μ viene studiata con le simulazioni MC.


Scelta del fit: Incertezza attribuita 0,8%

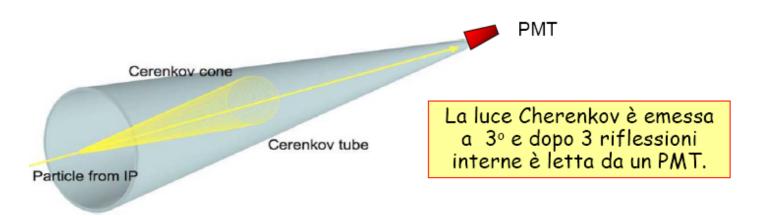
I dati raccolti durante lo scan vengono fittati con una Gaussiana più un termine costante di fondo. I dati sono ri-fittati offline con una funzione "spline" e si confrontano le σ_{vis} ricavate dai due fit.


Tabella incertezze sistematiche

Source	Relative Uncertainty
Bunch charge product	3.0%
Beam centering	0.1%
Emittance growth	
and other non-reproducibility	0.4%
Beam-position jitter	0.3%
Bunch-to-bunch $\sigma_{\rm vis}$ consistency	0.4%
Length scale calibration	0.3%
Absolute ID length scale	0.3%
Fit model	0.8%
Transverse correlations	0.5%
μ dependence	0.5%
BCM consistency	0.7%
Total	3.4%

Luminosity Cherenkov Integrating Detector (LUCID)

Luminosity Cherenkov Integrating Detector (LUCID)


2 rivelatori simmetrici, a 17 m dal punto di interazione.

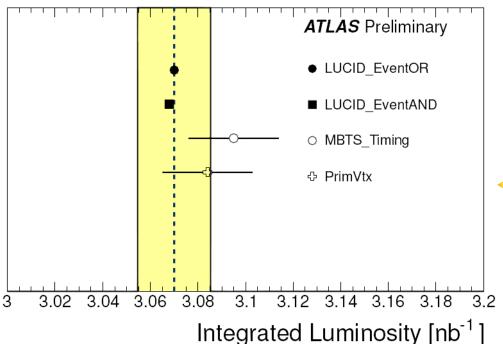
Coprono la regione con $5.6 < |\eta| < 6.0$

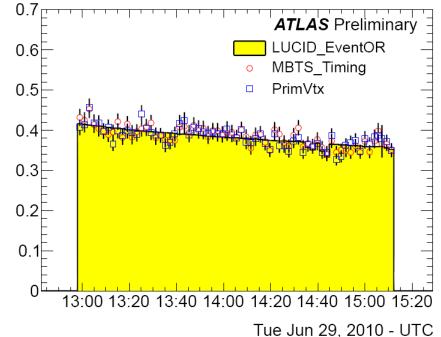
16 tubi di alluminio riflettenti, riempiti di C_4F_{10} gas alla pressione di 1.1 bar che circondano la beampipe

Funzionamento tra $10^{27} < L < 10^{34} \ cm^{-2} s^{-1}$

Luminosity Cherenkov Integrating Detector (LUCID)

<u>Idea</u>: contare il numero di interazioni attraverso il numero di particelle cariche prodotte in ogni collisione entro l'accettanza di LUCID.


La luce Cherenkov creata nel gas produce circa 60-70 fotoelettroni. LUCID ha una finestra di quarzo, le particelle che la colpiscono generano circa 40 fotoelettroni che si aggiungono al segnale.


Dopo l'amplificazione il segnale passa in un discriminatore (soglia corrispondente a 15 fotoelettroni). L'uscita dei discriminatori viene inviata all'elettronica LUMAT programmabile con diversi algoritmi.

Luminosity Cherenkov Integrating Detector (LUCID)

Luminosity $[10^{30} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}]$

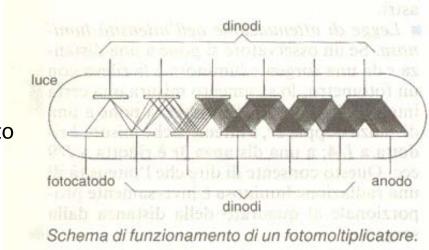
Confronto tra luminosità misurate con diversi algoritmi. L'errore è solo statistico.

Confronto tra luminosità integrata misurate con diversi algoritmi. L'errore è solo statistico.

Valore di L $^{6,6} \cdot 10^{33}~cm^{-2}s^{-1}$ Molto vicino al quello da raggiungere $\sim 10^{34}$

Bibliografia

- Luminosity Determination in pp Collision at $\sqrt{s} = 7 \text{ TeV}$ Using the ATLAS Detector at LHC, arXiv: 1101.2185.v1 [hep-ex]
- ATLAS-CONF-2011-116, 19 August 2011


Backup

Fotomoltiplicatore

Processi alla base: effetto fotoelettrico; emissione secondaria.

Formato da un tubo di vetro in cui è fatto il vuoto e al cui interno ci sta un anodo ed elettrodi (dinodi).

• Fotone entra dal fotocatodo, formato da materiale che favorisce effetto fotoelettrico.

• Elettroni emessi guidati da elettrodo verso stadio di moltiplicazione, elettrodi a cui sono applicati potenziali via via crescenti.

l' elettrone emesso per effetto fotoelettrico viene accelerato a causa del campo elettrico, acquista energia cinetica. Urta elettrodo successivo ed emette eleettroni con energia minore. Questi fanno la stessa cosa. Si innesca n processo a catena.

• Alla fine degli elettrodi gli elettroni urtano un anodo che invia un segnale elettrico che indica il rivelamento del fotone

Misura relativa della luminosità

Una misura della luminosità relativa si ottiene a partire da μ^{vis} , che non viene misurato direttamente. Si misura una grandezza che che è funzione di μ^{vis} , cioè la rate di eventi visti da un rivelatore. Tecniche di conteggio :

 <u>Event counting</u>: si determina la frazione di pacchetti durante i quali un determinato detector registra un <u>evento</u>

Usato da ATLAS

Almeno una interazione per attraversamento viene rivelata da almeno un detector

- <u>Hit Counting</u> : si conta il numero di eventi accettati per BC in un certo detector
- <u>Particle Counting</u>: si determina il numero di particelle per BC da quantità
 osservabili che riflettono il flusso di particelle (ad esempio la corrente
 totale estratta dal calorimetro ad argon liquido)