FISICA NUCLEARE E SUBNUCLARE II

Prof. C. DIONISI

Misura del decadimento

μ+ → e+ γ nell'esperimento MEG

Di

Federico Preiato

Tutor

Prof. G. Cavoto

Prof.ssa C. Voena

IL MUONE

La massa del muone e la sua vita media sono parametri dello Standard Model

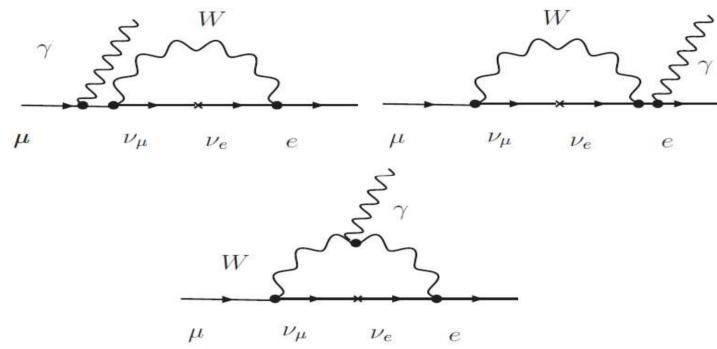
$$m_{\mu} = 105.658389 \text{ MeV}$$

e

$$\tau_{\mu}$$
 = 2.19703 x 10⁻⁶ s

I suoi decadimenti sono:

Decay mode		Branching Ratio	
(Michel decay) $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$		pprox 100%	
(radiative decay) $\mu^+ \to e^+ \nu_e \overline{\nu}_{\mu} \gamma$		$1.4 \pm 0.4\%$ (for $E_{\gamma} > 10 \text{ MeV}$)	
	$\mu^+ ightarrow e^+ u_e \overline{ u}_\mu e^+ e^-$	$(3.4\pm0.4) imes10^{-5}$	
Misurato con MEGA	$\mu^+ ightarrow e^+ \overline{ u}_e u_\mu$ $\mu^+ ightarrow e^+ e^+ e^ \mu^+ ightarrow e^+ e^+ e^-$	4 2 4 2 12	V: ROIBITO ELLO SM
	$\mu^+ ightarrow e^+ \gamma \gamma$	1.2 × 10	_


I limiti superiori sono al 90% del livello di confidenza (C.L.)

$\mu^+ \rightarrow e^+ \gamma$ nello STANDARD MODEL

Questo decadimento implica una massa per il neutrino ed è legato all'oscillazione dei neutrini (mixing di neutrini)

La Lagrangiana per questo tipo di processo porta ai diagrammi di Feynman per $\mu^+ \rightarrow e^+ \gamma$

Il rate aspettato di decadimenti è dato da

$$\Gamma(\mu \to e\gamma) = \frac{G_F^2 m_\mu^5}{192\pi^3} \frac{3\alpha}{32\pi} \left| \sum_i (V_{PMNS}^*)_i (V_{PMNS})_i \frac{m_{\nu_i}^2}{m_W^2} \right|^2$$

$\mu^+ \rightarrow e^+ \gamma$ nello STANDARD MODEL

Se assumiamo per semplicità che solo i neutrini μ ed e vengono mixati la probabilità di oscillazione sarà

$$\mathcal{P}_{\nu_e \to \nu_\mu}(L) = \sin^2 2\theta \sin^2(\Delta m^2 L/4E)$$

Allora il rate di $\mu^+ \rightarrow e^+ \gamma$ può essere scritta come

$$\Gamma(\mu \to e \gamma) = \phantom{\frac{G_F^2 m_\mu^5}{192 \pi^3}} \approx \frac{\alpha}{2 \pi} \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2 L}{4 E}\right)$$

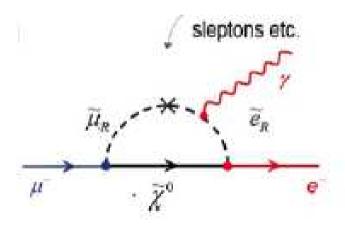
$$\approx \frac{G_F^2 m_\mu^5}{192 \pi^3} \approx \frac{\alpha}{2 \pi} \sin^2 2\theta \, \left(\frac{\Delta m^2}{m_W^2}\right)^2$$
 Decadimento μ

che porta quindi a un Branching Ratio (normalizzato al decadimento principale) di

$$B(\mu o e \gamma) = rac{\Gamma(\mu o e \gamma)}{\Gamma(\mu o e
u \overline{
u})} ~~pprox ~~rac{lpha}{2\pi} \sin^2 2 heta \left(\Delta m^2/m_W^2
ight)^2$$
 NON MISURABILE in $pprox ~~rac{1}{2 imes 137 imes \pi} \left(rac{7 imes 10^{-5} \ eV^2}{80 \ GeV^2}
ight)^2$ laboratorio $pprox ~~10^{-55}$.

$\mu^+ \rightarrow e^+ \gamma$ fuori lo STANDARD MODEL

Modelli di NUOVA FISICA potrebbero aumentare il rate di questi eventi

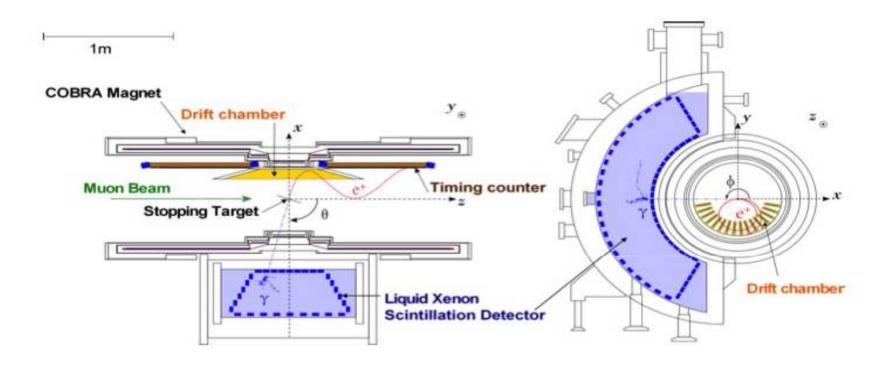

SUSY - GUT: particelle supersimmetriche e teoria della grande unificazione.

Presenza di nuove particelle più pesanti (masse anche di 100 GeV – 1 TeV)

Ricordando che il BR
$$lpha$$
 $\frac{m_{
u_i}^2}{m_W^2}$

Supponendo l'esistenza del neutralino, che sostituirebbe il neutrino nel processo, con una massa di quell'ordine di grandezza si avrebbe

BR
$$\approx 10^{-14} - 10^{-13}$$


L'ESPERIMENTO MEG: IL LABORATORIO

L'esperimento è stato allestito presso Zurigo, al Paul Scherrer Istitut dove è stato realizzato il più intenso fascio di muoni al mondo ($10^7 \,\mu/sec$)

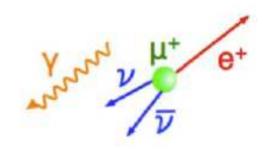
Per la sensibilità del BR richiesta ($10^{-14} - 10^{-13}$) si devono osservare $10^{13} - 10^{14}$ decadimenti \rightarrow Con questo rate ci vogliono quindi 10^7 sec (1 ANNO!!)

L'ESPERIMENTO MEG : $\mu^+ \rightarrow e^+ \gamma$

Un ciclotrone accelera protoni a 590 MeV. Fasci secondari di pioni sono generati in due bersagli. Dal decadimento dei pioni viene estratto il fascio di muoni.

Successivamente il fascio di muoni è inviato su un bersaglio di polietilene.

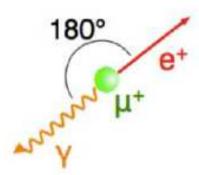
Il processo è un decadimento a due corpi emessi back-to-back con il muone a riposo nel suo sistema di riferimento \rightarrow positrone e fotone hanno la stessa energia pari a metà della massa del muone ($E_e^+ = E_v = m_u/2 = 52.8 \text{ MeV}$)


IL SEGNALE E IL BACKGROUND

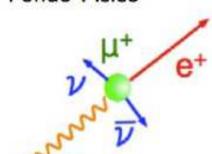
Decadimento radiativo

Fondo Fisico

Positrone da un decadimento Michel e un fotone da un decadimento radiativo, da bremmstrahlung o da annichilazione di un positrone in volo


Fondo Accidentale (dominante)

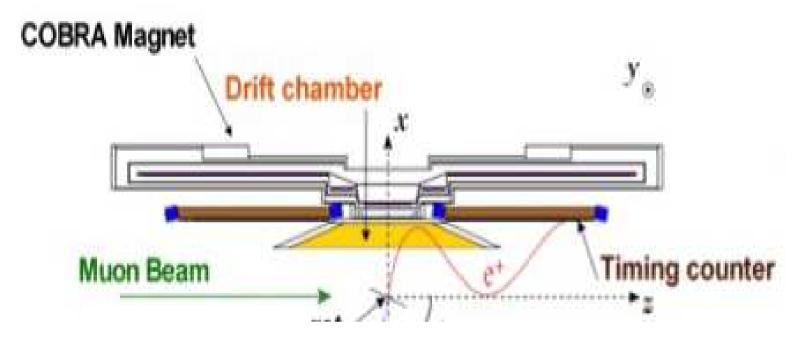
- θ qualsiasi
- < 52.8 MeV/c</p>
- Nessuna coincidenza (scorrelati)


$$R_{acc} \propto (R_{\mu})^2 (\delta E_{\gamma})^2 \delta E_e (\delta heta_{e\gamma})^2 \delta t_{e\gamma}$$

Segnale

- $\theta = 180^{\circ}$
- 52.8 MeV/c
- Coincidenza temporale

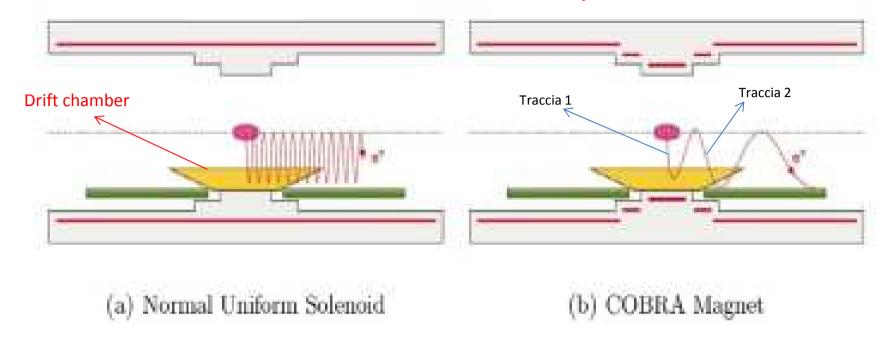
$$R_{sig} \propto R_{\mu} B(\mu
ightarrow e \gamma)$$
il rate dei muoni



- \bullet θ qualsiasi
- m < 52.8~MeV/c
- Coincidenza temporale

$$egin{array}{l} R_{bck} \propto \ R_{\mu} B(\mu \
ightarrow \ e \overline{
u}
u \gamma) \end{array}$$

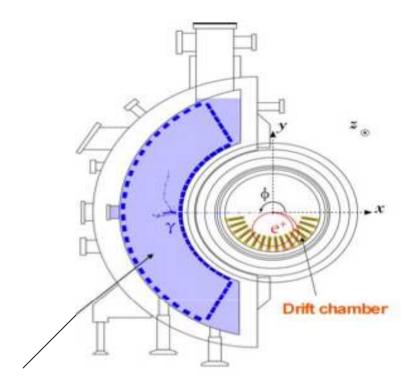
IMPORTANTE ricostruire la cinematica: Energia del positrone; energia del fotone; tempo relativo tra le due particelle e angolo relativo (polare e azimutale). Serve un' ALTA RISOLUZIONE


L'ESPERIMENTO MEG: Il positrone

Il momento e la direzione del positrone sono misurati per mezzo dello spettrometro COBRA (Constant - Bending – Radius) costituito da un magnete superconduttore con un gradiente di campo magnetico, un sistema di 16 camere a drift (DCH) e due scintillatori (timing-counter, TC)

Il campo magnetico, con valore massimo al centro (1.27 T) decrescente verso l'esterno (0.49 T), è disegnato in modo tale che i positroni emessi dal target con lo stesso momento seguano traiettorie con raggi di curvatura costanti indipendentemente dall'angolo di emissione.

L'ESPERIMENTO MEG: Il positrone



Meno perdita di energia con i minori passaggi nel detector. Eliminazione più efficace del fondo rispetto a un campo uniforme → positroni di bassa energia vengono spazzati via meglio.

RISOLUZIONE

La traccia 1 e la traccia 2 descrivono la stessa particella con la stessa energia e la stessa direzione -> la differenza tra le due tracce è data solo dalla risoluzione (se avessi risoluzione infinita non avrei differenze)

L'ESPERIMENTO MEG: Il fotone

900 litri di LXe:
•Risposta veloce
•Buon guadagno di luce

Attenzione alle impurità : ossigeno e acqua

·Lunghezza di radiazione corta

846 PMTs → energia, direzione e tempo del fotone

Meccanismo di scintillazione

Per eccitazione o ionizzazione si arriva alla produzione di un eccimero:

$$\mathrm{Xe}^* + \mathrm{Xe} o \mathrm{Xe}_2^* o 2\mathrm{Xe} + h
u$$
 Fotoni di scintillazione

L'ESPERIMENTO MEG: Il fotone

La carica collezionata dà informazioni sull'energia del fotone prodotto dal decadimento \rightarrow somma delle cariche raccolte dai PMT ricostruiscono l'energia.

Informazioni anche sulla posizione del fotone di conversione → la carica raccolta dipende dalla distanza. Infatti più lontana è la shower dal PMT più piccola sarà la luce e più piccola sarà la carica.

METODO DELLA MEDIA PESATA:

$$xfav = \frac{\sum_{i} x_{i} Q_{i}}{\sum_{i} Q_{i}} \quad yfav = \frac{\sum_{i} y_{i} Q_{i}}{\sum_{i} Q_{i}} \quad zfav = \frac{\sum_{i} z_{i} Q_{i}}{\sum_{i} Q_{i}}$$

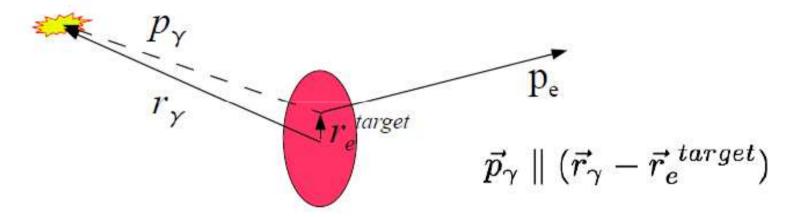
L'ESPERIMENTO MEG: Tempo relativo t_{ev}

Positrone e fotone sono creati simultaneamente

Informazioni temporali sul positrone sono date da scintillatori timing-counter posti a ciascuna estremità dello spettrometro.

Barre di scintillatori plastici con 128 fibre scintillanti e ogni barra ha alla fine una fitta maglia di tubi fotomoltiplicatori.

Informazioni temporali sul fotone sono date dai PMT nel detector a LXe.


Il tempo del fotone misurato da ogni PMT sarà corretto per i vari ritardi (intrinseco del PMT e di ritardo per la digitalizzazione) e per il tempo di volo dal bersaglio al punto di conversione.

Contribution	resolution(ps) 2009/2010	Notes
T _v	~96/67	
XEC intrinsic	~38/36	- measured
DRS	~69/24	- measured - diff. boards improved vs 2009
other contributions (depth rec. uncert.)	~50 for both runs	
Te	~107	
T _{TC} +DRS	~65	- measured
L _e /c	~75	- scaled from MC (factor 1.5)
TC calib	~40	- measured
Tey	~144/126	sum of the above contributions

L'ESPERIMENTO MEG: Angolo relativo

La direzione del positrone e il vertice di decadimento sono determinati dalla proiezione del positrone sul bersaglio.

La direzione del fotone è definita come la linea che unisce il punto di conversione ricostruito nello LXe con il vertice del positrone associato.

La risoluzione dell'angolo tra le due particelle è stimata combinando la risoluzione della posizione del vertice nel detector del positrone e la risoluzione della posizione del fotone.

ANALISI DATI

Si utilizza il Principio di massima verosimiglianza

Costruisco la likelihood e la massimizzo

$$\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{BG}}) = \frac{N^{N_{\text{obs}}} \exp^{-N}}{N_{\text{obs}}!} \prod_{i=1}^{N_{\text{obs}}} \left[\frac{N_{\text{sig}}}{N} S + \frac{N_{\text{RMD}}}{N} R + \frac{N_{\text{BG}}}{N} B \right],$$

 N_{sig} numeri di $\mu^+ \rightarrow e^+ \gamma \ e \ S \ la sua PDF$ N_{RMD} numero di decadimenti radiativi e R la sua PDF N_{BG} Numeri di eventi del fondo accidentale e B la sua PDF N_{obs} è definito come il numero totale di eventi visti nella finestra di analisi $N = N_{sig} + N_{RMD} + N_{BG}$

S, R e B dipendono dai 5 parametri cinematici

ANALISI DATI: LE PDF

PDF del segnale:

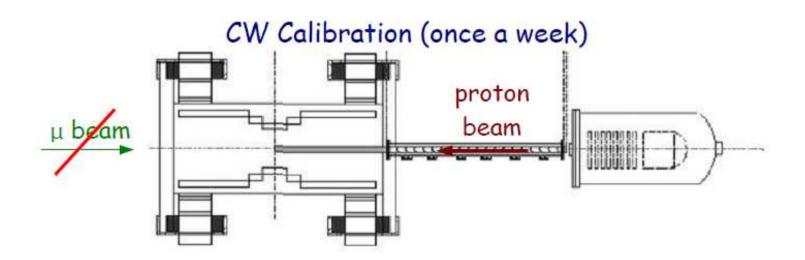
Funzione dei 5 parametri cinetici: non è il prodotto delle 5 PDF, perché ci sono delle correlazioni tra i parametri.

$$S = S (E_e, E_{\gamma}, t_{e\gamma}, \theta_{e\mu}, \phi_{e\mu})$$

Si costruiscono le PDF dei parametri con dei metodi di calibrazione. Si mandano particelle di energia nota e si studia la risposta dei detector.

Per studiare la risposta dello LXe si utilizza il processo di scambio carica

$$\pi^- p \rightarrow \pi^0 n \rightarrow \gamma \gamma n$$


Vengono prodotti due fotoni di energia 83 MeV e 54.9 MeV (molto vicino all'energia del fotone prodotto nel decadimento del muone di 52.8 MeV) prodotti back-to-back. Sono rivelati uno dal calorimetro allo Lxe e l'altro da uno scintillatore di cristalli di NaI, ottenendo due linee di calibrazione per la scala di energia e l'uniformità.

ANALISI DATI: LE PDF

La PDF temporale invece è ricostruita studiando fotoni a bassa energia creati dalle reazione di protoni su un bersaglio di $\text{Li}_{4}\text{B}_{4}\text{O}_{7}$.

Si utilizzano protoni di energia compresa tra i 400 < Tp < 1000 KeV prodotti con un acceleratore Cockcroft – Walton.

Fotoni di energia di E_{γ} = 17.67 MeV da 7 Li 8 Be servono a monitorare la scala di energia del detector di LXe, mentre fotoni coincidenti da 11 B 12 C (E_{γ} = 4.4 , 11.6 MeV) rivelati simultaneamente dal timing counter e dal detector di Xenon portano alla determinazione dell'offset delle barre TC.

RISOLUZIONI

In tabella: Andamento delle risoluzione nei vari anni dal 1977 al 2008.

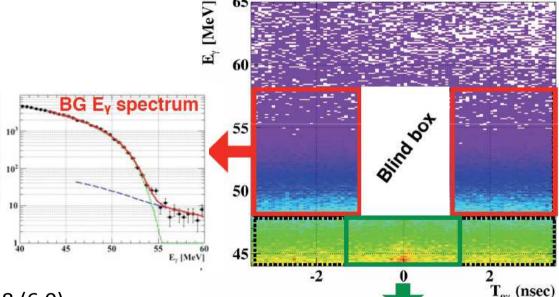
Laboratory	Year	ΔE_e	ΔE_{γ}	$\Delta t_{e\gamma}$	$\Delta heta_{e\gamma}$	Upper Limit.
				(ns)	(mrad)	
TRIUMF	1977	10%	8.7%	6.7		3.6×10^{-9}
SIN	1980	8.7%	9.3%	1.4		1.0×10^{-9}
LANL	1982	8.8%	8%	1.9	37	1.7×10^{-10}
LANL	1988	8%	8%	1.8	87	4.9×10^{-11}
LANL	2002	1.2%	4.5%	1.6	15	1.2×10^{-11}
PSI	2008	0.7 - 0.9%	4%	0.15	17 - 20.5	$pprox 10^{-13}$

PERFORMANCE MEG OGGI

	2009	2010
Gamma E $[\sigma_R, w>2cm-63\%]$	1.9%	1.9%
Relative timing $T_{e\gamma}$ (RMD)	150ps	130ps
Positron E [Michel edge]	330 keV(82% core)	330 keV (79% core)
Positron θ	9.4 mrad	11.0 mrad
Positron φ [at zero]	6.7 mrad	7.2 mrad
Positron Z/Y	1.5/1.1(core) mm	2.0/1.1(core)mm
Gamma position	5(u,v)6(w) mm	5(u,v)6(w) mm
Trigger efficiency	91%	92%
Gamma efficiency	58%	59%
Positron efficiency	40%	34%
Muon stopping rate	2.9 10 ⁷ s-1	2.9 10 ⁷ s-1
DAQtime/real time	35/43 days	56/67 days

ANALISI DATI: LE PDF

La PDF del decadimento radiativo e del background

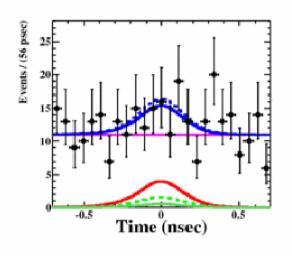

Estrapolo la PDF dalle zone fuori la blinding box

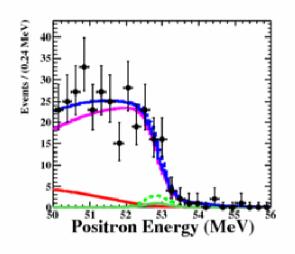
In questo caso usiamo una blinding region definita da

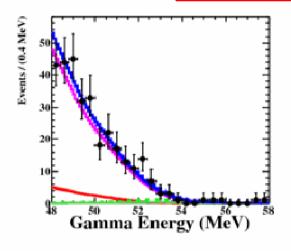
$$48 < E_{\gamma} < 58$$
 MeV e $|t_{e\gamma}| < 1$ ns

Fuori da questa regione quindi c'è solo fondo da cui possiamo estrapolare i valori medi che ci servono nella likelihood e le relative incertezze. Con i dati del 2009 (2010) si trova che È una procedura per esaminare i dati: gli eventi vicini alla regione del segnale sono "nascosti" (blind region) finchè tutte le procedure di analisi sono state completamente definite.

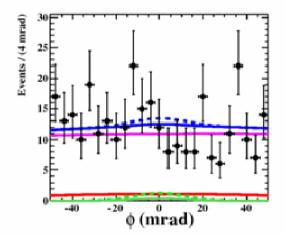
T_{ey} resolution

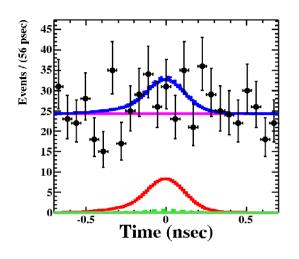


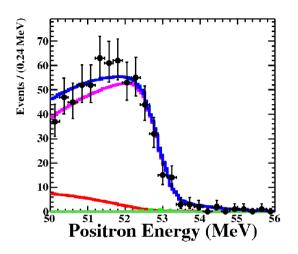

$$<$$
N_{RMD} $>$ = 27.2 (52.2) con σ_{RMD} = 2.8 (6.0) e $<$ N_{BG} $>$ = 270.9 (610.8) con σ_{BG} = 8.3 (12.6)

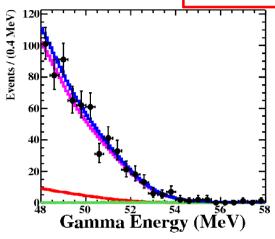

Con le PDF del segnale e dei due fondi posso costruire la likelihood e calcolare il BR

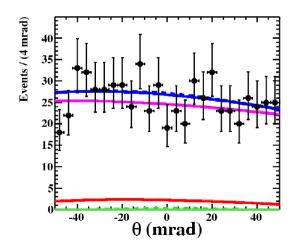
FIT DEI DATI DEL 2009

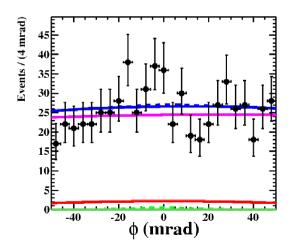

Total Accidental Radiative signal

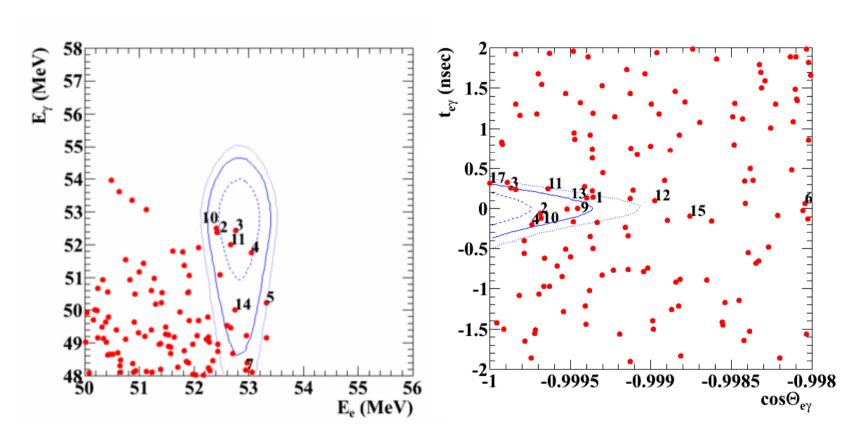





Param	Best fit	MINOS [1.645 σ]
NSIG	3.4	+6.6 - 4.3
NBG	273	+12 -12
NRMD	26.9	+4.5 - 4.5


FIT DEI DATI DEL 2010




Param	Best fit	MINOS [1.645σ]
NSIG	-2.2	+5.0 -1.9
NBG	609	+19 -19
NRMD	50.2	+9.2 - 9.2

DISTRIBUZIONE DEGLI EVENTI 2009+2010

Ranking degli eventi

Selection: $|T_{ev}| < 0.278$ ns; $\cos\Theta_{ev} < 0.9996$

 $51 < E_v < 55 \text{ MeV}$; $52.34 < E_e < 55 \text{ MeV}$

CONCLUSIONI

CALCOLO DEL BR

$$\mathrm{BR}(\mu^{+} \to e^{+} \gamma) = \frac{N_{\mathrm{sig}}}{N_{e \nu \bar{\nu}}} \times \frac{f_{e \nu \bar{\nu}}^{E}}{P} \times \frac{\epsilon_{e \nu \bar{\nu}}^{\mathrm{trig}}}{\epsilon_{e \gamma}^{\mathrm{trig}}} \times \frac{A_{e \nu \bar{\nu}}^{\mathrm{TC}}}{A_{e \gamma}^{\mathrm{TC}}} \times \frac{\epsilon_{e \nu \bar{\nu}}^{\mathrm{DCH}}}{\epsilon_{e \gamma}^{\mathrm{DCH}}} \times \frac{1}{A_{e \gamma}^{\mathrm{g}}} \times \frac{1}{\epsilon_{e \gamma}},$$

 $N_{e\nu\bar{\nu}}=11414$ numero di positroni "Michel" rivelati con energia compresa tra 50 – 56 MeV

P fattore di scala usato nel trigger per selezionare i positroni "Michel"

$$f_{evv}^E = 0.101 \pm 0.006$$
 frazione dello spettro dei positroni "Michel" oltre i 50 MeV

 $\epsilon_{e\gamma}^{\rm trig}/\epsilon_{ev\bar{\nu}}^{\rm trig}=0.66\pm0.03$ rapporto tra le efficienze del trigger tra il segnale e il decadimento Michel

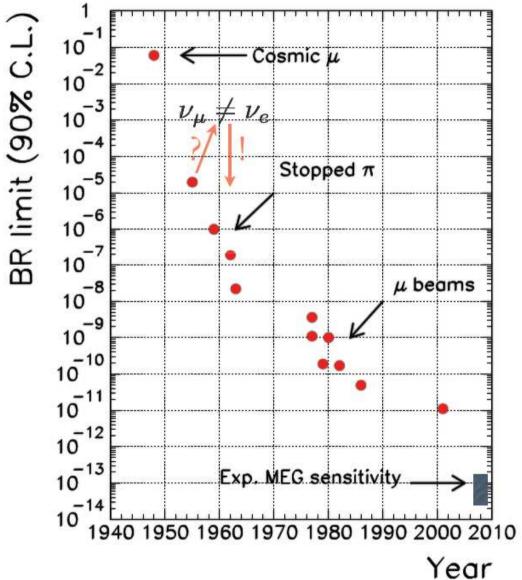
 $A_{ev}^{TC}/A_{ev\bar{\nu}}^{TC}=1.11\pm0.02$ il rapporto tra le efficienze di matching DCH – TC tra il segnale e il Michel

 $\epsilon_{e\gamma}^{
m DCH}/\epsilon_{e\nuar{
u}}^{
m DCH}=1.02\pm0.005$ rapporto tra le efficienza per la DCH con eventi buoni e decadimenti Michel

$$A_{e\gamma}^{\rm g} = 0.98 \pm 0.005$$
 l'accettanza geometrica per il segnale dei fotoni dato il segnale di un positrone accettato.

$$\epsilon_{ev} = 0.63 \pm 0.04$$
 l'efficienza di ricostruzione del fotone.

CONCLUSIONI: MEG OGGI


$$BR(\mu^+ \to e^+ \gamma) \le 2.4 \times 10^{-12} (90\% \text{ C.L.})$$

Upper limit calcolato dall'analisi di 1.8 X 10¹⁴ decadimenti combinando i dati raccolti nel 2009 e nel 2010.

La costruzione della likelihood è fatta con una blinding box (regione di analisi) compresa tra i seguenti valori:

$$48 < E_{\gamma} < 58 \text{ MeV}$$
 $50 < E_{e} < 56 \text{ MeV}$ $|t_{e\gamma}| < 0.7 \text{ ns}$ $|\theta_{e\gamma}| < 50 \text{ mrad}$ $|\varphi_{e\nu}| < 50 \text{ mrad}$

CONCLUSIONI: PROSPETTIVE FUTURE

L'esperimento MEG continua la presa dati con una sensibilità per il BR di circa 10⁻¹³.

Con un upgrade della strumentazione ci si aspetta di arrivare a una sensibilità per il branching ratio inferiore a 10⁻¹³ nei prossimi anni.

GRAZIE DELL'ATTENZIONE