ELEMENTARY PARTICLE PHYSICS Current Topics in Particle Physics Laurea Magistrale in Fisica, curriculum Fisica Nucleare e Subnucleare Lecture 8

Simonetta Gentile*

* Università Sapienza,Roma,Italia.

November 17, 2017

Simonetta Gentile terzo piano Dipartimento di Fisica *Gugliemo Marconi* Tel. 0649914405 e-mail: simonetta.gentile@roma1.infn.it pagina web:http://www.roma1.infn.it/people/gentile/simo.html

Bibliography

- \blacklozenge Bibliography
- K.A. Olive et al. (Particle Data Group), *The Review of Particle Physics*, Chin. Phys. C, 38, 090001 (2014)(PDG) update 2015, http://pdg.lbl.gov/
- F. Halzen and A. Martin, *Quarks and Leptons: An introductory course in Modern Particle Physics*, Wiley and Sons, USA(1984).
- \blacklozenge Other basic bibliography:
 - A.Das and T.Ferbel, *Introduction to Nuclear Particle Physics* World Scientific, Singapore, 2nd Edition(2009)(DF).
 - D. Griffiths, *Introduction to Elementary Particles* Wiley-VCH, Weinheim, 2nd Edition(2008), (DG)
 - B.Povh *et al.*, *Particles and Nuclei* Springer Verlag, DE, 2nd Edition(2004).(BP)
 - D.H. Perkins, *Introduction to High Energy Physics* Cambridge University Press, UK, 2nd Edition(2000).

- ♠ Particle Detectors bibliography:
- William R. Leo Techniques for Nuclear and Particle Physics Experiments, Springer Verlag (1994)(LEO)
- C. Grupen, B. Shawartz *Particle Detectors*, Cambridge University Press (2008)(CS)
- The Particle Detector Brief Book,(BB) http://physics.web.cern.ch/Physics/ParticleDetector/Briefbook/

Specific bibliography is given in each lecture

- 1. Introduction. Lep Legacy
- 2. Proton Structure
- 3. Hard interactions of quarks and gluons: Introduction to LHC Physics
- 4. Collider phenomenolgy
- 5. The machine LHC
- 6. Inelastic cros section pp
- 7. W and Z Physics at LHC
- 8. Top Physics: Inclusive and Differential cross section $t\bar{t}$ W, $t\bar{t}$ Z
- 9. Top Physics: quark top mass, single top production
- 10. Dark matter

- ♠ Bibliography of this Lecture
- T.Han, Collider Phenomenology: Basic Knowledge and Techniques, arXiv:hep-ph/0508097 (TAO)

Contents

- 2 Top Discovery
- 3) Top production & decay
 - Dilepton decays
 - Lepton plus jets decays
 - All hadronic decays
- 4 Inclusive cross section
- 5 Differential cross section
 - Correction and Unfolding
 - $t\bar{t}$ differential top cross sections
- 6 ttW and ttZ
- Back-up

Introduction

Top quarks are special

- Top quark mass
 - The heaviest known particle: mass : $m_{top} = 173.21 \pm 0.51 \pm 0.71$ GeV
 - Pointlike particle with mass of gold atom, 35xheavier than bottom quark →why?
 - Being heavier than a W boson, it is the only quark that decays semi-weakly, i.e., into a real W boson and a b quark
- It is the only quark whose Yukawa coupling to the Higgs boson ≈ 1

Understanding the origin of mass is a major open problem

- Top quark lifetime: $\tau \approx 5 \cdot 10^{-25} \text{ s}$
 - $\Gamma = 141^{+0.19}_{-0.15} \text{GeV}$
 - compare with hadronization scale $\Lambda_{QCD} \approx 250$ MeV
 - a very short lifetime and decays before hadronization can.occur

November 17, 2017

Reasons to study

- Important consequence of top: top decay before hadronization
 - Top is the only *free* quark ⇒no bound states(e.g. toponium, top mesons/baryons)
 - The only place where to study property of bare quark
 - Spin/polarization passed on to decay productions without dilution/direct access to quark properties
 - Particularly if new particle couples to mass
- First place a new particle could be tion, decay branching ratios, observed etc.) can bring key infor-
- Top is background of many searches

• An accurate knowledge of its properties(mass, couplings, production cross section, decay branching ratios, etc.) can bring key information on fundamental interactions and beyond.

November 17, 2017

Contents

Top Discovery

- 3 Top production & decay
 - Dilepton decays
 - Lepton plus jets decays
 - All hadronic decays
- 4 Inclusive cross section
- 5 Differential cross section
 - Correction and Unfolding
 - $t\bar{t}$ differential top cross sections
- 6 ttW and ttZ
- Back-up

November 17, 2017

History of top discovery

$$R = \frac{\sigma(e^+ + e^- \to hadrons)}{\sigma(e^+ + e^- \to \mu\mu)}$$

- 1976: Discovery of Upsilon (Fermilab)
 - Contains a 5th quark the b-quark
 - From family structure of SM
 - Expect a 6th quark race to find it

 $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} b \end{pmatrix}$ $\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$

Electroweak precision data

• Analysis of radiative corrections within the framework of the SM using precision electroweak measurements (68%C.L.) shaded area.

$$\Delta \rho_t = \frac{3G_F}{8\pi^2 \sqrt{2}} m_t^2$$

- Direct measurements of m_t at Tevatron(CDF D0) (error bars 68%C.L.)
- From precision Z osservable $m_t = 173^{+13}_{-10} \text{ GeV}$
- From Direct measurement $m_t = 174.34 \pm 0.64 \text{ GeV}$

Direct and indirect determinations of the mass of the top quark, m_t , as a function of time.

Top discovery

• 1995 discovery at Tevatron $\sqrt{s} = 1.8$ TeV. CDF and D0 experiments

Top overview

코 > - 코

Contents

- Top quark
- 2 Top Discovery
- 3 Top production & decay
 - Dilepton decays
 - Lepton plus jets decays
 - All hadronic decays
- 4 Inclusive cross section
- 5 Differential cross section
 - Correction and Unfolding
 - $t\bar{t}$ differential top cross sections
- 6 ttW and ttZ
- Back-up

November 17, 2017

Top production

@LO with MSTW2008NNLO Tevatron $gg \sim 15\%$ and $qq \sim 85\%$ LHC(14 TeV) $gg \sim 90\% qq \approx 10\%$ S. Gentile (Sapienza)ELEMENTARY PARTICLE PHYSICNovember 17, 201716 / 54

$t\bar{t}$ cross section

NNLO theoretical predictions: 2

Collider	beam	\sqrt{s}	$\sigma_{ m tot}$	rate
		TeV	$^{\rm pb}$	at $10^{34} \text{cm}^{-2} \text{s}^{-1}$
Tevatron	$p \bar{p}$	1.96	7.009	
LHC	pp	7	167.0	$\sim 2 \text{ Hz}$
LHC	pp	8	239.0	$\sim 2 \text{ Hz}$
LHC	pp	14	933.0	$\sim 9~{\rm Hz}$

Top decays

- Top decays before can hadronize
- Top decay via the electroweak interactions
- Governed by CKM matrix, $Br(t \to Wb) \sim 1$
- Final state characterized by the decays of the W boson: $W \rightarrow \ell \nu, \tau_{had} \nu$ or $W \rightarrow q\bar{q} \longrightarrow$ different sensitivity and challenges in each channel

November 17, 2017

Top decays

Final state characterized by the decays of the W boson: Br($W \rightarrow \ell \nu = 10.86\%$), Br($W \rightarrow \tau \nu = 11.38\%$), Br($W \rightarrow$ hadrons = 67.41\%):

Top pair events classification according W decays:

- dileptons
- \bullet lepton + jets
- all hadronic

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

Top decays

dileptons

lepton+jets

all hadronic • dileptons:Br ~ 6%. Background: Few (mainly Z + jets)

______g

q

ā

b

h

q

20 / 54

ā

 W^+

- lepton+jets: Br ~ 35% Background: Few (mainly W + jets)
- all hadronic: Br ~ 46% Background:

November 17, 2017

Huge (mainly QCD)

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

Top decays-dileptons

$t\bar{t} \rightarrow W^+ b W^- \bar{b} \rightarrow e^+ \nu_e b \mu^- \bar{\nu}_\mu \bar{b}$

ELEMENTARY PARTICLE PHYSIC

Top decay-dileptons

 $t\bar{t} \rightarrow W^+ b W^- \bar{b} \rightarrow e^+ \nu_e b \mu^- \bar{\nu}_\mu \bar{b}$

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

November 17, 2017

b-tag

- B-hadron lifetime $\tau \sim 1 \text{ ps}$
- B hadron trave $L_{xy} \sim 3$ mm before decay

jet

di-lepton channel

Selection criteria for Signal

- 2 leptons
- Missing transverse energy
- ≥ 2 jets
 - from b-hadrons

Background

- $\bullet \ Z + jets$
- Single top
- Dibosons
- QCD multi-jets fakes

di-lepton signatures

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

November 17, 2017

 $17 \quad 25 / 54$

di-lepton signatures

S. Gentile (Sapienza)

2017 26 / 54

di-lepton signatures

S. Gentile (Sapienza)

November 17, 2017

Top decay- lepton plus jets

Event display of a top-quark pair candidate. This event has **one isolated muon,transverse missing energy** of 34 GeV, and **five hadronic jets.Two**of the jets pass the tight threshold on the b-tagging discriminant and are interpreted as originating from the **b** quarks from top quark decay. Twoof the others form an invariant mass of 72 GeV and are interpreted as coming from a hadronically-decaying **W** boson.

 (CMS DP -2015/019 https://cds.cern.ch/record/20373762]h=it)
 Image: Constraint of the second seco

Top decay- lepton plus jets

Event display of a top-quark pair candidate. This event has **one isolated muon,transverse missing energy** of 34 GeV, and **five hadronic jets.Two**of the jets pass the tight threshold on the b-tagging discriminant and are interpreted as originating from the **b** quarks from top quark decay. Twoof the others form an invariant mass of 72 GeV and are interpreted as coming from a hadronically-decaying W boson.

lepton plus jets channel

lepton + jet

Selection criteria for lepton+jets

- 1 leptons
- Missing transverse energy
- ≥ 4 jets
 - 2 from b-hadrons

W + jetsBackground

- $\bullet \ W + jets$
- Single top
- Dibosons

• QCD multi-jets fakes

November 17, 2017

30 / 54

• Z +jets

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

All hadronic decays

all jets

Selection criteria Signal

- 0 leptons
- NO Missing transverse energy
- ≥ 6 jets
 - 2 from b-hadrons

• QCD multi-jets

Background

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

November 17, 2017

Relative Merits

Relative Merits:

• **Dileptons**:Br $\sim 6\%$

- lowest branching ratio
- Highest Signal/Background
- 2 neutrinos \implies harder reconstruct $t\bar{t}$ system
- lepton+jets: Br $\sim 35\%$
 - Reasonable branching ratio
 - Reasonable Signal/Background
 - Only 1 neutrino \implies so can fully reconstruct $t\bar{t}$ system

• all hadronic: Br $\sim 46\%$

- Highest branching ratio
- Lowest Signal/Background
- Hard determine background from QCD
- Reconstructing $t\bar{t}$ system system: combinatorial complexity

Distributions

dileptons:

Number of b-tagged jets after the $e\mu$ selection at $\sqrt{s}=7$ TeV. https://arxiv.org/abs/1603.02303

lepton+jets

Distributions of the lepton-jet mass in the muon+jets https://arxiv.org/abs/1602.09024

Distributions

all hadronic

Distribution of the reconstructed top quark mass after the kinematic fit. The normalizations of the $t\bar{t}$ signal and the QCD multijet background are taken from the template fit to the data.

https://arxiv.org/abs/1509.06076 S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSIC

November 17, 2017

Contents

- Top quark
- 2 Top Discovery
- 3) Top production & decay
 - Dilepton decays
 - Lepton plus jets decays
 - All hadronic decays
- Inclusive cross section
- 5 Differential cross section
 - Correction and Unfolding
 - $t\bar{t}$ differential top cross sections
- 6 ttW and ttZ
- Back-up

November 17, 2017

Measuring the $t\bar{t}$ inclusive cross section

Figure : Distribution of the number of b-tagged jets in preselected opposite-sign $e\mu$ events

ATLAS https://arxiv.org/abs/ 1606.02699

 $\sigma_{t\bar{t}}$ is determined by counting the numbers of opposite-sign $e\mu$ events with exactly one (N_1) and exactly two (N_2) b-tagged jets, ignoring any jets that are not b-tagged which may be present:

$$\begin{split} \mathbf{N}_1 &= \mathcal{L}\sigma\epsilon_{e\mu}2\epsilon_b(1 - C_b\epsilon_b) + N_{b1}^{\mathrm{bkg}} \\ \mathbf{N}_2 &= \mathcal{L}\sigma\epsilon_{e\mu}\epsilon_b^2C_b\epsilon_b + N_{b2}^{\mathrm{bkg}} \end{split}$$

 \mathcal{L} = integrated luminosity $\epsilon_{e\mu}$ = efficiency for ℓ to be in the detector and reconstructed

 ϵ_b = efficiency for b-jets from top to be in the detector and reconstructed C_b = term to account the correlations between the two b-jets.

Measuring the $t\bar{t}$ inclusive cross section

$$N_{1} = \mathcal{L}\sigma\epsilon_{e\mu}2\epsilon_{b}(1 - C_{b}\epsilon_{b}) + N_{b1}$$
$$N_{2} = \mathcal{L}\sigma\epsilon_{e\mu}\epsilon_{b}^{2}C_{b}\epsilon_{b} + N_{b2}$$

• Measure N_1 and $N_2 \implies \text{extract } \epsilon_b$ and σ ; solved by minimising a likelihood function.

- Analysis designed to be as sensitive as possible to large detector uncertainties
- Takes as much information as possible from the detector

		0.0001.000	
Event counts	<i>N</i> ₁	$e\mu$ events v	
Data	11958	tagged jets (
Single top	1140 ± 100	with the esti	
Diboson	34 ± 11	mounds and	
$Z(\rightarrow \tau \tau \rightarrow e\mu)$ +jets	37 ± 18	grounds and	
Misidentified leptons	164 ± 65	uncertainties	
Total background	1370 ± 120	as 0 are < 0 .	
S. Gentile (Sapienza)	ELEMENTAR	Y PARTICLE PHYSIC	

Observed numbers of opposite-sign $e\mu$ events with one and two btagged jets (N_1 and N_2), together with the estimates of non- $t\bar{t}$ backgrounds and associated systematic uncertainties. Uncertainties quoted as 0 are < 0.5.

November 17, 2017

Measuring the $t\bar{t}$ inclusive cross section: Systematics

Uncertainty (inclusive $\sigma_{i\bar{i}}$)	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$ [%]	$\Delta C_b/C_b[\%]$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ [%]
Data statistics			0.9
tī NLO modelling	0.7	-0.1	0.8
tī hadronisation	-2.4	0.4	2.8
Initial- and final-state radiation	-0.3	0.1	0.4
tī heavy-flavour production	-	0.4	0.4
Parton distribution functions	0.5	-	0.5
Single-top modelling	-	-	0.3
Single-top/tī interference	-	-	0.6
Single-top Wt cross-section	-		0.5
Diboson modelling	-	-	0.1
Diboson cross-sections	-		0.0
Z+jets extrapolation	-	-	0.2
Electron energy scale/resolution	0.2	0.0	0.2
Electron identification	0.3	0.0	0.3
Electron isolation	0.4	-	0.4
Muon momentum scale/resolution	-0.0	0.0	0.0
Muon identification	0.4	0.0	0.4
Muon isolation	0.2	-	0.3
Lepton trigger	0.1	0.0	0.2
Jet energy scale	0.3	0.1	0.3
Jet energy resolution	-0.1	0.0	0.2
b-tagging	-	0.1	0.3
Misidentified leptons	-	-	0.6
Analysis systematics	2.7	0.6	3.3
Integrated luminosity	-	-	2.3
LHC beam energy			1.5
Total uncertainty	2.7	0.6	4.4

results:

$$\begin{aligned} \sigma_{t\bar{t}} &= 818 \pm 8(stat) \pm 27(syst) \\ &\pm 19(lumi) \pm 12(beam) \text{pb} \end{aligned}$$

æ

$t\bar{t}$ cross section

NNLO theoretical predictions:³

Collider	$\sigma_{ m tot}~[m pb]$	scales [pb]	pdf [pb]
Tevatron	7.009	+0.259(3.7%) -0.374(5.3%)	+0.169(2.4%) -0.121(1.7%)
LHC 7 TeV	167.0	+6.7(4.0%) -10.7(6.4%)	+4.6(2.8%) -4.7(2.8\%)
LHC 8 TeV	239.1	+9.2(3.9%) -14.8(6.2\%)	$+6.1(2.5\%) \\ -6.2(2.6\%)$
LHC 14 TeV	933.0	$+31.8(3.4\%) \\ -51.0(5.5\%)$	$+16.1(1.7\%) \\ -17.6(1.9\%)$

39 / 54

It has been calculate ($\alpha_s^2 \sim 0.1$ the series should be converge) :

- Leading order term (LO $\propto \alpha_s^2$)
- Next-to-Leading order term (NLO $\propto \alpha_s^3$)
- Next-to-next-to-leading order term (NNLO $\propto \alpha_s^4$)

 3 M. Czakon, P. Fiedler, A. Mitov, Phys. Rev. Lett. 110 (2013) 252004, https://arxiv.org/pdf/1303.6254v1.pdf

S. Gentile (Sapienza) ELEMENTARY PARTICLE PHYSIC November 17, 2017

$t\bar{t}$ experimental cross section

Precision of measurement comparable to theory precision LHC and Tevatron results consistent and in agreement with NNLO

S. Gentile (Sapienza) ELEME

November 17, 2017

$t\bar{t}$ experimental inclusive cross section

LHC and Tevatron results consistent and in agreement with NNLO over a large range of centre-of-mass energies 4

⁴ATLAS, 3.2fb-1, 13TeV, Dilept., arXiv:1606.02699, CMS, 2.3fb-1,13TeV, l+jets CMS-PAS-TOP-16-006, CMS, 2.53fb-1,13TeV, all jets CMS-PAS-TOP-16-013, CMS, 26pb-1,5TeV, dilept. CMS-PAS-TOP-16-015

Contents

- Top quark
- 2 Top Discovery
- 3) Top production & decay
 - Dilepton decays
 - Lepton plus jets decays
 - All hadronic decays
- Inclusive cross section
- **5** Differential cross section
 - Correction and Unfolding
 - $t\bar{t}$ differential top cross sections
- 6 ttW and ttZ
- 7 Back-up

$t\bar{t}$ differential cross section

• Motivation

- detailed test of pQCD, constrain PDF and MC parameters
- background for Higgs, rare processes and many BSM searches

• General analysis strategy

- tight event selection \rightarrow pure $t\bar{t}$ sample
- $t\bar{t}$ system / top quark kinematic reconstruction
- background subtraction
- \bullet corrections: acceptance, resolution \rightarrow unfolding

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma_i}{\mathrm{d}X} = \frac{1}{\sigma} \frac{\mathrm{unfold}(s_i^X - b_i^X)}{\Delta_i^X \cdot \int \mathcal{L} \mathrm{d}t}$$

- compare to theory predictions at particle or parton level
- unfold to particle level normalized: cancellations of many systematic uncertainties

- Starting with a relevant detector distribution of a reconstructed variable:
 e.g.the p_T distributions of the leading jet.
- Subtraction of the estimated backgrounds.
- Application of acceptance correction f_{acc} that accounts for events that are generated outside the fiducial phase-space but pass the detector-level selection.

ATLAS 16-09-2016: http://cds. cern.ch/record/2217231

- Account for detector resolution and efficiency corrections ε_{eff} correct for events that are in the fiducial phase-space but are not reconstructed at the detector level
- The drop in efficiency at higher top-quark candidate p_T arises primarily from the b-tagging requirements.

ATLAS 16-09-2016: http://cds. cern.ch/record/2217231

O Unfolding step uses a migration matrix (M) derived from the simulated $t\bar{t}$ events in the fiducial phase-space that have been matched to detector-level jets, where the rows represent MC events produced within a given bin normalized to 100, and the columns represent the binning of the same detector-level variable.

ATLAS 16-09-2016: http://cds. cern.ch/record/2217231

ATLAS Simulation Preliminary Fiducial phase-space bin-to-bin migrations $\sqrt{s} = 13 \text{ TeV}$

The probability for particlelevel events to remain in the same bin is therefore represented by the elements on the diagonal, and the off-diagonal elements describe the fraction of particle-level events that migrate_into other bins.

November 17, 2017

$$\frac{\mathrm{d}\sigma^{\mathrm{fid}}}{\mathrm{d}X^{i}} \equiv \frac{1}{\int \mathcal{L}\mathrm{d}t \cdot \Delta X^{i}} \cdot \frac{1}{\epsilon_{\mathrm{eff}}} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{\mathrm{acc}}^{j} \cdot \left(N_{\mathrm{reco}}^{j} - N_{\mathrm{bg}}^{j}\right)$$

•Normalized fiducial phasespace differential crosssections as a function of transverse momentum of the leading top-quark jet.

November 17, 2017

Few unfolding can be elaborated:

- Particle level
 - Closer to our reconstructed quantities
 - Constraining the MC parameters (tuning)
- Parton level
 - Easier to calculate
 - Necessary for comparison to fixed predictions
 - PDF fitting

$t\bar{t}$ differential top quark p_{T}

Top $p_{\rm T}$ modelled too hard (improves with NNLO pQCD). New Full NNLO calculation available. M. Czakon, D. Heymes and A. Mitov arXiv:1511.00549, PRL 116 (2016) 082003

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC

November 17, 2017

Contents

- Top quark
- 2 Top Discovery
- 3) Top production & decay
 - Dilepton decays
 - Lepton plus jets decays
 - All hadronic decays
- 4 Inclusive cross section
- 5 Differential cross section
 - Correction and Unfolding
 - $t\bar{t}$ differential top cross sections
- $\mathbf{6}$ ttW and ttZ
 - Back-up

• Couplings of top quark to Z are largely unexplored

- Production sensitive to new physics
- ttZ and ttW backgrounds to new physics searches and $t\bar{t}H$

• Four signal regions: 2ℓ OS, 2ℓ SS, 3ℓ , 4ℓ OS = Opposite sign ,SS = Same sign

Expected yields after the fit compared to data for the fit to extract $\sigma_{t\bar{t}Z}$ and $\sigma_{t\bar{t}W}$ in the signal regions and in the control regions used to constrain the WZ and ZZ backgrounds SF= same flavour DF= different flavour

Simultaneous fit to the $t\bar{t}Z$ and $t\bar{t}W$ cross sections

 $\sigma_{t\bar{t}Z} = 0.9 \pm 0.3 \text{pb}$ $\sigma_{t\bar{t}W} = 1.5 \pm 0.8 \text{pb}$ 0.01599 v1.pdf

ATLAS: https://arxiv.org/pdf/1609.01599v1.pdf

Contents

- Top quark
- 2 Top Discovery
- 3) Top production & decay
 - Dilepton decays
 - Lepton plus jets decays
 - All hadronic decays
- 4 Inclusive cross section
- 5 Differential cross section
 - Correction and Unfolding
 - $t\bar{t}$ differential top cross sections
 - 6 ttW and ttZ
- 7 Back-up

Ratio R

S. Gentile (Sapienza)

ELEMENTARY PARTICLE PHYSIC November 17, 2017

54 / 54

ъ

-