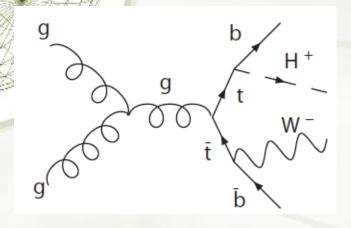


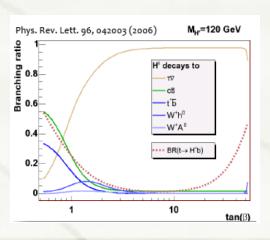
Systematics in charged Higgs searches in ATLAS

Simonetta Gentile

Università di Roma, La Sapienza, INFN on behalf of ATLAS Collaboration

- + Light H⁺ search & expected upper limits for $Br(t \rightarrow H^+ b)$:
- + \sqrt{s} =10 TeV, L_{int} =200 pb⁻¹, \sqrt{s} =7 TeV, L_{int} = 1 fb⁻¹ (rescaling)
 - $H^+ \rightarrow c \text{ sbar}$ $H^+ \rightarrow \tau^+_{lep} v$


(see talk Un-ki Yang & Miika Klemetti & Arnaud Ferrari)


- + Impact of systematics uncertainties
- + Conclusions
- ★ The material presented here is based on ATLAS notes ATL-PUB-2010-006 and ATL-PUB-2010-009

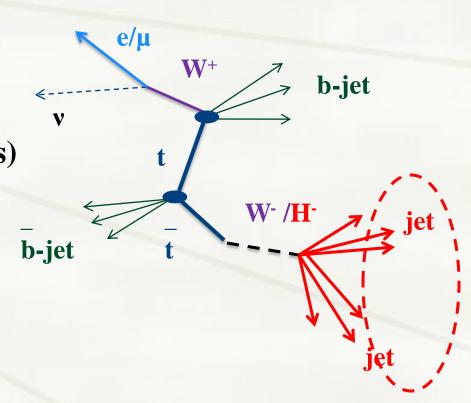
Previous studies at \sqrt{s} =14 TeV at L_{int} = 10 and L_{int} = 30 fb⁻¹ on light and heavy charged Higgs are: Expected Performance of ATLAS Experiment-Detector, Trigger and Physics, arXiv:0901.0512[hep-ex]

The systematics discussion is deeply linked to analysis and the key point of analysis procedure have to be reminded.

INFN Istituto Nationals and Charged Searches at LHC di Fisica Juclean ght charged searches

- → Light H⁺ (m $_{H+}$ < m $_{top}$) are produced primarly through top decay: $t \rightarrow H^+b$ (and c. c.)
- ★ Search for tt bar event with one the tops decaying in H+ instead
 W+, while the other decays to W-, with subsequent leptonic decays
- + Main background SM top pair production
- + $\tan \beta < 1$ H⁺ \rightarrow c sbar
- $+ \tan \beta > 1$ $H^+ \rightarrow \tau^+_{len} v$

Semileptonic channel

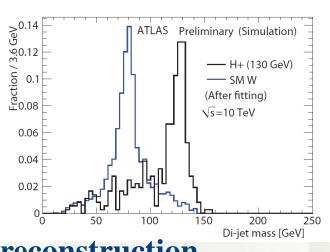

 $H^+ \rightarrow c s bar$

 $\tan \beta < 1$

- In SM Br($t \rightarrow W^+b$) ~ 1
- tbar → H-bbar would appear as 2ndpeak in di-jets

mass distribution Analysis method:(key points)

- only one lepton(e,μ): $p_T > 20 \text{ GeV } |\eta| < 2.5$
- $E_T^{miss} > 20 \text{ GeV}$
- At least 4 jets $p_T > 20 \text{ GeV } |\eta| < 2.5$
- Two of 4jets b-tagged



INFN Istituto Nazionale Dijet mass distribution & fitter di Fisica Nuclear Dijet mass distribution & fitter

★ The analysis is performed by considering the shapes of di-jet mass distribution.

$$\chi^{2} = \sum_{i=l, \text{4jets}} \frac{\left(p_{T}^{i, \text{fit}} - p_{T}^{i, \text{meas}}\right)^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{\left(p_{j}^{\text{UE, fit}} - p_{j}^{\text{UE, meas}}\right)^{2}}{\sigma_{UE}^{2}} + \sum_{k=jjb, bl\nu} \frac{(M_{k} - M_{\text{top}})}{\sigma_{\text{top}}^{2}} + \frac{(M_{l\nu} - M_{W})^{2}}{\sigma_{W}^{2}}$$

➤ Usage of kinematic fitter for ttbar event reconstruction provides better separation between H⁺ and W⁺ mass distribution

Fitter for $H^+ \rightarrow c$ sbar mass

reconstruction

- ♣ Reconstruction of entire ttbar event: W⁺ mass constraints on leptonic W⁺ decays and top mass requirement
- For each combination (4) Jet energy scaled using predefined light jet correction accounting the measured jet energy vs η. Additional parton level corrections specific to ttbar kinematics (derived using MC@NLO)
- ★ Mass Fitter applied to extract the most likely jet assignement correct and improve the resolution
- + Fitter: φ and η particle fixed. Measured momenta can vary inside resolution
- + σ jet has been estimated vs pt (MC@NLO)
- Unclustered energy 0.4 √ UE (small)
- → Combination with lowest χ^2 (χ^2 <10 and M_{top} < 195 GeV)
- → If the best combination doesn't pass this cut event rejected.

- This analysis is essentially a shape comparison and it sensitive to Jet Energy Scale (JES) which alter the shape of dijet mass distribution
- → The calibration method reduces this effect using ttbar events template. This technique corrects for systematic bias caused from JES.
- ★ Any relative bias between light and b quark is not taken in account .The calibration is derived from W mass
- → In future this bias can be reduced by calibrating b-jets using top quark mass.

Sensitivity

$$\mathscr{S} = N_{\rm sig} / \sqrt{N_{\rm bg}},$$

H^+ mass in GeV	90	110	130	150
$\mathscr{B}(t \to bH^+)$	22%	15%	8%	13%
$\mathscr{S} = N_{\rm sig} / \sqrt{N_{\rm bg}}$	5.9	4.9	3.3	4.0

Assuming the Tevatron upper limits for $\mathscr{B}(t \to bH^+)$

■To find an upper limit $\mathscr{B}(t \to bH^+)$ at 95 % CL

$$\mathscr{B}(H^+ \to c\overline{s}) = 1.$$

$$LH = \prod \frac{v_i^{n_i} \times e^{-v_i}}{n_i!} \bigotimes G(N_{bkg}, \sigma_{N_{bkg}}),$$

$$v_{i} = N_{t\bar{t}} \times 2 \underline{\mathscr{B}(t \to H^{+}b)[1 - \mathscr{B}(t \to H^{+}b)]} \times A_{H^{+}} \times P_{i}^{H^{+}} \times \mathscr{B}(W \to \ell \nu)$$
$$+N_{t\bar{t}} \times [1 - \mathscr{B}(t \to H^{+}b)]^{2} \times A_{W} \times P_{i}^{W} \times \mathscr{B}(W \to \ell \nu)[2 - \mathscr{B}(W \to \ell \nu)] + N_{bkg} \times P_{i}^{bkg}$$

- Three **fit parameters** $\mathscr{B}(t \to bH^+)$ N_{tt}^- , N_{bkg} (constrained with $\delta \sigma = 30\%$)
- Obtain 95% CL upper limit on $\mathscr{B}(t \to bH^+)$ using 10000 pseudo experiments

Sources of Systematics on

Branching Ratio Branching Ratio

+ Relevant impact

Uncertainty on:

- + Jet Energy Scale(JES)
- → Jet Energy Resolution(JER)
- → Initial & final state radiation (ISR&FSR)
- + MC generator used

Effect:

+ Limited impact

Any source which affects at

- + Luminosity
- $+ \sigma_{ttbar}$
- + $\varepsilon_{\text{trigger}}$
- + $\varepsilon_{\text{recon}}$
- + b-tag (if $M_H \sim M_W$)
- Change selection acceptance H and W events
- Perturb dijet mass distribution Simonetta Gentil

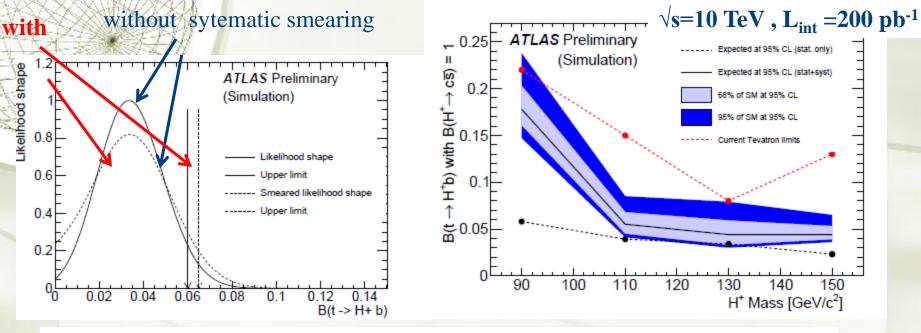
Systematic Uncertainties

- Upper limit change $\mathscr{B}(t \to bH^+)$ varying $\pm 1\sigma$ each source of systematic
- The same procedure to extract Br is performed using a new perturbed dijet mass distribution.

Systematic	Definition $\pm 1\sigma$
Jet Energy Resolution ($ \eta < 3.2$)	$0.45*\sqrt{E}$
Jet Energy Resolution ($ \eta > 3.2$)	$0.63 * \sqrt{E}$
Jet Energy Scale ($ \eta $ < 3.2)	±7%
Jet Energy Scale ($ \eta > 3.2$)	±15%
b-jet Energy Scale	b -tagged jet energy $\pm 3\%$
Lepton Energy Scale	±1%

- + MC generator: comparing MC@NLO and AcerMC.
- + Acceptance change varying ISR/FSR showering in Pythia on ttbar sample

Jet Energy Scale

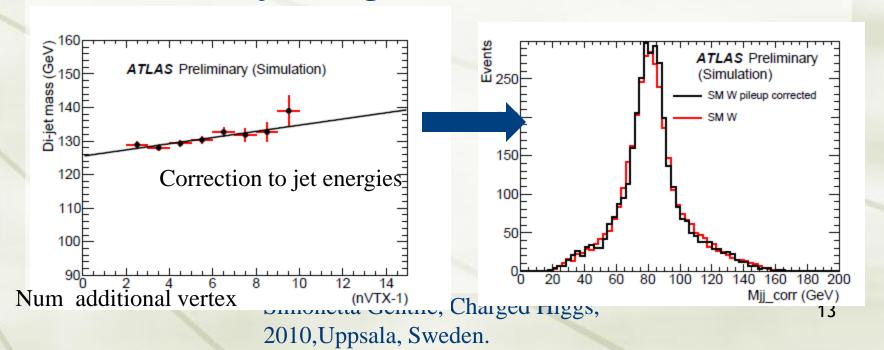

- + Important effect: acceptance variation due to JES uncertainty.
- * JES calibration on ttbar sample.
- The peak position of the dijet mass distribution (perturbed) compared with value of the nominal sample (Gaussian fit range 2σ)
 rescaling factor
- → JES systematic sample &ISR/FSR sample are recalibrated.

+ After JES recalibration	
the analysis is largely	
insensitive to JES	1200
	$m_{\rm H}=130G$

Systematic	$\Delta\mathscr{B}$
Jet Energy Resolution	0.71%
Jet Energy Scale	0.07%
MC Generator	0.56%
ISR/FSR	0.54%
b-jet Energy Scale	0.75%
Lepton Energy Scale	0.08%
Combination in quadrature	1.26%

INFN Istituto Nazionale di Fisica Nucleare For one pseudo-experiment

Including Systematics


m_{H^+} (GeV)	90	110	130	150
Expected upper limit $\mathscr{B}(t \to bH^+)$ (stat. only)	5.8%	3.9%	3.4%	2.3%
Expected upper limit $\mathcal{B}(t \to bH^+)$ (stat + syst)	17.8%	5.5%	4.4%	4.3%

→ The expected limit is higher when $M_H \rightarrow M_{W.}$ difficult to disentangle signal & background distribution.

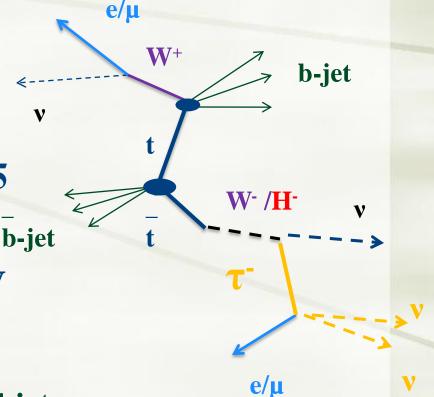
Pile-up

- **★** At $L = 10^{32}$ cm⁻² s⁻¹ in addition 4 additional interactions (on average)
- ✓ Increasead jet energy → shift of template dijet distribution at higher mass, used in LH fit → Br
- + Correction to jet energies (- 920 MeV for each Vertex)

Pile-up systematic

- ★ After jet recalibration the systematic error due to pile-up 0.090 (M_H=90GeV) and 0.004 (M_H=130GeV), <0.001 for higher mass.
- → The pile-up effect is not neglegible (9%) for $M_H \sim M_W$ but only 0.4% at $M_H = 130 \text{ GeV}$
- → Pile-up effect not easy forseen depends from beam condition. This is a guess...
 With pile-up Without pile-up

H^+ mass	Expected upper limit $\mathcal{B}(t \to bH^+)$	
90 GeV	20.8%	17.8%
130 GeV	4.5%	4.4%

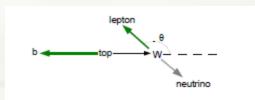


- **Event counting analysis.**
- **+ Analysis method:**(keypoints)
- + 2 opposite charge ℓ (= e, μ):

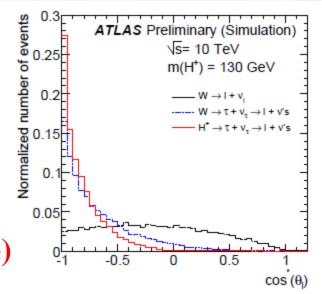
 $p_T > 20 \text{ GeV}, 10 \text{ GeV} |\eta| < 2.5$

- $+ E_T^{miss} > 50 \text{ GeV}$
- + At least 2 jets, $p_T > 15 GeV$ $|\eta|$ <5, b-tagged

Problem: Correct pairing lepton-bjets



Angle of lepton wrt helicity axis,


i.e.b-quark

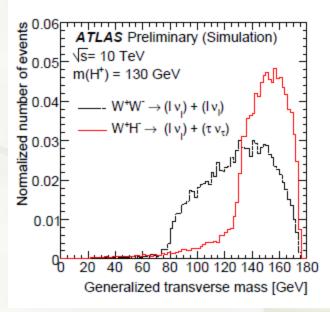
- → H⁺ is scalar (isotropic decay)
- → W⁺ spin-1 particle
- → H⁺ heavier W+
- + H⁺ mediated by τ

$$\cos heta_\ell^* \simeq rac{4 \, p_b \cdot p_\ell}{m_t^2 - m_W^2} - 1,$$

Selection Criterion cos θ^* <-0.6 (H⁺ side)

Generalized transverse mass $M_{T2}^{\ H+}$

- ★ Event-by-event upper limit of the Higgs boson mass.
- + 8 variables and 6 constrains constrains
- → p^{H+} and p^{v ℓ} unknown quantities
- ★ Assign p^{H+} to be one of the unconstrained degrees of freedom
- → Maximize H⁺ mass using the Lagrange multiplier


$$m_{T2}^{H^+} = \max_{\vec{p}_T^{H^+}} [M_T^H(\vec{p}_T^{H^+})],$$

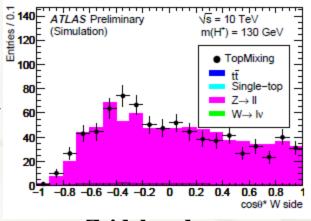
by construction

$$m_{T2}^{H^+} \ge m_{H^+}$$

$$(M_T^H)^2 = \left(\sqrt{m_{top}^2 + (\vec{p}_T^{H^+} + \vec{p}_T^b)^2} - p_T^b\right)^2 - (p_T^{H^+})^2$$
 Higgs, 2010, Uppsala, Sweden.

$$(p^{H^+} + p^b)^2 = m_{top}^2,$$

 $(p^{\ell^-} + p^{\bar{\nu}_\ell})^2 = m_W^2,$
 $(p^{\ell^-} + p^{\bar{\nu}_\ell} + p^{\bar{b}})^2 = m_{top}^2,$
 $(p^{\bar{\nu}_\ell})^2 = 0,$
 $\vec{p}_T^{H^+} - \vec{p}_T^{l^+} + \vec{p}_T^{\bar{\nu}_\ell} = \vec{p}_T^{miss}.$

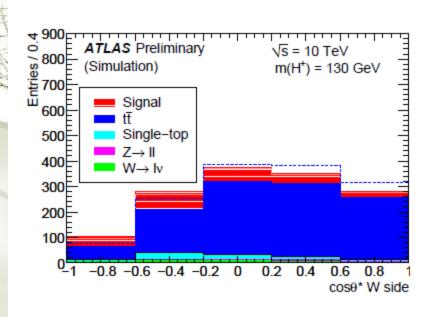


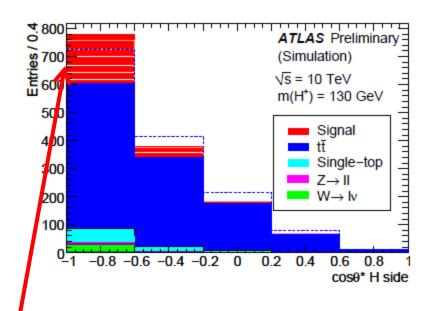
Backgrounds

- → Due to theoretical & experimental uncertainties, it is preferable not rely totally to MC simulation.
- Normalizazion. Scale N_{MC} to match experimental data for various background individually in unique sideband (not sensitivive to other process).
- + The contamination of fake leptons.

Can be determined experimentally using a "tag & probe" approach and a stringent, thight and less stringent, loose identification criteria.

The results are consistent with MC estimation




Zsideband scaled MC sample

Sensitivity Estimation

H^+ mass in GeV	90	110	130	150
$\mathscr{B}(t \to bH^+)$	15%	15%	17%	19%
$\mathscr{S} = N_{\rm sig} / \sqrt{N_{\rm bg}}$	8.9	10.4	11.7	11.3

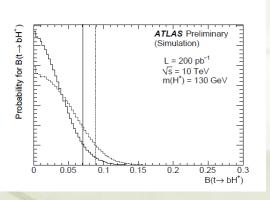
Assuming Tevatron upper limit

Upper Limits

+ No H⁺ signal

$$\mathscr{B} = \frac{N_{\text{obs}} - N_{\text{bg}}}{2 \times \sigma_{t\bar{t}} \times L_{int} \times \varepsilon_{\text{sig}}}$$

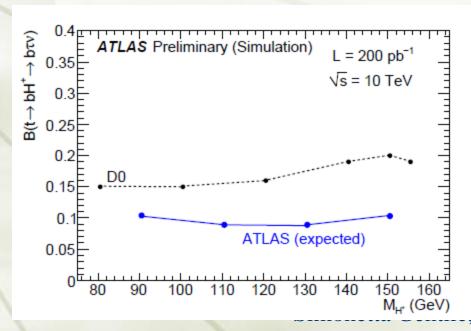
+ 10000 MC toy experiment varying input parameter


Within their uncertainties. For each value probabilty weight $W_{\mathscr{B}}(N_{\text{bg}}, N_{\text{obs}}, \varepsilon_{\text{sig}}) = P(N_{\text{bg}}) \times P(N_{\text{obs}}) \times P(\varepsilon_{\text{sig}})$

Gaussian probability density function

 $N_{\rm obs}$ Poisson uncertainty with $\sqrt{N_{\rm obs}}$, $N_{\rm bg}$ $\varepsilon_{\rm sig}$ MC statistics and systematics

$$0.95 = \int_0^{\mathscr{B}^{95\%}} \mathscr{B} d\mathscr{B}.$$


In case of non observation of signal $(N_{obs} - N_{bg} = 0)$

Upper limits

Mass	Signal	Expected upper limit on $\mathscr{B}(t \to bH^+)$				
(GeV)	Efficiency	without systematics	with systematics			
90	11.0%	8.3%	10.4%			
110	12.8%	7.1%	8.9%			
130	12.7%	7.1%	8.9%			
150	11.1%	8.0%	10.3%			

Charged Higgs,

Systemic Uncertainties

- \star N_{bg} , ϵ_{sig} (signal efficiency) may be affected by systematic uncertainties at theoretical level and detector performance.
- → The background MC samples are normalized to data, many uncertainties don't affect the expected number of background events.
- + Data driven method not sensitive to δL_{int}
- + reduce δσ for signal & background model -dependent and varying with √s, to 7% (depending from MC and data statistics). Additional < 1% due to relative uncertainty single top/ttbar σ

Systematic Uncertainties

- **Trigger & lepton reconstruction efficiency 1%** (arXiv:0901.0512)
- **★ Energy scale for lepton 1%,** mainly from faking electrons (in calculation of faking electron efficiency)
- + Jet energy scale 7% $|\eta| < 3.2$ and 15% $|\eta| > 3.2$ $(p_T \text{ requirement, } \cos\theta^*)$
- + E_t^{miss} is affected by lepton and energy scale. Neglegible. ttbar process is normalized after the cut on E_t^{miss}
- → **b-tag** $ε_b = 60\%$, $δε_b = 4\%$. The fake rejection rate Z/W+jets and QCD \longrightarrow additional 10%

Systematic Uncertainties

- **★ Theoretical uncertainty**: ttbar AcerMC and MC@NLO
- + ISR/FSR not relevant no cut on jet multelpicity.

Source	Uncertainty	Effec	t (in %) on
	(in %)	N_{bg}	$arepsilon_{sig}$
Normalization	7	7	n/a
Trigger	1	< 1	1
Lepton ID efficiency	1	< 1	1
Lepton fake rate	1	1	1
Lepton energy scale	1	< 1	1
Jet energy scale	7-15	7	4
b-tagging efficiency	4	< 1	4
b-tagging fake rate	10	1	< 1
Total		10	6

$$\mathcal{B}(t \to bH^+) = 10\%$$

Process	Number of events after					
	no cut	2l+2j	b-tagging	E_T^{miss}	$\cos \theta_l^*$	Trigger
Signal $m_{H^+} = 90 \text{ GeV}$	1286	378	300	211	151	141
Signal $m_{H^+} = 130 \text{ GeV}$	1286	405	308	221	173	163

With Pile-up

Process	Number of events after					
	no cut	2l+2j	b-tagging	E_T^{miss}	$\cos \theta_l^*$	Trigger
Signal $m_{H^+} = 90 \text{ GeV}$	1286	395	310	219	154	147
Signal $m_{H^+} = 130 \text{ GeV}$	1286	430	321	232	178	170

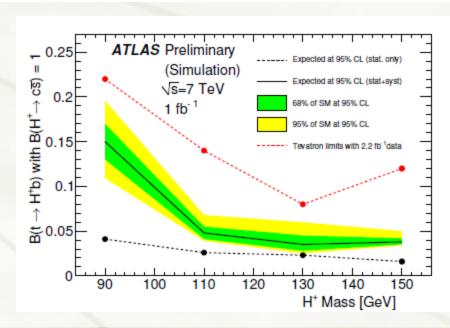
+ At L =10 ³² cm⁻² s⁻¹ Pile-up doesn't affect significantly the results

Running at $\sqrt{s}=7$ TeV $H^{+} \rightarrow csbar$

- $\sigma_{\text{ttbar}} = 161 \text{ pb}$ at $\sqrt{\text{s}} = 7 \text{ TeV}$ $\sigma_{\text{ttbar}} = 401.6 \text{ pb}$ at $\sqrt{\text{s}} = 10 \text{ TeV}$ \longrightarrow factor ~ 2
- → Using the same analysis procedure of $\sqrt{s}=10 \text{ TeV}$
- + Assuming same cut efficiencies at 7 TeV and 10 TeV

At $M_H=130 \text{ GeV}$

Systematic	$\pm 1\sigma$	$\Delta\mathscr{B}$
Jet Energy Resolution	$0.45 * \sqrt{E} (\eta < 3.2), 0.63 * \sqrt{E} (\eta > 3.2)$	0.73×10^{-2}
Jet Energy Scale	$\pm 7\% \ (\eta < 3.2), \pm 15\% \ (\eta > 3.2)$	0.04×10^{-2}
MC Generator	MC@NLO vs AcerMC	0.47×10^{-2}
ISR/FSR	ISR/FSR More vs Less	0.40×10^{-2}
b-jet Energy Scale	±3%	0.75×10^{-2}
Lepton Energy Scale	±1%	0.12×10^{-2}
Combination	In quadrature	1.2×10^{-2}

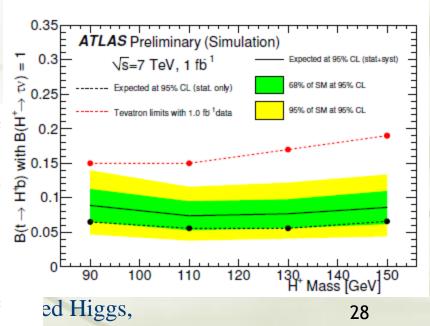


Upper Limits

$$\sqrt{s}=7 \text{ TeV } \text{L}_{\text{int}}=1 \text{fb}^{-1}$$

m_{H^+} (GeV)	90	110	130	150
Expected upper limit $\mathscr{B}(t \to bH^+)$ (stat. only)	4.0%	2.5%	2.3%	1.5%
Expected upper limit $\mathscr{B}(t \to bH^+)$ (stat + syst)	14.8%	4.7%	3.4%	3.7%

Simonetta Gentile, Charged Higgs, 2010, Uppsala, Sweden.


Running at $\sqrt{s}=7$ TeV $H^+ \rightarrow \tau^+ v$

- **★** Using the same analysis procedure of $\sqrt{s}=10$ TeV
- + Assuming same cut efficiencies at 7 TeV and 10 TeV

sensititvity

H ⁺ mass in GeV	90	110	130	150
$\mathscr{B}(t \to bH^+)$	15%	15%	17%	19%
$\mathscr{S} = N_{\rm sig} / \sqrt{N_{\rm bg}}$	12.3	14.4	16.0	15.5

Mass	Expected upper limit on $\mathscr{B}(t \to bH^+)$			
(GeV)	without systematics	with systematics		
90	6.5%	8.9%		
110	5.6%	7.4%		
130	5.6%	7.7%		
150	6.6%	8.6%		

N Stituto Nazionale Opper Limits and Conclusions of Fisica Nucleare

Ys=7 TeV
$$L_{int} = 1 \text{fb}^{-1}$$
 $\mathscr{B}(t \to bH^+)$ at 95%CL (with without systematics)

才	m_{H^+}	$H^+ ightarrow au^+ u$				$H^+ \rightarrow c\bar{s}$		
	(GeV)	Tevatron ATLAS expected			Tevatron	ATLAS expected		
	90	15%		9%	6.5%	22%	10 /0	4.0%
	110	15%		7%	5.6%	15%	0,0	2.5%
	130	17%		8%		8%	3.4%	2.3%
	150	19%		9%	6.6%	13%	3.7%	1.5%

$$\mathscr{B}(H^+ \to \tau^+ \nu) = 1$$
 $\mathscr{B}(H^+ \to c\bar{s}) = 1$

- + Sensitivity studies suggest that the Tevatron limit on $(\mathbf{Br}(\mathbf{t} \rightarrow \mathbf{H}^+ \mathbf{b}))$ branching ratio can significantly be improved during the early data taking period (end 2011).
- + But..... A particular attention to systematic studies has to be deserved. Its impact can lead up to a factor of 2-3 degredation on the measured limits. Simonetta Gentile, Charged Higgs, 29

2010, Uppsala, Sweden.