# Cabibbo-Kobayashi-Maskawa Matrix and CP Violation in Standard Model

## Shahram Rahatlou University of Rome





#### Lecture 3 Introduction to CP Violation

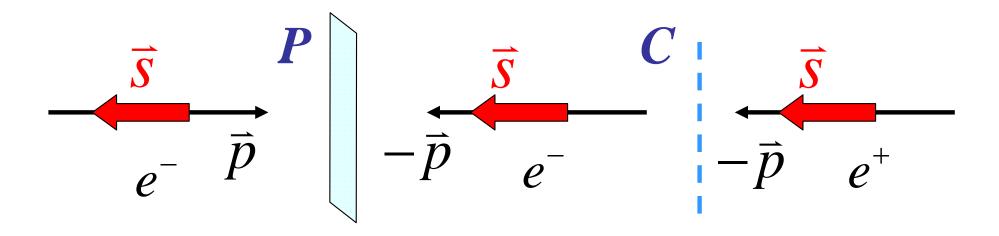
Lezioni di Fisica delle Particelle Elementari

#### Outline of Today's Lecture

What is CP Violation and why do we care?

- CKM matrix revisited
  - CP Violation in the Standard Model

- Experimental method to measure CP Violating effects
  - Quantum interference

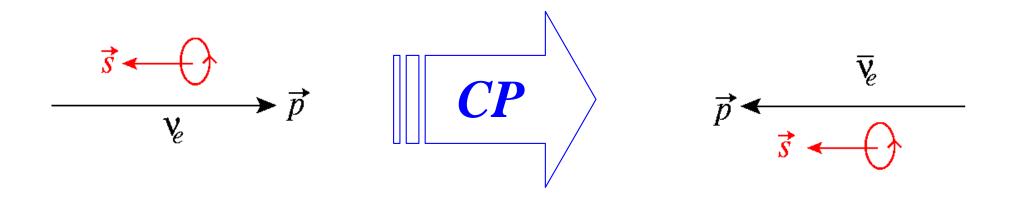

#### Asymmetric Universe of Matter

Universe is very empty but in a biased way

$$\frac{n_{baryon}}{n_{photons}} \approx 10^{-18} \qquad \frac{N(anti-baryon)}{N(baryon)} \le 10^{-4} - 10^{-6}$$

- Absence of anti-nuclei amongst cosmic rays in our galaxy
- Absence of intense γ–ray emission due to annihilation of distant galaxies in collision with antimatter galaxies
- The early universe believed to have equal amount of matter and anti-matter
  - What happened to the anti-matter?
- CP Violation is one of the three ingredients required to generate such an asymmetry after the Big Bang (A. Sakharov, 1967)
  - Baryon-number violating processes
  - Non-equilibrium state during expansion
  - C and CP Violation

#### C and P Symmetries and Fundamental Interactions




- Parity, P
  - Parity reflects a system through the origin. Converts right-handed coordinate systems to left-handed ones.
  - Vectors change sign but axial vectors remain unchanged
    - $X \rightarrow -X$  ,  $L \rightarrow L$
- Charge Conjugation, C
  - Charge conjugation turns a particle into its anti-particle

• 
$$e^+ \rightarrow e^-, K^- \rightarrow K^+, \gamma \rightarrow \gamma$$

#### CP Symmetry, particles and anti-particles

• CP symmetry transforms a particle in its anti-particle



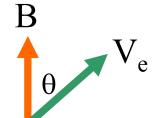
CP is violated IF particles and anti-particles behave differently!

#### Weak Interactions and Symmetry Violation

- P and C are good symmetries of the strong and electromagnetic interactions
- Parity violation observed in 1957
  - Asymmetry in  $\beta$  decays of  ${}^{60}CO \rightarrow {}^{60}Ni + e^- + \nu$
  - Electrons produced mostly in one hemisphere
- Charge-conjugation violation 1958
  - Only left-handed neutrinos and right-handed antineutrinos
- CP believed to be a good symmetry, but ...

## A Shocker : Weak Interaction Violates Parity !

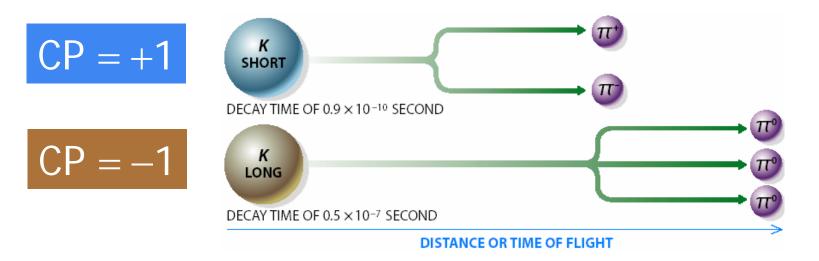
Observation of a spatial asymmetry in


<u>1956</u>

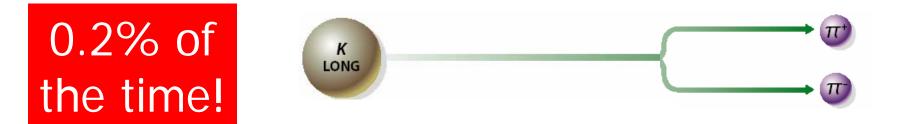


the  $\beta$ -decay electrons from  ${}^{60}\text{CO} \rightarrow {}^{60}\text{Ni} + e^- + \nu$ • Cold  ${}^{60}\text{CO}$  inside a Solenoidal B Field •  ${}^{60}\text{CO}$  nuclei spin aligned with B field direction •  ${}^{60}\text{CO}$  undergoes  $\beta$  decay .....electron emitted

- Measure electron intensity w.r.t B field dir.
- Result: Electrons preferentially emitted opposite spin dir.  $$\mathbf{B}$$

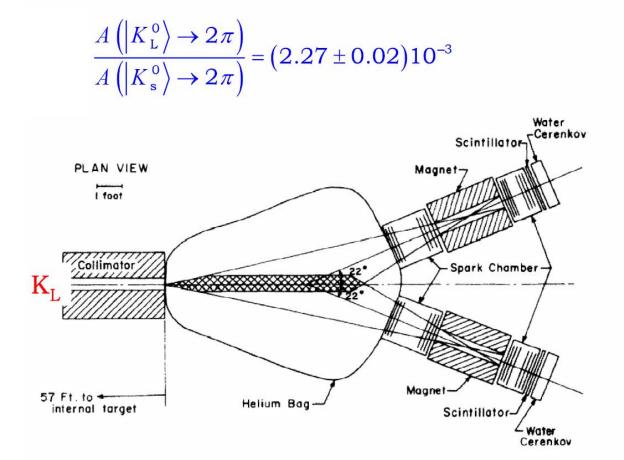

$$I(\theta) = 1 - \frac{V_e}{c} \cos \theta$$

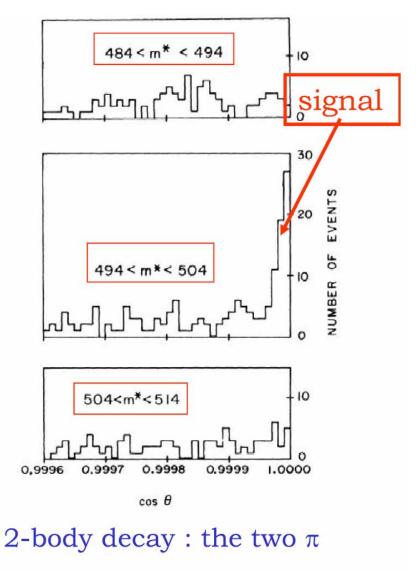



asymmetry of intensity  $\rightarrow$  Weak interaction violated Parity

#### **CP Violation in Kaons**

CP conservation implies





CP violation in kaons observed in 1964



#### No theoretical explanation!

#### **Observation of CP Violation in Kaons**





are back-to-back:  $|\cos\theta|=1$ 

## **Complex Coupling Constants and CP Violation**

| Fermion bilinear                            | Boson field $F$                | $\mathbf{P} \ F \ \mathbf{P}^\dagger$ | $\mathbf{C} \ F \ \mathbf{C}^\dagger$ | $\mathbf{CP} \ F \ \mathbf{CP}^\dagger$ |
|---------------------------------------------|--------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|
| $\overline{\psi}\psi$                       | Scalar $S^+(t, \vec{x})$       | $S^+(t, -\vec{x})$                    | $S^-(t, \vec{x})$                     | $S^-(t, -\vec{x})$                      |
| $\overline{\psi}\gamma^5\psi$               | Pseudoscalar $P^+(t,\vec{x})$  | $-P^+(t,-\vec{x})$                    | $P^-(t, \vec{x})$                     | $-P^-(t,-\vec{x})$                      |
| $\overline{\psi}\gamma_{\mu}\psi$           | Vector $V^+_{\mu}(t, \vec{x})$ | $V^+_\mu(t,-\vec{x})$                 | $-V_{\mu}^{-}(t,\vec{x})$             | $-V_{\mu}^{-}(t,-\vec{x})$              |
| $\overline{\psi}\gamma_{\mu}\gamma^{5}\psi$ | Axial $A^+_{\mu}(t, \vec{x})$  | $-A^+_\mu(t,-\vec{x})$                | $A^\mu(t,\vec{x})$                    | $-A^\mu(t,-\vec{x})$                    |

Table 2.1: Properties of charged boson fields and corresponding fermion bilinear terms under P, C, and CP.  $\gamma^5$  and  $\gamma^{\mu}$  are the Dirac matrices.

Generic interaction lagrangian with vector and axial fields

$$\mathcal{L} = a V_{\mu}^{+}(t, \vec{x}) V^{\mu-}(t, \vec{x}) + b A_{\mu}^{+}(t, \vec{x}) A^{\mu-}(t, \vec{x}) + a, \text{ b: real constants} \\ c V_{\mu}^{+}(t, \vec{x}) A^{\mu-}(t, \vec{x}) + c^{*} A_{\mu}^{+}(t, \vec{x}) V^{\mu-}(t, \vec{x})$$
C: complex constant

Lagrangian after CP transformation

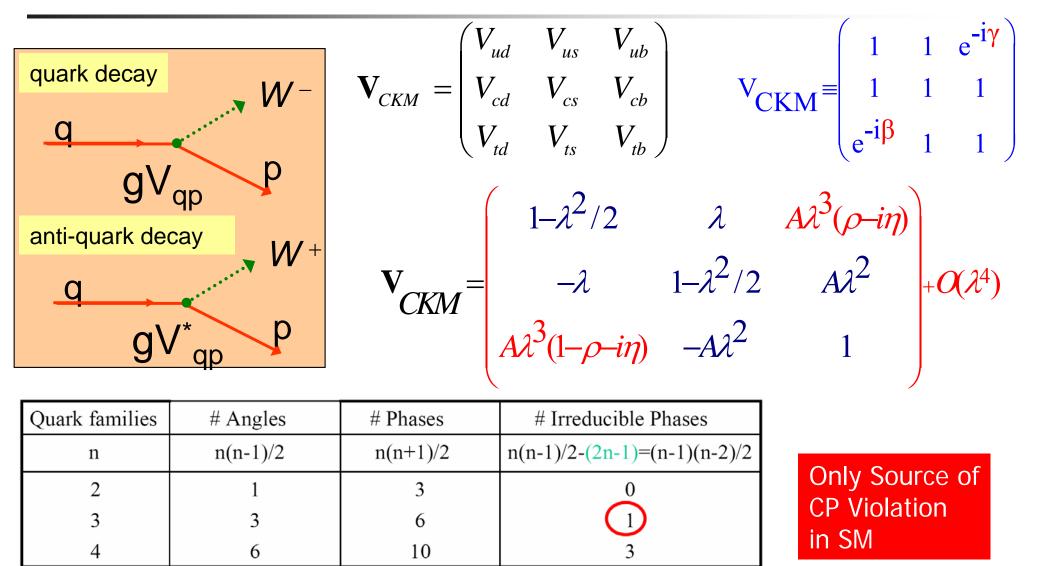
$$\mathbf{CP}\mathcal{L}\mathbf{CP}^{\dagger} = a V_{\mu}^{-}(t, -\vec{x})V^{\mu+}(t, -\vec{x}) + b A_{\mu}^{-}(t, -\vec{x})A^{\mu+}(t, -\vec{x}) + c V_{\mu}^{-}(t, -\vec{x})A^{\mu+}(t, -\vec{x}) + c^{*} A_{\mu}^{-}(t, -\vec{x})V^{\mu+}(t, -\vec{x}) .$$

Lagrangian invariant under CP IF AND ONLY IF c=c\*! c must be real

#### Reminder Kobayashi-Maskawa Mechanism of CP Violation

**1972** 




Two Young Postdocs at that time !

11

- Proposed a daring explanation for CP violation in K decay:
- CP violation appears only in the charged current weak interaction of quarks
- There is a single source of CP Violation  $\Rightarrow$  Complex Quantum Mechanical Phase  $\delta_{KM}$  in inter-quark coupling matrix
- Need at least 3 Generation of Quarks (then not known) to facilitate this

• CP is NOT an approximate symmetry,  $\delta_{\rm KM} \cong 1$ , it is MAXIMALLY 10 Nov 20/iolated !

#### **CKM Matrix Revisited**



CP Violation built in the Standard Model through Kobayashi-Maskawa Mechanism!

Only one complex phase! All CP violating effects in SM related to each other B and K decays CP Violating phenomena are cause by the same complex phase <sup>10 Nov 2006</sup>

#### Unitarity of CKM Matrix

$$V^{\dagger}V = VV^{\dagger} = 1$$

Magnitude of each term Τ

- All rows and columns must be orthonormal
  - 3 conditions for diagonal elements
  - 6 conditions for off-diagonal elements

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$
  
$$|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$$
  
$$|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$$

$$V_{ud}^{*} V_{us} + V_{cd}^{*} V_{cs} + V_{td}^{*} V_{ts} = 0 \qquad \lambda \lambda \lambda^{5}$$

$$V_{ub}^{*} V_{ud} + V_{cb}^{*} V_{cd} + V_{tb}^{*} V_{td} = 0 \qquad \lambda^{3} \lambda^{3} \lambda^{3}$$

$$V_{us}^{*} V_{ub} + V_{cs}^{*} V_{cb} + V_{ts}^{*} V_{tb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{ud}^{*} V_{td} + V_{us}^{*} V_{ts} + V_{ub}^{*} V_{tb} = 0 \qquad \lambda^{3} \lambda^{3} \lambda^{3}$$

$$V_{td}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{td}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda^{4} \lambda^{2} \lambda^{2}$$

$$V_{ud}^{*} V_{cd} + V_{ts}^{*} V_{cs} + V_{tb}^{*} V_{cb} = 0 \qquad \lambda \lambda \lambda^{5}$$

ub

CS

us

Only condition with comparable size of all pieces and involving b decays

'ud

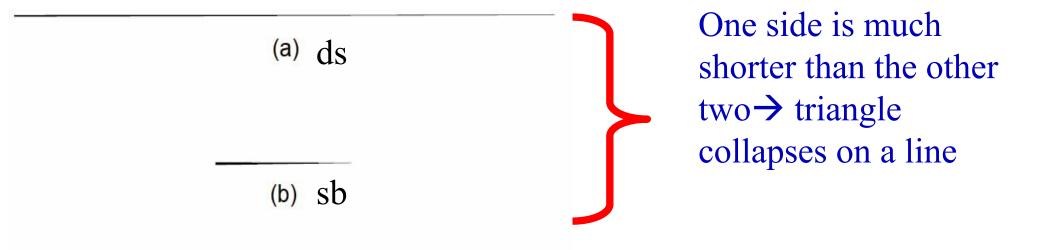
cd

#### **Unitarity Triangles**

Unitarity condition of CKM Matrix  $\rightarrow$  orthonormality of rows & columns

$$\sum_{\substack{(i=u,c,t)}} V_{ij} V_{ik}^* = \delta_{jk} \quad ; \sum_{\substack{(i=d,s,b)}} V_{ij} V_{kj}^* = \delta_{ik}$$

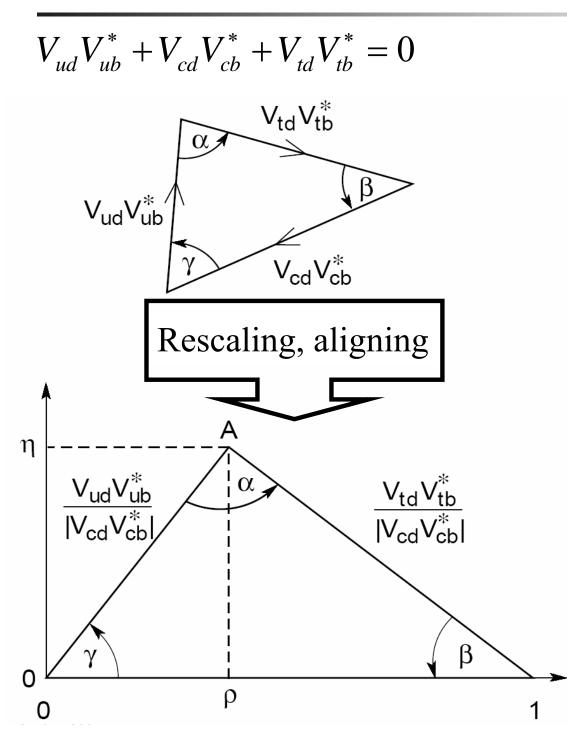
 $\Rightarrow$  three conditions are interesting for understanding SM predictions for CP violation


$$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0,$$
  
$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0,$$
  
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0.$$

Each relation requires sum of three complex quantities to vanish
→ can be represented in the complex plane as a triangle
→ known as Unitarity Triangles

With the knowledge of  $|V_{ij}|$  magnitudes, its instructive to draw the triangles

#### Three Unitarity Triangles Drawn to Common Scale


 $V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0,$  $V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0,$  $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0.$ 



 $\stackrel{\text{(c)}}{\leftarrow} db \qquad \longleftarrow \qquad \begin{array}{l} \text{All sides of comparable length (} \lambda^3) \\ \rightarrow \text{All angles are large} \end{array}$ 

Experimentally  $\Rightarrow$  hard to measure small numbers easier to measure larger numbers as in (c)

#### **CKM Unitarity Triangle in B Decays**



Angles of Unitarity Triangle  $\alpha = \phi_2 \equiv \arg \left| \begin{array}{c} -\frac{V_{td}V_{tb}}{V_{ud}V_{ub}} \right|,$  $\beta = \phi_1 \equiv \arg \left| \begin{array}{c} -\frac{V_{cd}V_{cb}^*}{V_{td}V_{th}^*} \right|,$  $\gamma = \phi_3 \equiv \arg \left| -\frac{V_u d V_u b}{V_c d V_c b} \right|$ 

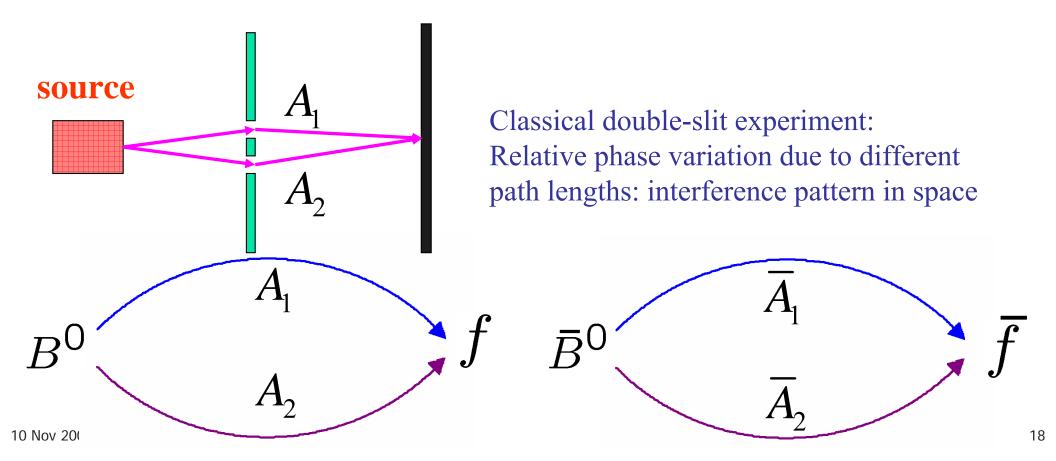
All lengths involve b decays Large CP Asymmetries predicted , ∝ UT angles

#### Measuring Complex Phase of CKM Matrix

- Branching fractions and lifetimes sensitive to magnitude of CKM elements
  - Decay probabilities usually include |V<sub>ij</sub>|<sup>2</sup>
  - We looked for decays involving only one CKM element to make interpretation of experimental result possible
- Complex phase of CKM is a relative phase between matrix elements
- We need processes with interference of two different CKM elements

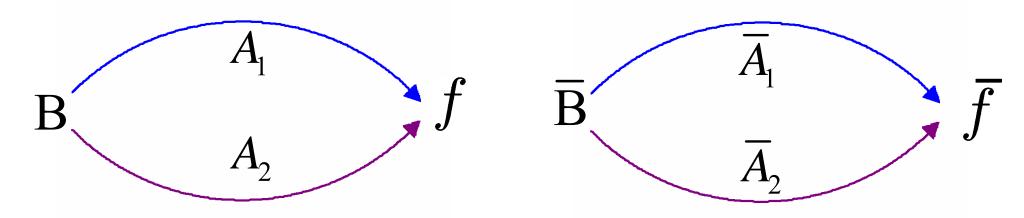
$$A_{1} = Ae$$

$$A_{2} = Be^{i\beta}$$


$$A_{tot} = A_{1} + A_{2}$$
Sensitive to phase difference!
$$|A_{tot}|^{2} = |A|^{2} + |B|^{2} + ABe^{i(\alpha - \beta)} + ABe^{-i(\alpha - \beta)}$$

# **CP Violation**

 CP violation can be observed by comparing decay rates of particles and antiparticles

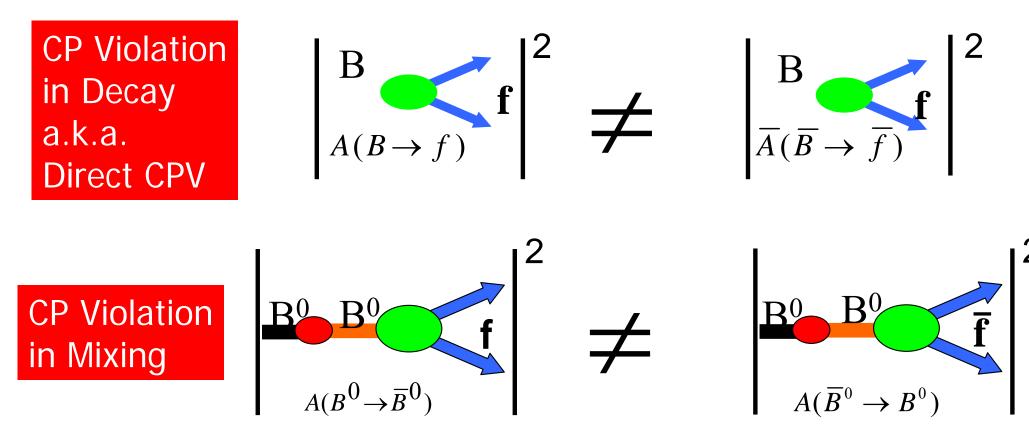

$$\Gamma(a \to f) \neq \Gamma(\overline{a} \to \overline{f}) \Rightarrow \text{CP Violation}$$

The difference in decay rates arises from a different interference term for the matter vs. antimatter process. Analogy to double-slit experiment:

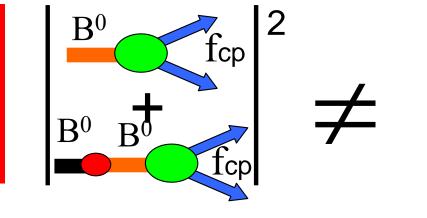


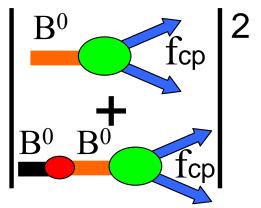
#### **CP Violation in B Meson System**

Identify B final states which are arrived at by two paths




In B<sup>0</sup> system, B<sup>0</sup>  $\Box$   $\overline{B}^0$  oscillation provides one path with the other path(s) come from weak decay of B hadron In B<sup>±</sup>system  $\Rightarrow$  no oscillation possible,


2 (or more) amplitudes must come from different weak decay of B


B Meson is heavy ⇒ many final states, multiple "paths."
2 classes of B decays come into play: "Tree" ⇒ spectator decay like "Penguin" ⇒ FCNC loop diagrams with u,c,t

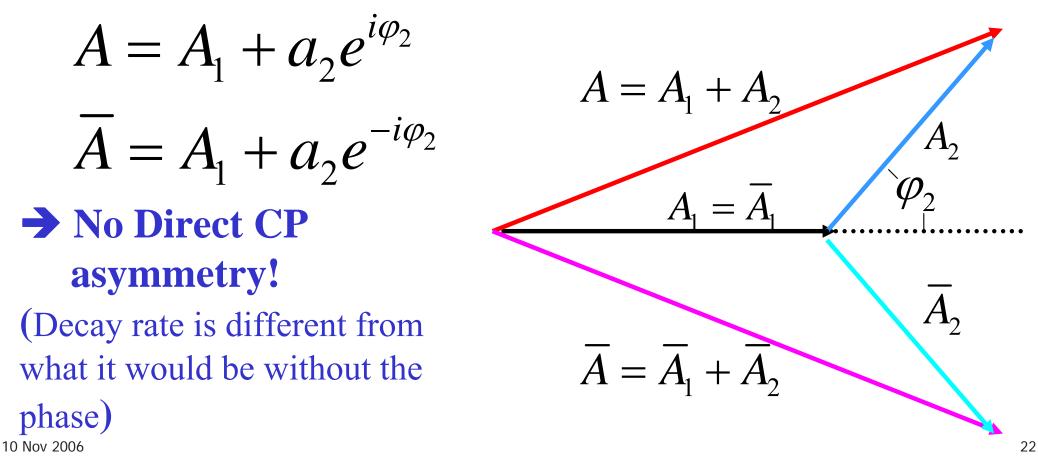
#### **Overview of CP Violating Processes**



CP Violation in interference between Mixing and Decay





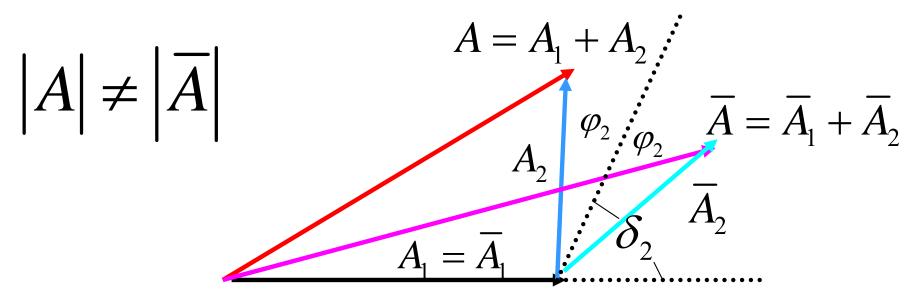

#### CP Violation Is a Quantum Phenomenon

- CPV is due to Quantum interference between two or more amplitudes
- Phase of QM amplitudes is the key
- Need to consider two types of phases
  - *CP-conserving phases*: don't change sign under CP
    - Sometimes called *strong phases* since they can arise from strong, finalstate interactions
  - *CP-violating phases*: these do change sign under CP transformation
    - originate in the Weak interaction sector

$$A = A e^{i\varphi} e^{i\delta}$$
$$\overline{A} = A e^{-i\varphi} e^{i\delta}$$

#### How can CP asymmetries arise ?

- Suppose a decay can occur through two different processes, with amplitudes A<sub>1</sub> and A<sub>2</sub>
- First, consider the case in which there is a (relative) CPviolating phase between A<sub>1</sub> and A<sub>2</sub> only



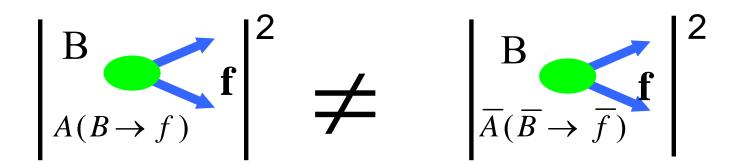

#### How can CP asymmetries arise ?

 Next, introduce a relative *CP-conserving* phase in addition to the relative *CP-violating* phase

$$A = A_{1} + a_{2}e^{i(\varphi_{2} + \delta_{2})}$$
  
$$\overline{A} = A_{1} + a_{2}e^{i(-\varphi_{2} + \delta_{2})}$$

Now have a Direct CP Violation




# Definition of CP Asymmetry

Asymmetry 
$$= \frac{\left|\overline{A}\right|^{2} - \left|A\right|^{2}}{\left|\overline{A}\right|^{2} + \left|A\right|^{2}} = \frac{2\left|A_{1}\right|\left|A_{2}\right|\sin(\delta_{1} - \delta_{2})\sin(\phi_{1} - \phi_{2})}{\left|A_{1}\right|^{2} + \left|A_{2}\right|^{2} + \left|A_{2}\right|^{2} + \left|A_{1}\right|\left|A_{2}\right|\cos(\delta_{1} - \delta_{2})\cos(\phi_{1} - \phi_{2})}$$

To extract the CP-violating phase from an observed CP asymmetry, we need to know the value of the CP-conserving phase difference

*B* system: extraordinary laboratory for quantum interference experiments: many final states, multiple "paths"→ Lots of channels for CP Violation

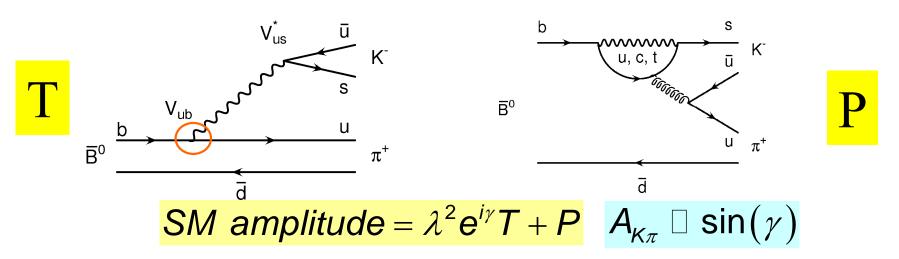
# Direct CP Violation



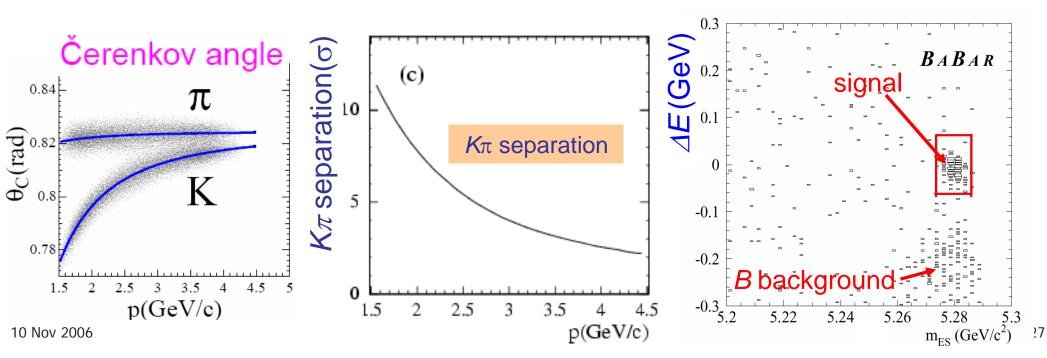
#### CPV in Decay a.k.a. Direct CP Violation

$$B = \left[ \begin{vmatrix} B \\ A(B \to f) \end{vmatrix}^{2} \neq \left[ \begin{vmatrix} B \\ \overline{A}(\overline{B} \to f) \end{vmatrix}^{2} \right]$$

$$B = \left[ \begin{vmatrix} A_{1} \\ A_{2} \end{vmatrix}^{2} \neq \left[ \begin{vmatrix} B \\ \overline{A}(\overline{B} \to f) \end{vmatrix}^{2} \right]$$


$$B = \left[ \begin{vmatrix} A_{1} \\ A_{2} \end{vmatrix}^{2} \neq \left[ \begin{vmatrix} B \\ \overline{A}(\overline{B} \to f) \end{vmatrix}^{2} \right]$$

$$B = \left[ \begin{vmatrix} A_{1} \\ A_{2} \end{vmatrix}^{2} \neq \left[ \begin{vmatrix} B \\ A_{2} \end{vmatrix}^{2} + \left[ \begin{vmatrix} A_{1} \\ A_{2} \end{bmatrix}^{2} + \left[ \begin{vmatrix} A_{1} & A_{2} \end{bmatrix}^{2} + \left[ A_{1} &$$


10 Nov 2006

26

#### Direct CP Violation in $B^0 \rightarrow K^- \pi^+$



- Loop diagrams from New Physics (e.g. SUSY) can modify SM asymmetry via P ■ Clean mode with "large" rate :  $BF(B^0 \rightarrow K^+\pi^-) = (18.2 \pm 0.8) \times 10^{-6}$
- Measure <u>charge</u> asymmetry, reject large  $B \rightarrow \pi\pi$  background with Particle ID



#### Observation of Direct CPV in $BO \rightarrow K^- \pi^+$

$$A_{K^{-}\pi^{+}} \equiv \frac{\Gamma(\overline{B} \to K^{-}\pi^{+}) - \Gamma(B \to K^{+}\pi^{-})}{\Gamma(\overline{B} \to K^{-}\pi^{+}) + \Gamma(B \to K^{+}\pi^{-})}$$

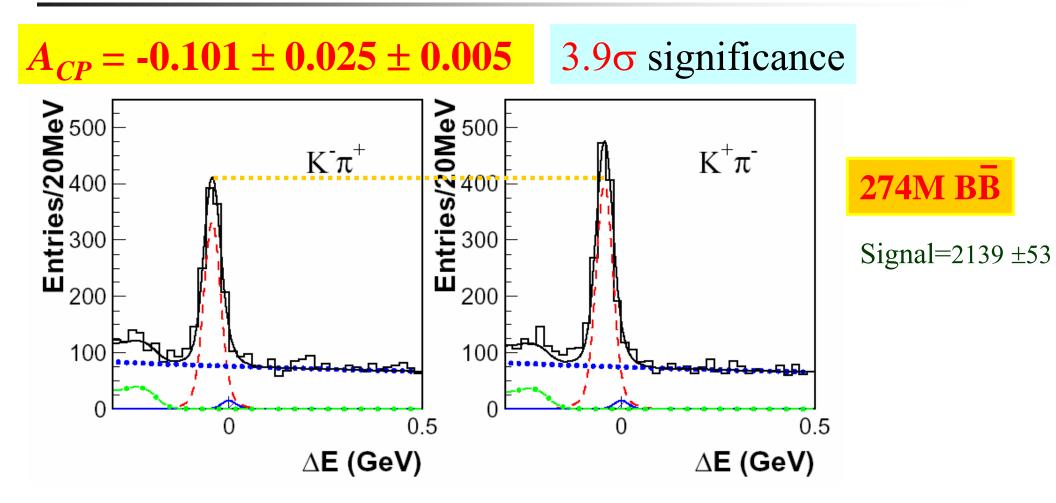
$$n_{K\pi} = 1606 \pm 51$$

$$A_{K\pi} = -0.133 \pm 0.030 \pm 0.009$$

$$n\left(\overline{B}^{0} \to K^{-}\pi^{+}\right) = 696$$

$$n\left(\overline{B}^{0} \to \overline{B}^{0} \to \overline{B}^{-}\pi^{+}\right) = 696$$

$$n\left(\overline{B}^{0} \to \overline{B}^{-}\pi^{+}\pi^{+}\right) = 696$$


$$n\left(\overline{B}^{0} \to \overline{B}^{-}\pi^{+}\pi^{+}\right) = 696$$

$$n\left(\overline{B}^{0} \to \overline{B}^{-}\pi^{+}\right) = 696$$

$$n\left(\overline{B}^{0} \to \overline{B}^{-}$$

1

## Confirmation of Direct CPV by Belle at ICHEP04



Non-Perturbative QCD uncertainties large, Standard Model CP Violation not precisely predictable

 $\Rightarrow$  insufficient to prove or rule out contribution from New Physics