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Chapter 3++

Basic Objects Usage and Definition

In this chapter we learn how to define objects and how to use them in Object Oriented
Programming in C++. We do that working out the same example found in Chapter 3 of
the C textbook: temperature conversion. Despite the syntax is the same, C++ is very
different, in terms of concepts, with respect to C. It is, in fact, a completely different
language. You should not consider it as an evolution of the C. It compares to C as
transliterated chinese is similar to english.

C++ concepts are much more abstract than those introduced in the C language and
it is much easier to illustrate them, profiting of the fact that you are assumed to know
the C language.

3++.1 A basic object.

A C++ program, as an Object Oriented Programming language application, does not
involve data manipulated by instructions, but objects who interact between themselves.
Objects store their status and are responsible for changing it as well as for exposing it
to other objects in the proper format. What does it mean for our example? In our
example application, we want to be able to manipulate temperatures in different scales.
Temperatures can be assigned by the user via the keyboard and shown to the user on
the screen. Temperatures can be shown and assigned in any scale. In this context,
temperatures are objects who own their state. The state of a temperature object is its
value, regardless of the scale. A gas in a volume V and pressure p has its own temperature
T that is fixed, despite the fact that it can be expressed in many different scales. The
status of the gas at a given temperature T is independent on the choices about the units.
In our program the user interact with the temperature object asking it to change status
from a default temperature value to another temperature value, in any supported scale.
The user can also ask the object to tell him the temperature in any supported scale.
Whatever the scale, the temperature is always the same and represents the status of the
object.

1
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The user cannot access the status of the object directly. The access to the status is
always mediated by the object itself. This property is known as encapsulation: the object
encapsulates its own status and allows external objects to access it via some interface
that regulates how to obtain information about it. In other words encapsulation means
hiding to the user the way in which the status of an object is represented in memory. The
status of an object, in fact, can be usually represented in many different ways. However,
the choice about the representation, made at the time of the object definition, is of no
interest for the user. The user is only interested in knowing the state of the object.

Let’s see in practice how do we do that in C++, looking the the code in Listing 3++.1.
In this listing we included two files: iostream and Temperature.h. The first is needed
for I/O: it contains the definition of objects representing the standard input and stan-
dard output devices. Temperature.h contains the declaration of the interface of the
Temperature object. The interface of an object is a sort of list of the properties of all
the objects belonging to the same class. It specify the capabilities of the objects in terms
of what are the allowed operations on them (methods) and how its status is represented
internally (attributes or members).

1 #include <iostream >

2 #include <Temperature.h>

3 main() {

4 Temperature t;

5 double tf;

6 std::cout << "Insert temperature in Fahrenheit: ";

7 std::cin >> tf;

8 t.setF(tf);

9 std::cout << "Temperature in degree Celsius is: "

10 << t.getC() << std::endl;

11 }

Listing 3++.1 Temperature conversions.

In this program we instantiates an object of class Temperature and we call it t. The
instantiation of an object is analogous to the declaration of a variable in procedural
programming (in fact it is much more, but we discuss this aspect later in the book). We
then use the object std::cout, defined in the iostream library to write on the screen
the content of a string. We pass the string to the object using the insertion operator <<.
The value of the temperature to be assigned to the object t is read from the keyboard,
represented by the object std::cin, defined in iostream too, to which we apply the
extraction operator >>. The value extracted from the standard input is inserted in the
variable tf: a floating point number representing the value of the temperature in the
given scale.

In order to instruct the object t to assume the temperature represented by tf we
ask it to execute its method setF. A method works much like a function (see Chapter
7). It is an operation executed by the object specified before the resolution operator ..
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The syntax t.setF(tf) asks the object t to execute its method setF that is meant,
in this case, to assign the temperature of the object specified in degrees Fahrenheit
within the parenthesis. The consequence of this operation is that the object t assumes
the temperature specified by the user as degrees Fahrenheit. However, the status of
the object is independent on the scale chosen to assign its temperature. In fact, in the
following instruction, we ask the object to show its temperature in another scale, without
the need to change it. The method getC(), in fact, returns the temperature of the object
in degrees Celsius. Note also that the insertion operator can be catenated.

Of course there is nothing magic in it. The transformation between scales is done
by the object and is defined in the implementation of the class Temperature. There is
still much work to do for this example to work, probably much more work than those
required for a procedural program. The advantage here is that now the behavior of the
object is fixed by its interface and that its status is encapsulated within it. Concepts
used in programming are then much better defined and much more similar to what
we want to represent. Moreover encapsulation guarantees that programmers can only
act on the status of an object throughout well defined operations and do not risk to
change it in an uncontrolled way because they assigned the wrong value to a variable.
There are many other advantages in OO programming, discussed later. It is important
to know that simple applications are much more suitable to be realized in procedural
programming languages, but as soon as the complexity of the program increases, OO
programming techniques are much better, both in terms of simplicity as well as in terms
of data management and control. In this context the complexity is a measure of how
many relationships exist between the data to be manipulated.

3++.2 Declaring classes.

Let’s see how to define the behavior of a class of objects and how OO programming
allows the separation between the status of an object and its internal representation in
terms of variables.

Classes are usually declared in files called after the name of class: in our example
Temperature.h. This isn’t strictly necessary (everything can be written in the same
file), but is a very good practice. The content of the file Temperature.h for our example
is listed in Listing 3++.2.

1 #ifndef _TEMPERATURE_H_

2 #define _TEMPERATURE_H_

3

4 class Temperature {

5 public:

6 Temperature ();

7 void setF(double tf);

8 double getC ();
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9 private:

10 double _t;

11 };

12

13 #endif

Listing 3++.2 A prototype for the Temperature class.

First of all note the usage of the preprocessor directives #ifndef, #define and #endif.
These directives allows programmers to freely include files in their applications, without
the need to consider their ordering or the possibility to include one of them more than
once. In fact, if Temperature.h is included in a program once, the preprocessor finds
that the symbol TEMPERATURE H is not defined and proceeds, defining that symbol and
passing the rest to the processor. Once the program includes the file a second time (even
via other included files), the preprocessor will find that the symbol TEMPERATURE H is
already defined, so it skips the rest of the file. It is then a good practice to start the
implementation of a class writing the three preprocessor directives.

The C++ code follows. The class is declared using the keyword class followed by
its name and a pair of braces, containing the details. The class definition ends with a
mandatory semi–colon. Again, it is a good practice to start defining the class typing
the two braces and the semi–colon. Forgetting it is a very common mistake, sometimes
difficult to find from the compiler error report.

The class body is divided into two sections: public and private. In the public
section we list all the operations (methods) that the objects of this class are able to
perform, namely setF() and getC(). The first operation will not result in any object
and accept a floating point number as input. The second returns a floating point number
and does not require any input. Methods’ declaration is much like function declaration.
Besides those methods there is one method called the constructor that has no type and
has the same name of the class. This method must exist and must have exactly that
signature: i.e. the same name of the class and no formal parameters. The methods listed
in the public section are those that can be called by the programmer on objects of type
Temperature. We have not yet defined their behavior. We have just listed them and
defined their signature.

The private section is not directly accessible to objects not belonging to the same
class. From the main program we cannot access methods and data listed here. Usually
members are listed here. Members are objects and variables that are used to represent
the status of the object. In this case we choose to represent the temperature as a
floating point number in a given scale (let’s say the Celsius one). Since this member is
inaccessible from outside, this choice is completely arbitrary, however it does not harm
the working of the class. As a consequence, we see in a moment that even if we change
the way in which we choose to describe the status, there is no consequence for the main
program, nor for any other object using objects of the class Temperature. Simply stated,
the variable t represents the status of the object as the temperature given in degrees
Celsius. Note that we called this member t and not t. The leading underscore is used
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to distinguish member variables from other local variables used in the class definition.
Again, this is not mandatory for C++, but it is a good practice. Some programmer does
not like variable names starting with and underscore and another convention uses m as
the leading characters for members.

3++.3 Defining classes.

The definition of the behavior of methods is usually done inside a file called after the
name of the class with extension .cc: Temperature.cc. First of all we need to include
its declaration, then we list all the methods, specifying the class to which they belong
and the set of instructions to be executed when the method is called. Let’s analyze
Listing 3++.3.

1 #include <Temperature.h>

2

3 Temperature :: Temperature () {

4 _t = 0.;

5 }

6

7 void Temperature ::setF(double tf) {

8 _t = (tf - 32.) * 5./9.;

9 }

10

11 double Temperature ::getC() {

12 return _t;

13 }

Listing 3++.3 Definition of methods of the Temperature class.

The reason for which we need to specify the class name for each method (using the
double colon :: as a separator), is that C++ allows to define methods in any point of the
program and in any file, so the compiler need a way to know which class is compiling.

We first implement the constructor method (the order is unimportant, in fact. This
is another good practice). This method is called automatically as soon as an object is
instantiated in a program. In our main program, this method is called as soon as the
instruction Temperature t; is executed. Note that, contrary to C, this is not a mere
declaration, but is in fact an instruction, since it implies the execution of the constructor.
For this reason not only we are not forced to declare objects prior to any executable
instruction, as in C, but we are encouraged to declare objects just before needed.

The aim of the constructor method is to execute all the necessary instructions to
set up the object and to assign it a default status. In this case we chose to assign a
temperature equal to 0◦C by default. This is done assigning the value 0 to the variable
representing the status
t t.
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The aim of the method setF() is to assign the temperature to the object, expressing
it in degrees Fahrenheit. Since we chose to represent the status of the object as a number
representing the temperature in degree Celsius, we need to transform the input value in
this scale before assigning it to the member t.

The method getC() just returns the member variable representing the temperature,
since it is already given in the requested scale.

Let’s discuss what happen if we change our mind and decide to represent the tem-
perature of the object as an integer representing the temperature in mK. In this case t
is an integer. The setF() method changes like

void Temperature ::setF(double tf) {

_t = (int)rint (1000.*(( tf - 32.) * 5./9. + 273.15));

}

We always accept a floating point number representing the temperature in degrees
Fahrenheit as input, but we transform it in Kelvin first, adding 273.15, then in mK
multiplying by 103. We used the rint function, defined in math.h, to be included, to
round the result to the nearest integer and we cast the result to an integer. Accordingly,
the getC() method changes as

double Temperature ::getC() {

return (double)_t /1000. - 273.15;

}

From the point of view of a user of the Temperature class, nothing has changed. The
main program remains unchanged. This is the result of the encapsulation: whatever
the choices about the internal representation of the status of an object, the latter is
independent on that choice. The temperature of an object is always the same, despite
it is represented in a way or in another. What is important is that the status appears
always as the same, not that it is represented always in the same way.

3++.4 Extending class behavior.

A well designed class must hide all the details about implementation choices, provide
all the methods that, in principle, can be called by other objects and forbid usages that
are not within scoper of the class. A very good news for C++ programmers is that
this language provides many levels of polymorphism. Polymorphism is the ability of an
object to behave differently according to the context. A very basic kind of polymorphism
is overloading: a feature that allows the definition of methods with exactly the same
name that behaves differently according to the way in which they are called. Of course
there must be a way for the compiler to choose the right sequence of instructions when
transforming a method call into machine language. The way in which this is provided
is by analyzing the method prototype: methods are distinguished by their signature in
terms of formal parameters.
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Another nice feature of C++ programming is the ability to redefine operators. The
behavior of operators like +, -=, >, etc., is very useful expecially for scientific program-
ming. Unfortunately no new operators can be defined, so, for example, despite the strive
for operators for power raising, scientists must continue using functions to perform this
operation.

We now see method and operator overloading in action, looking at Listing 3++.4.

1 #ifndef _TEMPERATURE_H

2 #define _TEMPERATURE_H

3

4 class Temperature {

5 /*

6 This class represents temperatures. The default scale is Kelvin.

7 */

8 public:

9 Temperature () { _t = 0.; }

10 Temperature(double tk); // constructor overloading

11 ~Temperature ();

12

13 void setF(double tf); // set temperature in Fahrenheit

14 void setC(double tc); // set temperature in Celsius

15 void setR(double tr); // set temperature in Reamur

16 void setK(double tk); // set temperature in Kelvin

17

18 double getF ();

19 double getC ();

20 double getR ();

21 double getK ();

22

23 // operator overloading

24 Temperature& operator =(const Temperature &tr);

25 Temperature& operator =( double tk);

26 Temperature operator +(const Temperature &tr);

27 Temperature operator +( double tc);

28 Temperature operator -(const Temperature &tr);

29 Temperature operator -( double tc);

30 // note that the multiplication of two temperatures is not a temperature

31 Temperature operator *( double C);

32 Temperature operator /( double C);

33 // the ratio between two temperatures is a number

34 double operator /(const Temperature &tr);

35 // note the & sign

36 Temperature& operator +=( const Temperature &tr);

37 Temperature& operator -=( const Temperature &tr);

38 Temperature& operator *=( double C);
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39 // note that in this case no division by temperature is supported

40 Temperature& operator /=( double C);

41 private:

42 double _t;

43 };

44

45 #endif

Listing 3++.4 A more complete Temperature class.

As you can see in this class we defined two constructors. They differ because of the
signature. The (mandatory) default constructor with no parameters and an overloaded
constructor with a floating point number as a parameter. You may notice that the
definition of the default constructor has been written close to it, rather than in the .cc
file. This style is common for very short methods and makes the method inline, i.e.
the compiler does not generate a function to which the execution of the program jumps
once the method is called, but repeat the same set of instructions at each point of the
program in which the method is invoked. In this case we must not put the same code in
the definition file. The code of the overloaded constructor, found in the Temperature.cc
file reads

Temperature :: Temperature(double tk) {

_t = tk;

}

With this constructor the default temperature of the object becomes tk degrees Kelvin,
while constructing the object as

Temperature t(100.);

It is worth noting that there is no way here to establish a different temperature scale,
since in another scale the constructor will look like almost the same. The opportunity
of providing such a constructor, then, can be discussed. However, once decided, there
should be some hint for the programmer about how to use it. In our case we provide
two different kind of hints: comments within /* ... */, instructing the programmer
that the chosen default scale is the absolute one, and the fact that the variable is called
tk. Comments in C++ can be written after a double slash, too: //. This syntax is used
mostly to write short comments as in few cases in Listing 3++.4.

You may also notice the presence of a destructor: a method called automatically
when an object is removed from the memory. The destructor method must have the
same name of the class prefixed with a ~ sign. In our case the object is destructed at the
end of the program. Usually the destructor may be left blank or even undefined, unless
some special operation must be done at the destruction time.

After constructor and destructors, we declare methods used to assign the temperature
of the object in different scales, as well as methods to get the temperature of the object
in the same scales. The implementation of those methods is left as an exercise.
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What follows is the list of operators defined for this object. Operators are defined as
methods whose name is operator followed by the operator symbol followed by the right
operand, if applicable. Operators can be overloaded, too. For example, consider the first
two operators:

Temperature& operator =(const Temperature &tr);

Temperature& operator =( double tk);

These methods define two versions of the same operator =. The first define the assignment
operator when the rightmost operand is a temperature object; the second define the
assignment operator when the rightmost operand is a number. The leftmost operator is,
by definition, a temperature object. Consider the following piece of code:

Temperature t1 (100.);

Temperature t2 = t1;

Temperature t3 = 273.15;

The first line construct a temperature object and assign it a temperature of 100◦K. The
second line calls the assignment operator. Since the right hand operand is an object of
class Temperature, the called method is the first version. When writing an operator you
can imagine that, from the point of view of the compiler, the instruction containing the
assignment operator is transformed into

t2.operator =(t1);

The signature of the method const Temperature &tr instructs the compiler that the
object on the right of the operator must not change during the execution (const). The
ampersand sign before the name of the formal parameter instruct the compiler to pass
the address of the parameter in the memory rather than a copy of the object. To fully
understand this syntax you must know about pointers, discussed later in the book. For
the time being, just consider this as a rule, useful when the object on the right of an
operator is rather complex. For simple arguments, such as in the second version of the
operator, there is no need to use such a syntax. As a rule of thumb you may consider
to use the const className& objName style when the parameter is an object and
the standard style when the parameter is a variable. This latter version of the operator
is called to execute the instruction Temperature t3 = -273.15; that, in fact, consists
in the construction of an object called t3 and the assignment of its temperature to the
value 273.15◦K. Note that, analogously to the constructor behavior, we assume that the
default scale is the absolute scale. Again one can decide not to provide such an operator,
so a programmer cannot use such a syntax and must assign the temperature using a
setX() method or the assignment operator in the first form only.

The definition of the two methods reads:

Temperature& Temperature :: operator =( double tc) {

_t = tc;

return *this;

}
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Temperature& Temperature :: operator =(const Temperature &tr) {

_t = tr._t;

return *this;

}

Both methods returns an object of class Temperature&. The ampersand at the end of
the class name means that what is returned is in fact the address of the object and this
is mandatory to ensure that the operator can be catenated. Omitting the ampersand
will result in returning, in fact, a copy of the object. Again, such a syntax can be
understood after learning pointers. In practice, the ampersand at the end guarantees
that instructions like

t2 += t *= 2;

where t2 and t are objects of class Temperature, are possible. This instruction means:
the status of the object t must be those corresponding to doubling its temperature. In
turns, the object t2 must assume the same status of the t object. As a rule of thumb,
one can say that the ampersand must be added to the object returned by the operator, if
the operator is intended to modify the status of the operand on the left, as in this case,
and can be catenated to other operators. In fact, even setX methods could be defined
like this:

Temperature& setC(double &tc);

With such a definition the programmer is allowed to execute instructions such as

t.setC (30)*=2;

that means: assign to t the status corresponding to a temperature of 30◦C, then multiply
the temperature of this object by 2. Remember, in fact, that methods are executed left
to right.

Looking at the implementation of the methods one can see that the status of the
calling object is assigned assigning the value passed as an operand tr to its member t.
The attribute this is automatically created by the compiler for any class and is equal
to the address of the object in the memory. *this returns then the object itself (see the
chapter on pointers). This is why the methods can be catenated: if a method returns
the calling object, the dot operator . acts on it again once executing the next method in
the sequence.

Let’s discuss briefly other operators. The + operator exists in two versions, too.
Note that it returns an object of class Temperature without the ampersand since an
instruction like t3 = t1 + t2; is not meant to modify the status of t1. With these
definitions we establish that it is possible to sum two temperature objects and that the
result is a temperature object, as well as it is perfectly legal to sum a temperature object
(the leftmost operand) to a number (the rightmost one). The result of this operation is
still a temperature object. Note that we cannot define operators that allows summing a
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number, as the leftmost operator, to a temperature, i.e. the + operator does not commute
in C++.

Since the + operator does not modify the leftmost object, it must return a different
object, so its implementation reads like:

Temperature Temperature :: operator +(const Temperature &tr) {

Temperature ret;

ret._t = _t + tr._t;

return ret;

}

Besides operators we provide an operator that allows the multiplication between a tem-
perature and a number. We do not provide an operator for multiplying a temperature
by another temperature since the result is not a temperature, neither belongs to any
existing class or type. In other words we are enforcing the programmer to take care of
the scale if he wants to multiply two temperatures. In all other cases the scale used by
the programmer to assign the temperature of the objects is irrelevant.

On the contrary we provide two division operators. The operator that permits the
division of a temperature by a number returns a temperature, while the one that allows
the division of a temperature by another temperature returns a number.

We also define autoincrement and autodecrement operators, as well as an autodivision
operator. The automultiplication operator *= is not defined for the reasons explained
above: the result will not be neither a temperature, nor a number. In this way the
programmer attempting to execute something like

t2*=t1;

where t1 and t2 are temperatures will get an error at compile time. Note that all these
operators are meant to modify the leftmost operand, then they return an object of class
Temperature&.

Laboratory 3++.1 Understanding classes and objects.

Write down the implementation of all the methods of the class
Temperature and write a program to test all of them. Try using
catenated operators, then rewrite the definition of the class in such
a way that operators returning objects of class Temperature& re-

turns objects of type Temperature and see what happens. Modify constructors and the
destructor in such a way they always write down a message informing the user when they
are called and the address of the object to be created or destructed (remember that this
address is contained in the this attribute). Follows the execution of your test program
and see if messages appears when you expect them. In particular, consider following the
execution of the test program in both versions: the one in which operators return the
address of the objects and the other in which they return objects. Pay attention to what
happens for operators like +, -, * and /.
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Chapter 5++

Working with batches of data

In this chapter we learn how to use data structure in C++. Of course all C structures
can be used as well, however C++ provides much more flexible structures that can be
very useful for scientists. In fact, these new structures are added to C++ by including a
standard library, called STL (Standard Template Library). A template class is a class
whose members belongs to a parametrized class. In C++, in fact, not only data, but
also types can be parametrized as variables. This characteristics provides a further level
of abstraction and polymorphism. In this chapter we show how to efficiently use STL
objects and how to define new template classes.

5++.1 Vectors

Vectors are data structures that are much like an array. Vectors, however, are much
more user friendly than arrays, since one can easily build vectors of any kind of objects
and the programmer must not take care of its size.

In order to use vectors in you program or classes you must include the corresponding
definition file:

#include <vector >

To build an object of the class vector you need to specify the class of the objects to
store in each vector component. For example, a vector of integer numbers is declared by

std::vector <int > x;

Here x is a vector of integers. Of course you can declare vectors of more complex objects.
For example, a vector of Temperature objects is declared by

std::vector <Temperature > t;

Data can be sequentially inserted into a vector using the push back method. Listing ??
shows how to fill a vector and read back its content. First of all note that we prepended
the string std:: to the word vector: that means that both vector and cout belongs
to the Standard Template Library.

13
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Note also that, contrary to C, we are encouraged to declare objects just before using
them. For this reason the variable n is declared after the first instruction, and the variable
t i used in the first loop is declared inside it.

In the loop, we read integers from the keyboard and store them in subsequent com-
ponents of the vector x. Note that we don’t need to declare how long is the vector x
prior to its declaration, nor while using it. All the memory management is done by the
object itself. The space occupied by the data in the memory is increased, if needed, at
runtime. The actual size of the object is given by the method size() who returns an
integer counting the number of components.

In the second for loop we show how to read back stored values. The syntax is exactly
the same used for arrays. The square brackets operator returns the i-th component of
the vector. You can use this operator even to modify the content of a component such
as in

x[i] = k;

However, you cannot use the assignment operator on a component, unless the component
has been inserted in the vector. If you substitute the line with the push back method
with the above line, the result is a segmentation fault error. The reason being that the
object must be created in the memory prior to access it, and this is left to the push back
method. Alternatively, you can use the resize(n) method. It inserts n objects in the
vector, with their default status, as defined by their constructor.

1 #include <vector >

2 #include <iostream >

3

4 main() {

5 std::cout << "How many data ? ";

6 int n;

7 std::cin >> n;

8 std::vector <int > x;

9 for (int i = 0; i < n; i++) {

10 std::cout << i << ": ";

11 int k;

12 std::cin >> k;

13 x.push_back(k);

14 }

15 std::cout << "You inserted " << x.size()

16 << " values in vector x" << std::endl;

17 while (!x.empty ()) {

18 for (int i = 0; i < x.size (); i++) {

19 std::cout << x[i] << std::endl;

20 }

21 x.pop_back ();

22 }



“scientificProgramming++” — 2010/5/3 — 21:32 — page 15 — #15

PR
EL

IM
IN

ARY

23 }

Listing 5++.1 Using a vector.

In the while loop we check if the vector contains still data. In fact, the pop back method,
removes the last inserted component and, repeating the instructions in the loop, the x
vector will loose one component each time, until it becomes empty. You can test if a
vector is empty or not using the empty method. It returns a value of type bool: this is
a new type defined in C++ that represents logical or boolean values. It can assume two
values: true or false. Of course you can continue using C definitions for true and false,
however the C++ one is much more consistent.

Once the vector is filled, you can play with the [] operator exactly in the same way
you use it for arrays. Many operations, however, are much simpler. For example, a vector
can be copied into another vector just using the = operator:

std:: vector y = x;

The first and the last element of a vector are returned by, respectively, the front and back
methods, so x.front() is equivalent to x[0] and x.back() is equivalent to x[x.size()
- 1]. The content of two vectors can be swapped using the swap method like

y.swap(x);

Note that x and y may have different size. To assign the same value to all the components
of a vector at construction time you can use the constructor

std::vector <int > x(100, 0);

that builds a vector of 100 components, each of value 0. In this case you can start using
the [] operator soon after the construction, since the objects already populate the vector.
The clear()] method deletes all the vector components.

5++.2 Iterators

The [] operator is a good and familiar tool to navigate through objects like vectors, but
is not always efficient and, moreover, is undefined for data structure that do not provide
any order within the data, as in the vector.

C++ provides a much more efficient and generic way to navigate through data struc-
tures, by means of objects called iterators. An iterator is something that iterate over a
data structure visiting all the components of it. Each class may have its own iterator.
The second for loop in Listing 5++.1 can be rewritten using iterators as

std::vector <int >:: const_iterator i = x.begin ();

std::vector <int >:: const_iterator e = x.end ();

while (i != e) {

std::cout << *i << std::endl;

i++;

}
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the first two lines defines two constant iterators. These iterators can be used to read data,
but not to modify them. Non constant iterators can be constructed as std::vector<int>::iterator.
The i iterator gets the value returned by the begin() method, i.e. it points to the first
element of the vector. The method end() returns an iterator that points to the object
past the last object in the vector.

Objects pointed by the iterator i is represented by *i: an iterator preceded by an
asterisk operator is an object. An iterator pointing to an object in a data structure,
moves to the next object once the ++ operator is applied to it. When i becomes equal
to e it means it just passed the last object in the vector and the loop can be abandoned.

Using iterators it is very easy to perform operations that are extremely difficult using
arrays: insertion and deletions of part of the data. Suppose you have a vector of 100
components and you want to add one more object k at position number 95. In C++ you
can do it as easily as

x.insert(x.begin() + 95, k);

You can also insert a vector y into another vector x at the desired place:

x.insert(x.begin() + 95, y.begin(), y.end ());

From the above example you can easily understand how to insert a portion of y into x:
it is enough to compute the iterators to the first and the last object of the vector to be
included in the target one.

Erasing objects from a vector is as easy as inserting; the erase method can be called
with one or two iterators as parameters. In the first case only one element is removed
from the vector, while in the latter case all elements between the two iterators disappear.
Of course the size of the vector is changed accordingly, as well as the indexes of the
elements.

It is worth noting that STL vectors are not at all mathematical like vectors. Their
size, in fact, may change and no mathematical operators, such as addition, subtraction,
multiplication and division by a scalar and the product of vectors are defined for them.
They are intended as containers for objects that can be addressed by a numerical index.

5++.2.1 Namespaces

Multiple classes can be grouped into a namespace. A namespace contains one or more
unique identifiers for classes, constants, symbols, etc.. Collecting identifiers into a names-
pace makes it possible to define other elements of the language with the same name of
those contained into a namespace. The compiler distinguishes two elements with the
same name by inspecting their namespace.

STL classes, constants and functions are contained into the std namespace. That’s
why we must prepend the std:: string to the name of the classes or objects to use them.
The definition of STL elements into the std namespace, makes it possible to define our
own vector class without ambiguity with respect to the one defined by STL.



“scientificProgramming++” — 2010/5/3 — 21:32 — page 17 — #17

PR
EL

IM
IN

ARY

Programmers can omit the namespace prefix if all the identifiers used in a project
are unique. In this case the default namespaces must be specified. To avoid repeating
the prefix std:: each time you construct an STL object, it is enough to add, at the
beginning of an instruction block delimited by braces the clause

using namespace std;

The clause will be valid along the entire block. Putting it at the beginning of the file
(i.e. before the main or before class declaration, makes it valid for all the blocks in that
file. From now on, we assume that the namespace for STL is used.

5++.2.2 Multidimensional arrays and vectors

Thanks to the fact that operators can be catenated, vectors with multiple indices can be
defined as well, as for multidimensional arrays.

vector <vector <int > > x;

The above statement declares x as a vector of vectors of integers. Note the space between
the > signs. This space is mandatory in order for the compiler to distinguish it from the
> operator. You can use x indifferently as an object whose components are vectors, so
you can do something like:

vector <int > y;

x.push_back(y);

or as an object whose components are integers addressed by two indices:

int k = x[10][20];

provided that the addressed objects exist. With respect to arrays, vectors are much
simpler to use, especially compared to multidimensional arrays. You may remember that
passing a multidimensional array to a function in C is a hell, while exchanging vectors
between objects is as simple as exchanging a simple variable.

Again, there is no magic in this. The memory management is, in principle, as complex
as in C. However, in C++ is the object itself that takes care of that. Objects knows where
they are in memory, how much space they use, how it is filled and what to do if more
space is required. All the complexity is encapsulated within the class definition.

Laboratory 5++.1 Linear Algebra with vectors.

Repeat the exercise described in Chapter 5 of the book, to solve a
system of linear equations using the Gauss method. Define a class of
type myVector that represents coordinate vectors and a class of type
matrix for a square matrix. Use STL vectors to store the status of

each object. Makes them independent on their size. Define operators for addition and
subtraction of vectors, as well as operators for the multiplication and division of vectors
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by a scalar. Define an operator to multiply a matrix for a vector. Then write down the
Gauss algorithm using objects of these classes.

5++.3 Strings

Strings in C are arrays of characters. STL defines objects of class string that behaves
much like C strings, but have many advantages with respect to them. First of all, the
assignment operator = is defined for strings, so string assignment is as simple as

string s = "This is a string ";

No attention must be paid to the length of the string, nor to the fact that it must end with
a null character. It is the object who takes care of this. String can be easily catenated
using the + or the += operators. All the operations defined for vectors are also defined
for strings: insertion, deletion, etc.

The length of a string is returned by the length() method that takes into account
the trailing null character, so that

string s = "Test";

cout << s.length () << endl;

returns 4, despite the fact that the real size of the string is 5 characters. The [] operator
returns a character at the given position, acting just like an array of character (remember
that the indices of the characters runs from 0 to length()-1).

Sometimes it is useful to treat the string like a C array. For example you may want
to use C functions that accepts char * variables as parameters in your C++ program. In
this case you can use the c str() method that returns a pointer to an array of character,
so you can do something like

string s = "I like C++";

printf ("%s\n", s.c_str ());

even if this is not a good idea, since I/O in C++ is better done using iostream.

5++.4 Lists

A list another type of STL container. It is much like a vector, i.e. it is intended to contain
a list of objects, and has practically all the same behavior. However, while vectors are
intended to organize data in such a way that the order in which they are stored is almost
immutable and has a meaning for the programmer, lists are intended to store collections
of data for which the order is irrelevant.

As an example, we use a vector x if we want to represent a set of coordinates in the
space, since each index correspond to a coordinate, so x[1] has a different meaning with
respect to those of x[2]. On the other hand, if we want just to collect data irrespective
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of the order, for example a set of repeated measurements of the same temperature of an
object, we may want to use a list:

#include <list >

#include <Temperature.h>

...

list <Temperature > t;

Populating the list is as easy as for vectors, using the push back method. Lists can only
be navigated with iterators, since no [] operator is defined for them, the reason being
that the order of objects in the list is irrelevant and may change with the lifetime of
the object, so that addressing t[i] may return an object or another according to what
happened during the execution of the program.

Since ordering does not make sense for lists, they provide methods like unique(),
sort(), reverse() and merge(). The unique() method removes all duplicated objects
from the calling object. The list, then, may shrink. sort() changes the order in which
objects are stored in the list. It can be called only if comparison operators are defined for
objects in the list. In the case of temperatures we need to defined the following operators:

bool operator <(const Temperature &r);

bool operator ==( const Temperature &r);

bool operator >(const Temperature &r);

Combined operators such as >= or != are automatically built composing the above men-
tioned methods.

Iterating from begin() tp end() a sorted list returns the objects in the ascending
order. Using rbegin() and rend() as the initial and final iterator values, returns the
objects in the opposite order.

Now reconsider programs written to order a batch of data and to find their maxi-
mum and minimum values, shown in Chapter 5. Since lists contains their own sorting
algorithm, in order to obtain the same results, it is enough to store data into a list, sort
it, and read back the first and the last element. Note that STL algorithms were written
with emphasis on efficiency, so all the operations are the fastest possible.

The reverse() method, of course, just reverse the order in which objects are stored
in the list, while merge() is used to merge two ordered lists into one ordered list:

list <Temperature > t1, t2;

...

t1.sort ();

t2.sort ();

t1.merge(t2);

makes t1 a list composed of ordered objects of both lists.
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5++.5 Maps

Maps are associative containers. With maps you can store into a container a set of
objects, each of which has a unique identifier. It is much like a vector, where objects are
stored into a container and each of them can be addressed by a unique integer identifier,
however maps provides the ability to associate to each object another object as a key.
You can think to a map as a container for (key, value) pairs.

Maps are always sorted containers, and this makes retrieval of objects very fast. Maps
uses binary search to find data in the container, based on the key. Since they are sorted
containers, objects stored in a map must define comparison operators.

The key of a map can be an object of any class. Look at Listing 5++.2.

1 #include <Temperature >

2 #include <string >

3 #include <map >

4 #include <iostream >

5

6 using namespace std;

7

8 main() {

9 map <string , Temperature > tmap;

10

11 tmap["warm"] = 32.;

12 tmap["cold"] = 0.;

13 tmap["hot"] = 100.;

14

15 map <string , Temperature >:: const_iterator i = tmap.begin ();

16 map <string , Temperature >:: const_iterator e = tmap.end ();

17 while (i != e) {

18 cout << "T = " << (*i). second.getC() << " C = "

19 << i->second.getF()

20 << " F label = " << i->first << endl;

21 i++;

22 }

23 cout << "The hottest Temperature is " << tmap["hot "]. getC()

24 << endl;

25 }

Listing 5++.2 Using maps.

At line 9 we define an object of class map. The map stores objects of class Temperature
and associates to each of it a key of the class string. Association is done in the lines
following the declaration. An object whose temperature corresponds to 0◦C is associated
to the string cold. Note that this is possible because tmap["cold"] is an object of class
Temperature and we defined an assignment operator that accepts a number as the right
operand. Maps stores objects in it as pairs: another STL container. A pair is an object
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composed of two objects, whatever their class. In our case the map stores objects of class
pair<string, Temperature>.

We iterate over the whole map using the iterator i to visit all its objects. Each time
the iterator returns one of the elements of the map. The object pointed by an iterator is
obtained applying the * operator to the iterator, so (*i) in line 18 is a pair. The objects
composing a pairs are returned by first and second, respectively. Note that they are
not methods, since they do not have parenthesis. They are, in fact, public members, so
they can be accessed from outside of the class just as public methods. (*i).second, then,
is an object of clas Temperature so we can use its getC() method to get its temperature
in degrees Celsius.

In the following line we use a different operator to get the object pointed by an iterator.
It’s the arrow operator -> that can be used instead of the dot operator on an iterator.
It works exactly in the same way. In fact i->second is equivalent to (*i).second. In
the latter case we had to use parenthesis to change the priority with which operators
are applied: the asterisk operator is applied prior to the dot operator. The label of each
temperature is obtained in the following line with i->first that in fact is equivalent to
(*i).first.

Executing the code, you will see that data comes with keys in alphabetical order,
irrespective of the order in which pairs are inserted in the map.

One can access directly one of the objects, passing its key as a parameter of the
operator [], as in the last line. Of course keys must be unique within a map. Using
the [] operator makes maps very similar to vectors, but now the key can be any other
object, not only an integer number. The retrieval on an object within the map is fast,
because it uses the binary search to find the object in its collection.

Be careful using the [] operator! In fact, it returns a pair if the key is found in the
map, but, if not found, it inserts in the map an object composed of a pair whose key
is the one provided as a parameter and whose value is the default value for the second
object of the pair. As an example, suppose we add the following lines at the end of our
program in Listing ??.

cout << tmap.size() << endl;

cout << tmap[" invalid "]. getC() << endl;

cout << tmap.size() << endl;

we should see something like

3

0

4

The first number is the current size of the map (3 as the number of objects we inserted
in it). Soon after we ask the program to print the temperature of an object whose
key is invalid, that does not exists in the map. The result is the default value of
the temperature of an object of class Temperature as defined in its default constructor.
What happened is that the object was not found in the map, then it was defined using
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the default constructor. When we show again the size of the map, then, we see 4, since
it increased by 1 after the insertion of an object with key invalid. If you want to check
that the object exists, better use the find method as

if (tmap.find(" invalid ") != tmap.end ()) {

cout << tmap[" invalid "] << endl;

}

Since map is a container it also has the typical methods of containers: insert, erase
and many other.

Laboratory 5++.2 Counting words.

Repeat the exercise worked out in Section 5.6.3 of the book, adding
a feature consisting in counting the occurrence of each word. Use a
map where the key is a string and the value is an integer. Each time
you encounter a new words (you can test it using the find method),

initialize the value to 1. Then, you you find again the same word, increase the value on
the element of the map having the same key. Iterating over the map, print the key of
each object and, close to it, the number of occurrences. Remember that a map is an
associative sorted container.

5++.6 Other classes

STL provides lot of useful classes. Describing all of them, as well as deeply discuss
all the methods of the classes given above, is out of the scope of this book. For a
complete reference just type STL C++ in a search engine like Google and find tons of
pages describing the usage of each class.

5++.7 Defining new template classes

STL classes are so versatile that hardly you will need to define new template classes.
Despite this fact, it can always happens that you need new template classes to solve your
specific problem. Moreover, the spirit of this book is unchanged moving from C to C++:
we are learning how to use an instrument as scientists. To learn how to use a multimeter
or an oscilloscope, from the practical point of view, you can ignore completely how it
works, but not if you are a scientist. In this case you are requested to know what happens
inside the instrument, in order to use it consciously and even in uncommon ways. The
same applies for programming languages: you can completely ignore the internal details
of the language, but not if you are a scientist. A programming language is an instrument
and as such you have to know how it works to profit of it.

A template class is a class where the class of objects manipulated by the class is given
as a parameter. In procedural programming we would say that types becomes variables.
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Suppose, for example, that we want to write a class intended to hold experimental
data collected in an experiment. Each measurement y is collected at some coordinate x, so
y = y(x). The class shall be able to provide values coming from statistical computations,
such as the average value 〈y〉 of the measurements. Each data point yi has an index i
ranging from 0 to N − 1, where N is the number of measurements.

The average is computed from the usual formula:

〈y〉 =
1
N

N−1∑
0

yi .

Note that we made no statement about the nature of y. It can be a scalar, as well as a
vector in an n-dimensional space or a complex number. Whatever its nature, the above
formula holds, provided the sum of two objects is defined, as well as the division by a
scalar. The same holds for x. The independent variable can be a time, a point in the
space, a coordinate along a line, etc.. In other words, the type of both x and y is not
specified and can be parametrized. A possible parametrization is given in Listing 5++.3.

1 #ifndef _DATA_H_

2 #define _DATA_H_

3

4 #include <vector >

5 #include <bits/stl_pair.h>

6

7 template <class Tx, class Ty>

8 class Data {

9 public:

10 typedef typename std::vector <Ty >:: const_iterator

11 const_ty_iterator;

12 Data ();

13 void push_back(const Tx& x, const Ty& y);

14 Ty average ();

15 std::pair <Tx , Ty > find(int i);

16 std::pair <Tx , Ty > operator []( int i);

17 private:

18 std::vector <Tx > _x;

19 std::vector <Ty > _y;

20 };

21

22 template <class Tx, class Ty> Data <Tx, Ty >:: Data() {

23 _x.clear ();

24 _y.clear ();

25 }

26

27 template <class Tx, class Ty> void

28 Data <Tx , Ty >:: push_back(const Tx& x, const Ty& y) {
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29 _x.push_back(x);

30 _y.push_back(y);

31 }

32

33 template <class Tx, class Ty> Ty Data <Tx, Ty >:: average () {

34 const_ty_iterator i = _y.begin ();

35 const_ty_iterator e = _y.end();

36 Ty m = 0;

37 while (i != e) {

38 m += *i++;

39 }

40 return m/_y.size ();

41 }

42

43 template <class Tx, class Ty> std::pair <Tx, Ty>

44 Data <Tx , Ty >:: find(int i) {

45 std::pair <Tx , Ty > r;

46 r.first = _x[i];

47 r.second = _y[i];

48 return r;

49 }

50

51 template <class Tx, class Ty> std::pair <Tx, Ty>

52 Data <Tx , Ty >:: operator []( int i) {

53 return find(i);

54 }

55

56 #endif

Listing 5++.3 Defining a template class.

First of all notice that we put everything (declaration and definition) into the same
Data.h file. This is mandatory since template classes cannot be compiled independently
from the files in which they are used. In fact, the compiler must know the types of
the objects to manipulate to correctly produce the machine code and this can only be
obtained once an object of the template class is instantiated.

We chose to represent x and y as two vectors, rather than a vector of pairs. This
will simplify data manipulation. Since we use vectors we included vector in the file. A
single measurement, however, is a pair (x, y), so we need pairs; that’s why we included
bits/stl pair.h.

Since we do not know the class of objects manipulated by the class we define Data as
a template class, declaring two symbols to represent the actual class of the objects: Tx
and Ty. They are declared prior to the class definition using the syntax

template <class Tx, class Ty>
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as in Line 7. Inside the class declaration we use Ty as the class specifier of an object
of class Ty. For example, the method average() returns an object of class Ty, i.e. of
the same class of objects representing data. The same holds for rms(). We provide a
push back() method to insert data in the object. Since each measurement is composed
of a pair (x, y), this method has two arguments: x and y, of class Tx and Ty, respectively.
The method find, equivalent to the operator [], returns a pair (x, y) as an STL pair
composed of an object of class Tx and an object of class Ty. Attributes are organized as
STL vectors of the corresponding classes. You can see how we treat symbols for unknown
classes as classes.

Let’s analyze the implementation of methods. The push back method just execute
the method with the same name for each vector used to store the data. Note that in the
definition of methods we need to prepend the return type by the declaration of template
symbols, while the class to which belongs a method (the string before ::) contains the
names of those symbols.

The average method is very interesting: we defined two iterators i and e, as usual,
to navigate along the vector representing y data. We defined a type using the typedef
statement in the class declaration, in order to make the code more readable. The typedef
statement declares a synonym for a type. In this case the word const ty iterator is a
synonym for std::vector<Ty>::const iterator. Note that in this case we needed to
add the typename qualifier to specify to the compiler that what follows is a type name.
This is needed because what’s follows the :: operator is a dependent name, i.e. a name
whose meaning depends on some argument: in this case on the actual class name used
for Ty.

The average method returns an object of the same class to which yi belong, repre-
sented by Ty. To compute the average we need to initialize the object to some conven-
tional 0 value (then, we must be sure that the = operator is defined for the actual class
and that assigning the value 0 to it is allowed). For example, if the object is a scalar this
is trivial, but for vectors ~x in space we may need to define an operation such that ~x = 0
means that ~x = (0, 0, 0). Then we loop over all yi and compute the sum of all yi. To do
that we need to be sure that the operator += is defined for objects of class Ty. Note how
to use an iterator and to move it to the next element at the same time. At the end of
the loop we return the sum divided by the number of measurements. Again, this makes
it mandatory to define the operator representing the division by a scalar of objects of
class Ty.

Using this class is very simple. Look at Listing 5++.4. You need to include the file
containing the template class definition and declares objects of type Data with the types
of the objects representing x and y as parameters within <...>.

1 #include <Data.h>

2 #include <iostream >

3 #include <stdlib.h>

4
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5 main() {

6 Data <double , int > d;

7 for (int i = 0; i < 100; i++) {

8 d.push_back(rand ()/ RAND_MAX , rand ());

9 }

10 for (int i = 0; i < 100; i++) {

11 std::cout << d[i]. second << std::endl;

12 }

13 std::cout << "Average = " << d.average () << std::endl;

14 }

Listing 5++.4 Using template classes.

In this example we measure some integer data y varying some observable x, represented
as a real number. For simplicity we generated data randomly. In this case the average
is an integer. However, nothing prevents us to use objects of class double as well for y
to represent scalar quantities, nor objects of our own class Vector to represent points in
space. The main program, as well as the definition of Data do not change, apart from
the detail in Line 6.
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Chapter 6++

Pointers in C++

In this chapter we see how to use pointers and associated operators in C++. Iterators
are reviewed in terms of pointers and we learn how to create objects in the memory at
runtime. Dynamic memory allocation is an advanced topic for C programmers; in C++
this topic is simple enough to be introduced at this stage. Of course, there is no magic
in it. Object Oriented Programming, in fact, encapsulates complexity in classes, so what
was difficult in C becomes relatively easy in C++, provided we hide the details of the
class implementation. Pointers in C++ are much less used than in C, since most of the
operations that require a pointer in C, require an object in C++. However, the knowledge
of pointer’s usage and arithmetics is mandatory for good and efficient programming.

I/O is revised, too. Writing and reading data to and from files, respectively, is done
via objects in C++. We learn how to describe the way in which an object can be written
or read.

6++.1 Pointers

Pointers in C++ works just as in C. You can declare a pointer to any object using the
asterisk after the class name; for example:

Temperature *t;

declares a pointer to a Temperature object. The pointer t, as usual, stores the address
of an object of class Temperature. Then t is represented as a sequence of n bits, where
n depends on the machine architecture, that represents an address in the memory.

Pointers can be assigned, as in C, using the = operator, if the right hand operand is
an address as well, as in

Temperature t1 = 100;

Temperature *t = &t1;

The & operator being the reference operator, returning the address of its operand. Point-
ers arithmetic is exactly the same it was in C. Summing an integer k to a pointer p, p+k

27
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makes it point to the object in the memory located k ×m bytes far from p, i.e. the new
address p′ is in fact p′ = p + k ×m.

Accessing methods of an object through a pointer requires the pointer to be derefer-
enced, as in C, like (*t).setC(200). Alternatively you can use the arrow operator ->
to access the method directly via the pointer, as in t->setC(200).

6++.2 Dynamical memory allocation

As in C, in C++ programming, objects must be declared in the program before being
used, in order for the compiler to set up the machine instructions needed to allocate the
necessary amount of space in the computer memory, to store objects’ status. In some
cases, however, we may want to be able to create objects at run time, i.e. to allocate
memory dynamically. Using pointers to objects is also useful to profit from another
important property of OO programming: polymorphism, discussed in Chapter ??.

Dynamic memory allocation is done using the new operator, like in the following code
fragment:

Temperature *t = new Temperature;

t->setF (200);

std::cout << t->getC() << std::endl;

Here t is a pointer to an object of class Temperature. No such object has been declared
in the program, so we cannot assign its value using the reference operator. Moreover, at
the time the program starts, there is no space allocated in the memory for an object of
class Temperature. Such a space is requested to the operating system by the program,
at runtime, once the new operator is applied. The first line of code tells the system to
allocate enough space for an object of class Temperature and returns the address of the
corresponding memory chunk. This adddress is assigned to t that can now be used to
perform any operation allowed for it, using the resolution operator ->.

Once object are declared in a C++ program, their constructor is called. The same
happens when an object is dynamically created with the new operator. In this case only
the default constructor (the one without parameters) can be called. As soon as an object
goes out of scope it is destructed by the destructor. Its memory is released too. The
compiler takes care of this. The same must happen once you create objects dynamically,
but in this case you must take care of objects’ disposal, since the compiler cannot know
how many objects are going to be created in the memory at compilation time. To release
the memory occupied by an object and call its destructor, you need to apply the delete
operator to it:

delete t;

If you are working with arrays of pointers, you can destroy all the objects in a dynamically
created array adding a couple of square brackets between the delete operator and the
array name. For example, in the following piece of code
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int n;

std::cin >> n;

Temperature *t = new Temperature[n];

for (int i = 0; i < n; i++) {

double tf;

std::cin >> tf;

t[i]->setF(tf);

}

...

delete [] t;

we allocate an array of n objects of class Temperature. Note that the size of the array is
given at run time: it is obtained as an input value from the user. Objects in the array are
accessed via the [] operator; since each objects is a pointer, methods on them are called
via the arrow operator. To delete all objects we use the delete [] t; instruction, telling
the system to destruct all objects stored in the t array before releasing the memory.

6++.3 Implicit references

STILL TO BE WRITTEN

6++.4 Object I/O

An object can be quite complex to be represented on a screen. For example, consider
an object of class SquareMatrix that represents a square matrix. Its status can be
represented either by a two–dimensional array as well as a more complex structure. In
the laboratories of Chapter 5++ we suggested to represent a matrix as an object composed
of rows of objects of the class myVector. The status of a myVector is represented as a
vector of double, while the matrix is represented as a vector of myVector. Defining
operators [] for both, we can access the elements of the matrix and of the vectors
as A[i][j] and v[i], where A and v are the identifiers of the matrix and the vector,
respectively.

If we want to show the status of a n × n matrix on a screen we should write some
piece of code to arrange the elements in n rows of n columns. We may also want to add
some character grouping the data. Consider, for example, the following matrix:1 2 3

4 5 6
7 8 9


To represent it on a computer screen we can write it as

| 1 2 3 |
| 4 5 6 |
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| 7 8 9 |

To do that we need to loop over rows and columns, write the corresponding element
content, and add a | character at the beginning and at the end of each line, taking care
of newlines. It would much more easy and safe to be able to do something like

std::cout << A << std::endl;

It turns out that you can, in fact. It is enough to define how to perform the operation,
defining the proper insertion operator as a function. The new insertion operator must
be defined as a function and not as a method of std::cout since you have no control of
it. You cannot change its behavior. You can, however, define a function that takes two
arguments: the output stream and the object to be written into it. When the computer
executes the instruction given above it executes the function using as output stream the
std::cout object.

A possible definition of the function is given in Listing 6++.1.

1 #include <Matrix.h>

2

3 std:: ostream& operator <<(std:: ostream &o, const Matrix &r) {

4 int s = r.size ();

5 for (int i = 0; i < s; i++) {

6 o << "| ";

7 for (int j = 0; j < s; j++) {

8 o << r[i][j] << " ";

9 }

10 o << "|" << std::endl;

11 }

12 return o;

13 }

Listing 6++.1 An insertion operator for matrices.

The return type of this function is always std::ostream& because insertion operators
can be catenated. The parameters used by the functions are o, passed to the function
via its address, and r, an object of type t, that of course must not be changed during
the execution of this function and is declared to be const, despite the fact we pass its
address to the function by means of the reference operator.

As soon as the compiler encounters a line like

std::cout << A << std::endl;

where A is a Matrix, calls the above mentioned function, where o is substituted by
std::cout and r by A. What happens is then that we start a loop on rows, in which
we send to the output stream the character |, then the matrix elements on that row
separated by one space, followed by another | character and a newline.
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At the end, the output stream is returned, so that std::cout << A is in turn the
output stream itself, thanks to the return type std::ostream&. The last newline char-
acter is sent to the latter. The result is what we got above. In this case, since we do
not access private or protected members of the Matrix in the function, we don’t need
to declare the function elsewhere. However, it is a good practice to declare the function
within the corresponding class.

As a rule, we would declare the insertion operator function in the public section of
the class for which we are writing the function, prepending the keyword friend to it,
e.g. in the Matrix.h file. We then write its implementation code in the definition file,
e.g. in Matrix.cc. Declaring a function as a friend of a class, makes it possible for the
function to access directly member data, without the need to be mediated by methods.
This can be useful in those cases in which efficiency is an issue and in those cases in
which no useful methods are provided to write the status of the object.

Note that we define the operator as a function that accepts a generic output stream
as a parameter, irrespective of its concrete type. std::cout is an output stream, but
it is not the only one. Any file open for writing is in fact an output stream. To open
an output stream as a file, include the fstream file and instantiate an object of type
ofstream. The name of the file can be passed to the constructor as a parameter, like in

ofstream f("/ home/user/test.dat");

f << A << std::endl;

f.close ();

where we declare a stream f representing a text file in /home/user/test.dat, to which
we send the content of the A object as given by the insertion operator. Then, we close
the stream.

Of course you can also write a function for input. Once you defined how the input
is provided, you just need to define the proper extraction operator, in the public sector
the the Matrix class, as

friend std:: istream& operator >>(std:: istream &o, Matrix &r);

Note that in this case the right hand operand is not constant, since it is going to change
after the input is terminated.

In the implementation file you then write the code for the operator. We define the
matrix elements to be passed from the stream as a set of characters starting with the
character ( and ending with ). Elements are separated with a comma. The code for the
extraction operator is in Listing 6++.2.

1 std:: istream& operator >>(std:: istream &input , Matrix &r) {

2 std:: string s;

3 char c = 0;

4 while (c != ')') {

5 input >> c;

6 if ((c != ' ') && (c != '(') && (c != ')')) {
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7 s += c;

8 }

9 }

10 int i = 0;

11 int j = 0;

12 int l = s.length ();

13 int e = s.find (",");

14 while ((e > 0) && (e < l)) {

15 std:: string v = s.substr(0, e);

16 std:: istringstream buffer(v);

17 buffer >> r[i][j++];

18 e = s.find (",");

19 s = s.substr(e + 1);

20 if (j == r.size ()) {

21 i++;

22 j = 0;

23 }

24 }

25 return input;

26 }

Listing 6++.2 An extraction operator for matrices.

In this code we need to read a string from the stream, ignore the first and the last
characters, split the string on commas and transform each substring into a number.
Lines between 2 and 9 are used to read the string from the stream. The result is put
into s. Note that we read a single character at each step and discard blanks and the
parenthesis. We stop reading once we encounter a )1. Once we have the whole string we
use the string methods to

1. extract a substring from s using the first n characters, where n is the position of
the first , character (line 15);

2. transform the latter into a number by means of an objects of class istringstream
(an input string stream), whose constructor accepts a string as a parameter and
whose extraction operator returns a properly formatted value (line 16);

3. using the extraction operator of the string stream we insert the corresponding
numerical value of the last substring into the proper matrix element (line 17);

4. we remove used characters redefining s as the part of string after the first comma
(line 19);

5. in the following loop we update the row index, once we have read a number of
elements equal to the columns of the matrix.

This process is iterated until the input string is over. Suppose that now we have a text
file matrix.dat whose content is

(1, 2, 3,

1The code presented here is not very robust, since it does not check the expected format. However
this is beyond the aim of this section.
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4, 5, 6,

7, 8, 9)

We can instantiates an input stream representing this file and extract data from it into
a Matrix object A as

ifstream f(" matrix.dat");

f >> A;

f.close ();

Of course the formatting is completely irrelevant. We can even input data from the
keyboard as

(1,2,3,4,5, 6, 7, 8,9)

Note the blank characters. We can add them freely into the input string, since they are
ignored by the extraction operator.

Laboratory 6++.1 Output formatting

Rewrite the insertion operator for a matrix in such a way that the
matrix elements are nicely aligned. A possible way to do that is
to write all the elements in scientific notation, with a fixed num-
ber of digits. This can be achieved using the setf method of

the output stream, that takes an integer argument. The argument is a collection
of bits that, if set, activates a feature. Formatting bits are defined into the ios

namespace of the std library. To activate the scientific notation, it is enough to call
o.setf(std::ios::scientific) before using the stream o. Remember to unset the bit
with o.unsetf(std::ios::scientific). There are many interesting formatting bits in
the standard library. Search websites for more. You can also set the precision of the num-
ber you print inserting a modifier into the stream. Modifiers are returned by appropriate
functions, defined into the std library. To limit the number of digits after the decimal
point to 2, for example, you can insert into the stream the result of setprecision(2)
like in

o << setprecision (2) << r[i][j] << " ";

Another possibile way to nicely write matrix elements is to use a fixed number of digits for
the integer and decimal part of its value. To compute the appropriate number of digits,
you need to know how many characters are needed to write the longest number. Let’s
call it m. To align elements on the decimal point you need to know the number of digits
of the integer part of the largest; let’s call it n. To get these numbers you can play with
logarithms and some arithmetics, as well as with string streams to transform numbers
into strings. Each element must be represented using at most m + 1 characters (the
extra characters being blanks, we do not need to add it after each number). Moreover,
it must have n characters before the decimal point. The instruction to force the stream
to write numbers in this format is

o << setprecision(m - n - 1) << setw(m + 1) << r[i][j];
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The setw function tells how many characters must be used to write each element. The
precision tells how many digits to write after the decimal point. Since the largest number
is composed by m characters, taking into account one character for the decimal point,
the number of digits after the integer part must be m− n− 1.



“scientificProgramming++” — 2010/5/3 — 21:32 — page 35 — #35

PR
EL

IM
IN

ARY
Chapter 7++

Functions vs Objects

Traditional programming languages have to deal with data, manipulated by functions.
On the contrary, Object Oriented Programming has to deal with objects and messages
exchanged between them. In this chapter we discuss this point in detail. This is not
a technical chapter, but it is very important. In fact, most of those who learned a
traditional programming language like C, tend to write C++ programs like C revised, and
there is no real advantage in this. In order to be a good object oriented programmer,
you must abandon the way of thinking in terms of data and functions. You must force
yourself to think in the same way you think when you write down the solution of a
problem using a pencil and a sheet of paper, in fact. Even if most programmers do not
realize it, solutions written in terms of formula and described in natural language, appear
to be much different when turned into data and functions. Object oriented programming
makes the formal description of solutions much closer to the natural language.

TO BE FINISHED

35
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Chapter 8++

Inheritance and Polymorphism

In previous chapter we discuss how C++ makes computations much more easier with
respect to traditional programming techniques. The ability to redefine operators, in
particular, can be very appreciated by most of scientists and in particular by physicists.

C++, as most OO languages, can provide much more interesting features, like in-
heritance and polymorphism. Both described in this chapter introducing a numerical
integration example.

8++.1 A numerical integrator object

In Chapter 8 of the textbook we show how to numerically compute the integral of a
function. We discuss many methods: from a deterministic one, like the midpoint method,
to a stochastic one, like the Monte Carlo method. In this chapter we discuss numerical
integration in C++. Remember that in this language objects do the job. Of course a
function to be integration is just a function: a C function. However the integration is
done by an object: we could call it an integral or an integrator. An integrator takes at
least a function and the two integration extrema, to perform its job. According to the
method used, once can provide more parameters like the number of intervals in which the
integration interval must be divided, the number of extractions for Monte Carlo methods,
a fit model to extrapolate to the infinite number of divisions result, and so on. Let’s start
defining which is the main behavior of the method, leaving implementation details apart.
Have a look to Listing 8++.1

1 #ifndef _INTEGRATOR_H_

2 #define _INTEGRATOR_H_

3

4 class integrator {

5 public:

6 integrator ();

7

37
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8 integrator& setF(double (*f)( double ));

9 double f(double x);

10 double integrate(double a, double b);

11 private:

12 double (*_f)( double );

13 };

14

15 #endif

Listing 8++.1 The interface of an integrator.

Beside the needed default constructor, we provide a method to let the integrator to
know the function to be integrated (setF). The function, being generic, is represented
as a pointer to a function. Then an integrator is capable of returning the value of the
function to be integrated at a given point x (f) and the value of its integral between two
points a and b (integrate). Note that in this case we are focusing our attention to the
design of an integrator class and we want to get rid of other complications, but in general
you can define the function f(x) as a multidimensional function, letting x being a vector
of something. The integrator can then be a template class and be able to compute the
integral of very exotic objects.

Of course the main job is done into the integral method, that varies according to
the chosen integration method. For example, for Monte Carlo it would be like the one
reported in Listing 8++.2.

1 double integrator :: integrate(double a, double b) {

2 double S = 0.;

3 for (int i = 0; i < _np; i++) {

4 double x = (b - a)*rand ()/ RAND_MAX + a;

5 S += f(x);

6 }

7 return S*(b - a)/_np;

8 }

Listing 8++.2 Monte Carlo integration.

Note that, to perform integration, the method needs an integer value, called np, repre-
senting the number of random points to extract. From the leading underscore you can
imagine that we defined it as an object member, to be added to f. Of course we then
needed another method to set it, and we may assign it a default value in the constructor.

On the other hand we may want to provide a deterministic integrator, whose interface
is much like the same, where the integer parameter represents the number of subintervals
in which [a, b] must be divided. That means that we have to provide more than one class:
one per integration method, all having more or less the same interface, then repeating
the same code many times. This is annoying and, moreover, error prone: if we update
a method in one of the classes, we may forget to do the same on the others, or we may
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mistype something in such a way that the code is still valid (it can be compiled), but
wrong.

8++.2 Inheritance

The solution is inheritance: the ability for an Object Oriented Programming language,
to define new objects starting from existing objects. New objects inherits the behavior of
their parents. In fact, an object of class B, defined from an object of class A, is an object
of class A, too, just as a car equipped with a GPS navigation system and automatic
transmission is still a car. We just added some feature (the GPS navigation system or
the automatic transmission) to an already working object (the car). In OOP we can
define a basic integrator method, providing just the common interface to all integration
methods. Starting from this we can then define specialized objects, each inheriting the
basic behavior, but each providing a different way to compute the integral.

The integrator object contains the implementation of just its empty default con-
structor, an empty integrate (returning 0, just to let the compiler go) method, the
setF method and the f method, the latter just returning f(x). We do not provide
any generic setN method here, since the number and the type of parameters for each
integration method may vary.

We then define another class, named mcIntegrator, that is an integrator in the
sense that it is able to provide exactly the same behavior, plus some more. To define the
mcIntegrator as an integrator by inheritance, we just provide this information to the
class as in Listing 8++.3.

1 #ifndef _MCINTEGRATOR_H

2 #define _MCINTEGRATOR_H

3

4 #include <integrator.h>

5

6 class mcIntegrator : public integrator {

7 public:

8 mcIntegrator ();

9 mcIntegrator& setNpoints(int n);

10

11 double integrate(double a, double b);

12 private:

13 int _np;

14 };

15 #endif

Listing 8++.3 A specialized Monte Carlo integrator.

We tell the compiler that mcIntegrator is an integrator by means of the line

class mcIntegrator : public integrator
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meaning that what is public for an integrator is also public for a Monte Carlo integrator,
while what was private for an integrator is still private for a Monte Carlo integrator. We
included the integrator.h We added a new method setNpoints, intended to define
the number of random numbers to extract to compute the integral, and we repeated the
prototype of the integrate method, since we want to change its behavior with respect
to the parent class. Note that we did not repeated the prototypes of the real common
methods like setF or f. They just behaves as in the parent.

The content of the integrate method is, of course, the one shown in Listing 8++.2,
the only difference being the name of the class in front of the double colon: mcIntegrator
instead of integrator.

Once you defined mcIntegrator as above, you can use it in your application and you
can call either methods specific to mcIntegrator, like setNpoints, or methods common
to both parent and child, like setF. If you call a method common to both, redefined in
the child class, then the latter is executed. You can, for example, do something like

mcIntegrator I;

I.setF(myFunction );

I.setNdivisions (8192);

I.integrate (0., 3.);

to integrate the function myFunction between x = 0 and x = 3 using 8192 random
points. Cool, in fact!

Laboratory 8++.1 Comparing integration methods.

Write down the definition of at least three more classes of integra-
tors. For each class find and implement the appropriate methods.
Then write an application that, using those classes, computes the
same integral and compares the results. If you know the primitive

of the function, provide a method to the base class to return its value and use it to
compare the estimated value of the integral with the real one.

What happens if you do not include the f method into the base class and use f

into the integrate method to perform the computation? Apparently this seems to be
more appropriate, since f is a member of the class and using it does not involve calling
a method, making the execution slower! The compiler complains because f is in fact
a member of derived classes, but it is a private member of the base class, so it cannot
be used as such in derived classes. The use of the method is then mandatory to permit
access to it via the base class. If you want to avoid calling methods of a base class
to access members, you can put them within the protected context of the base class,
instead of the private one. This keeps members private for all classes, but for the
derived ones. Do not abuse of the protected context! Use it only if needed. It weaken
encapsulation.
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8++.3 Polymorphism

Inheritance is cool, but polymorphism is even cooler, in fact! Polymorphism is the ability
for an object to behave differently according to the context. The kind of polymorphism
described in this section is in fact what is called as such by most textbooks on Object
Oriented Programming.

Consider the example worked out in Laboratory 8++.1. Suppose you instantiated n
different objects of m different classes. To compare results you can, of course, put each
group of objects belonging to the same class into a list, loop on its elements and call
the iterate method for each. But you cannot mix objects of different classes into a
single list. Polymorphism allows you to do so. You can insert into the same list objects
(or, more precisely, pointers to objects) of different classes, provided they have some
common ancestor. Polymorphism works only with pointers, as explained in Section ??,
so to be able to profit from it we need to instantiates objects dynamically as pointers.
For example:

list <integrator *> I;

for (int i = 1; i < 11; i++) {

midpointIntegrator *mI = new midpointIntegrator;

mI->setF(f);

mI->setNdivisions(i);

mcIntegrator *mcI = new mcIntegrator;

mcI ->setF(f);

mcI ->setNpoints(i * 1000);

I.push_back(mI);

I.push_back(mcI);

}

puts a total of twenty pointers to objects into a list called I. Ten of them belong to
the class mcIntegrator, while the rest belong to the class midpointIntegrator. Each
object has been configured using its own methods: Monte Carlo integrators are config-
ured to compute the integral with an increasing number of extractions; deterministic
integrators compute the integral dividing the whole interval into an increasing number
of sub–intervals. Note that, despite the fact that some object belongs to a class and
some other to another class, we can mix their pointers in a single list of pointers to their
common base class.

The magic comes now. Impressively enough, if we loop on the elements of the list and
call the integrate method for all, each object calls in fact its own integration method,
despite the fact they are defined all as pointers to the same object integrator*:

list <integrator *>:: const_iterator ii = I.begin ();

list <integrator *>:: const_iterator ie = I.end ();

while (ii != ie) {

cout << (*ii)->integrate (0., 10.) << endl;

ii++;

}
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It is like each object knows to which class it belongs and determines the appropriate
method to be called at runtime. In order for the example to work as expected you only
need to add the keyword virtual to the integrate method of the base class, as in

virtual double integrate(double a, double b);

If you want to make it impossible to instantiate objects of the base class integrator
(remember, it returns zero as the integral of any function, and is then useless) it’s enough
to declare the method as pure virtual putting it equal to zero:

virtual double integrate(double a, double b) = 0;

so you don’t even need to write its implementation in the integrator.cc file. Any
attempt to instantiate an object of class integrator will fail at compilation time. Isn’t
polymorphism really cool?

Of course, even in this case, there is no magic at all. Everything works because the
system maintains in memory not only the addresses of the data representing the members
of a class, but even the addresses of their virtual functions, so they can be determined
at runtime.

8++.4 How polymorphism works
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Chapter 9++

Introducing UML

UML stands for Unified Modeling Language and is a powerful tool to describe an Object
Oriented software project using a graphical language. UML is a language for software
design and documentation, but it is a useful tool for preliminary testing, prior to the
implementation phase.

A good design is the key of Object Oriented software. Starting from a careful design
phase makes software development easy and easily maintainable. It is a common mistake
to start writing code as soon as one has got some idea about a possible solution of a given
problem. Object Oriented software, being suitable for large complex projects, requires
some care since the beginning, to avoid the need to rewrite everything after discovering
that the chosen design is not suitable for the given problem. If you want to build a
dog’s bed, you probably just write down a rather simple sketch of it on a sheet of paper,
evaluate the length and the number of the boards, buy them and some stud, and start
hammering. However, if you want to build a rather more complex building such as a small
house, you need a much more detailed project. Such a project usually describes many
aspects of the building at different scales: it shows views of the final result (useful for
the owner to realize what is going to buy), a view of the supporting structure, completed
with some technical information like the size of the pillars and the type of concrete to
be used (useful for the builders), a schematic view of the services like water and gas
pipes, and cables (to be used by other professionals and for future reference, in case of
damages), etc. All the drawings are made using a conventional language: the size and the
type of the lines used in the project have a very precise meaning. All engineers use the
same convention, in such a way that all the professionals involved in the construction, as
well as the customers, are able to decode the meaning of the drawings.

Mostly the same happens in Object Oriented software design. A good programmer
starts with a description of the requirements of the customer, using a conventional lan-
guage so that, if the project is large, its realization can be shared by many people who
share the same knowledge of the description language. This part of the process is known
as the Use Case study.

Then the analyst starts choosing among possible solutions and make drawings repre-
senting, at different levels of details, the involved classes and their relationships, i.e. it

43
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writes one or more Class Diagrams. Just like in the project of an apartment, there can
be different views of the same element, at different scales. For example, in the drawing
of the layout of the apartment, the engineer just shows the size and the position of walls,
windows and doors, without many details. In other drawings the engineer may want to
show the location of services. For example, the bathroom can be represented in a sepa-
rate sheet with the location of the pipes and the services like the tub, the washbasin, etc.
Each drawing is intended for different purposes, and in much the same way, the software
analyst may want to describe its project at different scales: sometime showing just the
relationships between classes, sometime illustrating the detailed content of classes.

Sometime a dynamic description of the project is needed, such as when you need to
show the behavior of the interaction between two or more classes during time. In this
case you need to prepare a Sequence Diagram.

Finally, since each component of the project can be installed on different nodes or
components, you may need to specify the location of each component on a Deployment
Diagram.

Each of these diagrams is to be realized in a common language, so that everybody
can read and understand your project. Such a language is UML. A detailed description
of UML is beyond the aim of this textbook. We will just describe some basic feature of
the language and you can refer to the bibliography to find more information.

9++.1 Integration, revised

As usual we introduce new concepts through examples. Numerical integration is the
chosen example. First of all, let’s describe the problem, in terms of natural language: we
aim to realize an application that, given a function f(x) and two numbers a, b ∈ R, is
able to compute

I =
∫ b

a

f(x)dx ,

with the desired degree of approximation. The numerical integration method may vary,
depending on the type of the function f(x), the integration extrema, the desired preci-
sion and the available resources in terms of CPU time. In the end, a user asks to the
application to provide the value for I.

9++.1.1 A Use Case Diagram

A Use Case captures the intended behavior of a system: it describes what a system does,
irrespective of how it is done. The problem of numerical integration is represented as an
UML Use Case in Figure 9++.1

In this diagram we can recognize an Actor, represented as a sticky man, interacting
with the system to realize the use case, represented by the ellipse. An actor is anything
interacting with the system from outside: it can be a human, another software application
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Figure 9++.1 A Use Case Diagram.

or a device. The association relationship, represented by an arrow, joining the actor
with the use case, shows that the actor asks for the given use case to the system. The
relationship may be named or not, depending on the needs. Notes can be added to any
element of the diagram as text written inside a box with a dog–eared corner, connected
with a dashed line to the element to which it refers. Other Use Cases can be much more
complex, showing many relationships between different actors and systems.

Some elements of the language are common to many diagrams. As an example, notes
can be used in all diagrams. In the next section we show other elements that can be used
in Use Case diagrams, too.

9++.1.2 A Class Diagram

Once the analysis of the requirements has been done with the Use Case diagram, we
start the most important phase of the design: we draw the Class Diagram. This diagram
represents the classes needed to solve the given problem and is the basis for coding. In
fact, a very detailed class diagram can be used to even generate automatically C++ code.
It gives a static view of the system and sets the vocabulary used during the development
phase.

After some thoughts, we already have an idea about how to realize the Use Case
in terms of classes. We provide an abstract Integrator class, from which we derive
many different concrete classes. Each of them provide the solution in terms of a different
numerical integration method. However, their behavior is the same and is described by
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Figure 9++.2 A Class Diagram.

the base abstract class.
The class is part of an application that may take an object of an available concrete

class as a parameter, to be used to perform the integration. The corresponding class
diagram appears as in Figure 9++.2.

In this diagram, each class is represented as a rectangle divided into three parts:
the top section contains the name of the class, the middle section the list of operations
(methods) and the bottom section its attributes. There is no need to specify every detail:
we just report the relevant operations and attributes.

The name of the class appear in italics if the class is abstract, i.e. it has at least one
pure virtual method. Pure virtual methods appear in italics, too. Concrete classes ap-
pears much the same, but their name and methods appears in plain text. In Figure 9++.2
the Integrator class is abstract, since its integrate method is abstract. We specified
that this class has a setF method, whose meaning is explained in details in the note.

Derived classes are said to be in a ”is a” relationship with their base class and this
kind of relationship is represented by an arrow connecting the derived classes to their
base class. The arrow has the form of a triangle.

With respect to our previous example we added another class, representing the ap-
plication itself, who takes the concrete integrator class as a parameter to perform the
operation. In order to provide the Use Case, this class must own an integrator object
that does the job. This object is part of the status of the Application class. We say that
there is an aggregation relationship between an Application and an Integrator, mean-
ing that the latter is part of the status of the first class. The relationship is represented
as line, starting with a diamond on the container side. We can, as in this case, specify
the cardinality of the association, i.e. the number of the objects to be aggregated. In this
case any application owns just one integrator. Note that in our design the application
knows about integrators, not about its derived classes. Of course, due to the aggregation
relationship. we need a method that allows the user to assign the proper integrator to
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the application. From the diagram one can also tell that the integrator must be passed
to the application as a pointer, since the integrator is abstract.

In terms of code one can imagine to have an Application object with a method
setIntegrationAlgorithm, to be use as follows:

Application a;

mcIntegrator monteCarloIntegrator;

monteCarloIntegrator.setF(sin);

a.setIntegrationAlgorithm (& monteCarloIntegrator };

a.integrate(a, b);

Thanks to polymorphism, we instantiate our preferred concrete integrator, and pass its
address to the application. The Application object a has a pointer p to an Integrator
besides other attributes. The Application can provide an integrate method that, in
turn, calls the corresponding method of the integrator as p->integrate(a, b);.

9++.2 Design Patterns

What we have just realized is a well known Design Pattern, i.e. a known solution to a
common problem. Design Patterns are collection of UML diagrams that apply to a large
number of problems. There are many compilations of Patterns, that can be found either
in the bookshops as textbooks or manuals, as well as in the World Wide Web. Each
Pattern is given a name. The Pattern we just derived is known as a Strategy.

A Strategy Pattern applies each time a given workflow can be realized with different
algorithms. In the Design Patterns language, the abstract integrator is called a Strat-
egy and concrete integrators are called concrete strategies. The integrate method is
generically called AlgorithmInterface. The application is named a Context.

The pattern applies whenever many classes share a common behavior, but differ
by the implementation details of some algorithm, or when you need to choose among
different algorithms. For example, a program to fit experimental data to a model is
usually represented as a Strategy, as well as the integration of differential equations.
Consider the problem of studying the results of the integration the equations of motion
of an harmonic oscillator with different integration algorithms: it simplifies a lot in terms
of a Strategy. The strategy pattern also applies in other completely different fields. For
example, suppose you have an application that reads raw data collected with different
detectors, with different formats. If each detector provides the same kind of response
(i.e. a measurement of a momentum, or energy, or temperature) obtained by a different
treatment of the raw data, you can use a Strategy to read abstract data and concrete
strategies to transform them into a common format, according to their source.

You should consider using a Strategy whenever you start writing a long sequence of
conditional statements in you application.
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Chapter 10++

More Design Patterns

In this chapter we continue studying Design Patterns. We show more solutions to known
problems. We also introduce a new tool, useful to simplify the process of software de-
velopment: the make utility. This is the right place to introduce this tool, since our
problems are solved introducing more and more classes in the game.

10++.1 Planets, again

Consider the problem, shown in Chapter 10 of the textbook, of simulating the gravi-
tational interaction between celestial bodies like the Sun and the planets in our Solar
System. In terms of Object Oriented Programming this is a very simple task. What
you need, in fact, is an object representing a celestial body, whose status is given by its
mass m, its position ~x and its velocity ~v. Position and velocity can be represented by a
Vector class that provides operators for summing vectors, multiplying them by scalars
or other vectors, as well as methods to return their length.

A body can move under the effect of a force F , acting for a period dt. The force F
can be represented as a vector, as well. Using the Euler method to integrate the equation
of motion we have

void body::move(Vector F, double dt) {

Vector a = F/_mass;

_v += a*dt;

_x += v*dt;

}

pretty simple, isn’t it? Note how concepts expressed in our natural language (mathemat-
ics) is expressed much like in the same way: the acceleration a of a body is just the force
F divided the body mass. Because of this, its velocity v increases by the acceleration
times the interval of time a*dt. Similarly, the position changes as ~x(t + dt) = ~x(t) +~vdt.

We can then have an object representing the solar system, whose status consists of
a list of bodies. The system evolves for a given amount of time t, in steps of dt. That

49
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means that, at each step, for each body i in the list we need to compute the resultant
gravitational force acting on i, Fi, due to all other bodies. Such a force is

Fi = −
∑
i 6=j

G
mimj

r3
ij

~rij

where G = 6.673 × 10−11 is the Newton constant in SI units, mk is the mass of body k
and ~rij = ~xi − ~xj . Evn in this case, the code is relatively simple and is shown in the
self–explanatory Listing ??.

1 void solarSystem :: evolve(double maxt , double dt) {

2 double t = 0;

3 while (t < maxt) {

4 list <body >:: iterator i = _bodies.begin ();

5 list <body >:: iterator e = _bodies.end ();

6 while (i != e) {

7 Vector F(3);

8 F = 0.;

9 double mass = i->mass ();

10 Vector ri = i->x();

11 list <body >:: iterator o = _bodies.begin ();

12 while (o != e) {

13 Vector r = o->x() - ri;

14 double r3 = r.mod2 ()* sqrt(r.mod2 ());

15 if (r3 > 0) {

16 F += r*G*o->mass ()* mass/r3;

17 }

18 o++;

19 }

20 i->move(F, dt);

21 i++;

22 }

23 t += dt;

24 }

25 return *this;

26 }

Listing 10++.1 The snippet of code needed to simulate the evolution of many gravita-
tionally interacting bodies.

That’s all! You just need to instantiate few objects of class body with the proper mass,
position and velocity, add them to the solar system and let them evolve for a given time.
You can then print the position of each object in the list into a file, to be used to draw
the orbits using gnuplot.

This is a very simple design, in fact. However, it’s unflexible. First of all, if you
represent the list of planets belonging to a system as a list of bodies and create those



“scientificProgramming++” — 2010/5/3 — 21:32 — page 51 — #51

PR
EL

IM
IN

ARY

bodies outside the solarSystem class, adding them via the proper method, you just put
in the list a copy of each body, not the body you created. Besides being a waste of
memory, this choice is inappropriate, because at the end of the simulation, bodies in the
internal list of the solar system have a status that is different from the one assigned to
bodies in your application. The latter have still the initial status, since what is changed
is the status of the bodies inside the solar system.

For this reason it is much better to represent the solar system as a list of pointers
to bodies. In this way each operation performed inside the solar system, will reflect into
bodies created in the application, since the changes in the status happen in the same
memory locations.

Moreover, using pointers allows for polymorphism. We can derive objects from bodies
that behave like bodies with something more. For example, a spaceship moves like a body
when the engines are switched off, but moves differently when we turn on the engines. If
we derive a spaceShip class from body, we can add the spaceship to the solar system, as
well, and study how it moves under the effect of both gravitational and internal forces.

Of course, the move method for bodies can be realized in different ways, according
to the required precision. Then, it is worth describing the body as a Strategy, whose
move method is the algorithm. There is another solution to this problem: you can define
a Strategy by itself and attach the strategy to the body, so that the body becomes
a Context, in terms of Pattern language. In your application, then, you choose the
appropriate strategy, creates many bodies, to each of which you attach the strategy.
Then add bodies (or, better, their pointers) to the solar system and let it evolve for a
given amount of time.

10++.2 The Composite Pattern

Consider now the following realization of the problem: we would like to simulate the
motion of the Earth around the Sun, as well as the motion of the Moon around the Earth.
We can, of course, create three bodies and put them into a solar system. However, since
one usually knows the distance and the velocity of a given body relative to another,
this approach requires some computation before instantiating the bodies. For example,
it is easy to find that the average distance between the Moon and the Earth is dM =
384 399 km and its average orbital speed is vM = 1.022 km/s. It is also easy to find that
the Earth orbits around the Sun at an average distance dS = 149 597 887.5 km with an
average orbital speed of vS = 29.78 km/s. Let’s call ~rE = (0, 0, 0) the initial coordinates
of the Earth and ~rM = (dM , 0, 0) the initial coordinates of the Moon. If we want to set
the position of the Earth in the solar system in ~RE , with |~RE | = dS , we need to translate
both the position of Earth and Moon, so that the new positions will be, respectively,
~rE + ~RE and ~rM + ~RE . It is much more simple to describe the operation in the following
way:

1. create the Earth and put it at the origin of a system S;
2. create the Moon and place it relatively to the Earth in the same system S;
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Figure 10++.1 The Composite Pattern.

3. create the Sun and put it at the origin of another system S′;
4. add S to S′ at a given position.

Of course we can iterate the procedure for every subsystem we may want to include
(internal planets, Jupiter with its satellites, Saturn with its satellites and so on).

We can easily see that, in this context, a solar system is a composed object. Its
components can be either planets or other (smaller) solar systems. If a solar system
is built joining two solar system it becomes a new solar system that can be, in turn,
added to another solar system and so on. The solar system is then a composite, whose
components can be other composites or non–composed objects (the planets). We call
them leafs.

As you can imagine, Composite is one of the most widely used Pattern in Object
Oriented Programming, since composite objects appear in fact quite frequent in a variety
of problems. The structure of the pattern is illustrated in Figure 10++.1.

It is composed of three classes: a common base abstract class called a Component,
and two derived classes named a Leaf and a Composite. An object of the Composite class
is composed by Components. Components, in turn, can be either simple, atomic objects
(Leafs) or composed objects themselves, i.e., composed of other components. With this
pattern each object can be composed of an infinite number of components arranged on
an infinite number of different layers.

Given an operation on a component, such an operation returns a value on a Leaf, while
returns the result of the aggregation of the results of each component on a composite. For
example, suppos we describe a distributed computing system, composed of computing
centres, composed in turn of racks, in each of which there are computers, as a Composite.
If we ask for the amount of electrical power needed for the whole system we cause the
call of its power method. Since the system is composed, it loops on centres asking to
each of them the power, then sums up the results and return the sum. The centres are
composed, too. So they return the sum of the power obtained by each rack in the centre.
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Again, the rack is composed and returns the sum of the power needed for each of its
components. Only at this stage the power method of the Leaf (the computer) is called
and returns a value.

In our example a self–graviting system can be thought as composed of other self–
graviting systems, the leafs being celestial bodies. We then need an abstract class de-
scribing a sub system, then a concrete class describing a complex system. In our case the
virtual operations are those needed to set the initial status of the objects. Each time we
add a system to another system at position ~xS , each of its components must be moved
by ~xS .


