## Computing Methods for Physics

## 11 SEPTEMBER 2019

You must submit your exam by Friday Sep 13 at 17:00 following the instruction at http://www.roma1.infn.it/people/rahatlou/cmp/

## Bethe-Bloch formula

The Bethe-Bloch formula provides an accurate estimate of the average energy loss of relativistic particles due to ionisation ( $\mathrm{dE} / \mathrm{dx}$ ) in mater. The scope of this exercise is to simulate the distribution of $\mathrm{dE} / \mathrm{dx}$ for protons in lead (Pb). The dimensions of the detector or not relevant for this exercise. You need to use the ROOT libraries.

1. Generate $10^{5}$ protons with momentum in the range [ $300 \mathrm{MeV}, 1 \mathrm{TeV}$ ]
2. For each proton compute the average energy loss $\langle\mathrm{dE} / \mathrm{dx}>$ according to the BetheBloch formula
3. The effective energy loss $d E / d x$ for the particle must be extracted from a Gaussian distribution with mean of $\langle\mathrm{dE} / \mathrm{dx}\rangle$ and a width of

$$
10 \%-5 \% \times \frac{\beta \gamma}{1000}
$$

where $\beta \gamma$ is that of the particle.
4. Make a 2D plot of $\mathrm{dE} / \mathrm{dx}$ as a function of momentum for all protons using the ROOT TH2F class. Use appropriate binning, axis scale, and draw options to obtain a good-looking plot and save it as PDF.
5. Use the ROOT TProfile class to plot the mean $\mathrm{dE} / \mathrm{dx}$ and its standard deviation in bins of momentum for all protons. Store a copy of the plot as a PDF file.

Provide instructions for compiling your code in the comments at the beginning of_exam.cc .

## Computing Methods for Physics

## 11 SEPTEMBER 2019

## Spectrum of Compton Scattering

Cesium-137 is a radioactive isotope which decays via beta emission (half life of 30.2
 life of 153 seconds to the ground state ${ }^{137} \mathrm{Ba}$ emitting a photon with energy $\mathrm{E}_{0}=662$ keV . We want to study the spectrum of ${ }^{137} \mathrm{Cs}$ and the effect of Compton scattering.
6. Generate 10000 photons with energy $E_{0}$.
7. Each photon is detected with a Nal crystal which has a resolution of $3 \%$. Use a Gaussian convolution and plot the distribution of detected energy $E_{i}$ of all photons. Make sure reasonable binning are used for the histogram and labels and units are added. The expected distribution should be a Gaussian entered at $\mathrm{E}_{0}$.
8. Assume that each photon has a $60 \%$ probability of undergoing Compton scattering in the crystal.
9. The energy $E_{f}$ of the photon after the scattering is given by where me is the mass of the electron ( 511 keV ) and $\theta$ is the angle of the photon after scattering as shown in the figure.
10. The angle $\theta$ must be generated casually assuming that the differential cross section
$\frac{d \sigma}{d \cos \theta} \propto 1+\cos ^{2} \theta$

$$
E_{f}=\frac{E_{i}}{1+\left(E_{i} / m_{e}\right)(1-\cos \theta)}
$$

If you do not know how to do this, you can generate a flat distribution for $\theta$ (with a penalty).
11. Plot the distribution of for all 10000 photons. You should still see a peak around $E_{0}$ and a continuous distribution (a FermiDirac shape) for $E_{f}<0$.

Save a PDF file for each of the above 2 plots. Use comprehensions and dictionaries to implement the simulation and plotting the required plots. Define a function Compton (with proper arguments and return values) to simulate the scattering for each photon of energy $E_{i}$ at each step for each particle.

Evaluation will be based on use of python features and data structures, comprehensions (instead of C-style for loops), dictionaries, NumPy objects, labels, units, and clarity of plots.

