Final Exam: Parameterized Simulation

Shahram Rahatlou

http://www.romal.infn.it/people/rahatlou/programmazione++/

Corso di Programmazione++

Roma, 22 June 2009

Experimental Setup

- Particle of mass m=2 GeV/c² and momentum p=5 GeV/c decaying into two particles of different mass m₁=0.5 GeV/c² and m₂=0.150 GeV/c² in laboratory
- Particles go through two detectors
 - Passage through each detector modifies the incoming 4-momentum of each particle
 - □ 1st detector causes only change in direction of particles (scattering)
 - □ 2nd detector reduces only the energy of the particle
- Particle decays before reaching first detector

Passage of Particle Through Matter

Modeling of Detector Response

- Each detector causes variation in the 4-momentum of incoming particles
 - particle comes into the detector with 4-momentum p_{in}
 - particle leaves detector with 4-momentum p_{out}
- Use Gaussian to model effect of detector
 - direction and/or direction (angles) of particles smeared
 - parameters of smearing (width of Gaussian) are properties of each detector
 - parameters can be configured by user

What You Have to Do?

- Generate sample of 1000 or more decaying particle
 - Decays occurs before first detector
 - Use application from midterm to generate 4-vectors of decay products
- Use polymorphism to define generic and specialized detectors
- For each particle show
 - variation of momentum and energy before and after passing each detector
 - for example E_{out}-E_{in}, p_{out}-p_{in}
 - variation of energy and momentum after passing through all detectors
- Show invariant mass computed from 4-momenta of decay products after each detector
 - $\square \quad p_{tot} = p_1 + p_2$
 - invariant mass = sqrt($E_{tot}^2 p_{tot}^2$)

What Else You Can Do

- Goal of exercise is to understand impact of experimental apparatus on measurements
 - Compare measured invariant mass of decaying particle after each detector and compare to real mass m of the particle

 You can vary parameters of each detector and observe impact of different amount of scattering and energy loss on distribution of invariant mass

Optional

- Allow original particle to decay within the detectors
- Implement lifetime of decaying particle
 - > Use exponential model to determine where the particle decays