
C++ Notes: I/O Manipulators http://www.fredosaurus.com/notes-cpp/io/omanipulators.html

1 of 2 5/2/2006 12:07 PM

C++ Notes: I/O Manipulators

Manipulators are the most common way to control output formating.

#include <iomanip>
I/O manipulators that take parameters are in the <iomanip> include file.

Default Floating-point Format
Unless you use I/O manipulators (or their equivalent), the default format for each floating-point number
depends on its value.

No decimal point: 1.0000 prints as 1
No trailing zeros: 1.5000 prints as 1.5
Scientific notation for large/small numbers: 1234567890.0 prints as 1.23457e+09

I/O Manipulators
The following output manipulators control the format of the output stream. Include <iomanip> if you use any
manipulators that have parameters. The Range column tells how long the manipulator will take effect: now
inserts something at that point, next affects only the next data element, and all affects all subsequent data
elements for the output stream.

Manip. Rng Description

General output

endl now Write a newline ('\n') and flush buffer.

setw(n) next

Sets minimum field width on output. This sets the minimum size of the field - a larger number
will use more columns. Applies only to the next element inserted in the output. Use left and
right to justify the data appropriately in the field. Output is right justified by default. Equivalent
to cout.width(n); To print a column of right justified numbers in a seven column field:
 cout << setw(7) << n << endl;

width(n) next Same as setw(n).

left next Left justifies output in field width. Only useful after setw(n).

right next
Right justifies output in field width. Since this is the default, it is only used to override the effects
of left. Only useful after setw(n).

setfill(ch) all

Only useful after setw. If a value does not entirely fill a field, the character ch will be used to fill in
the other characters. Default value is blank. Same effects as cout.fill(ch) For example, to print a
number in a 4 character field with leading zeros (eg, 0007):
 cout << setw(4) << setfill('0') << n << endl;

Floating point output

setprecision(n) all

Sets the number of digits printed to the right of the decimal point. This applies to all subsequent
floating point numbers written to that output stream. However, this won't make floating-point
"integers" print with a decimal point. It's necessary to use fixed for that effect. Equivalent to
cout.precision(n);

fixed all
Used fixed point notation for floating-point numbers. Opposite of scientific. If no precision has
already been specified, it will set the precision to 6.

scientific all Formats floating-point numbers in scientific notation. Opposite of fixed.

bool output

boolalpha

noboolalpha
all Uses alphabetic representation (true and false) for bool values. Turned off with noboolalpha.

Input

skipws

noskipws
all

For most input values (eg, integers and floating-point numbers), skipping initial whitespace (eg,
blanks) is very useful. However, when reading characters, it is often desired to read the
whitespace characters as well as the non-spacing characters. The these I/O manipulators can be
used to turn whitespace skipping off and on. Eg,
cin >> noskipws;
turns whitespace skipping off for all subseqent cin input.

ws now Reads and ignores whitespace at the current position.

C++ Notes: I/O Manipulators http://www.fredosaurus.com/notes-cpp/io/omanipulators.html

2 of 2 5/2/2006 12:07 PM

Other

showpoint, noshowpoint, uppercase, nouppercase, dec, oct, hex, setbase(8|10|16), showbase,
noshowbase, ends, showpos, noshowpos, internal, flush, unitbuf, nounitbuf, setiosflags(f),
resetiosflags(f)

Example
#include <iostream>
#include <iomanip>
using namespace std;
int main() {
 const float tenth = 0.1;
 const float one = 1.0;
 const float big = 1234567890.0;

 cout << "A. " << tenth << ", " << one << ", " << big << endl;
 cout << "B. " << fixed << tenth << ", " << one << ", " << big << endl;
 cout << "C. " << scientific << tenth << ", " << one << ", " << big << endl;
 cout << "D. " << fixed << setprecision(3) << tenth << ", " << one << ", " << big << endl;
 cout << "E. " << setprecision(20) << tenth << endl;
 cout << "F. " << setw(8) << setfill('*') << 34 << 45 << endl;
 cout << "G. " << setw(8) << 34 << setw(8) << 45 << endl;

 return 0;
}

produces this output (using DevC++ 4.9.8.0):
A. 0.1, 1, 1.23457e+009
B. 0.100000, 1.000000, 1234567936.000000
C. 1.000000e-001, 1.000000e+000, 1.234568e+009
D. 0.100, 1.000, 1234567936.000
E. 0.1000000014901161
F. ******3445
G. ******34******45

Lines F and G show the scope of setw() and setfill().
Copyleft 2000-2003 Fred Swartz Last update 2003-08-24, URL=undefined

