
vector<T, Alloc> http://www.sgi.com/tech/stl/Vector.html

1 of 5 5/2/2006 11:59 AM

vector<T, Alloc>

Category: containers Component type: type

Description

A vector is a Sequence that supports random access to elements, constant time insertion and removal of
elements at the end, and linear time insertion and removal of elements at the beginning or in the middle. The
number of elements in a vector may vary dynamically; memory management is automatic. Vector is the
simplest of the STL container classes, and in many cases the most efficient.

Example

vector<int> V;
V.insert(V.begin(), 3);
assert(V.size() == 1 && V.capacity() >= 1 && V[0] == 3);

Definition

Defined in the standard header vector, and in the nonstandard backward-compatibility header vector.h.

Template parameters

Parameter Description Default
T The vector's value type: the type of object that is stored in the vector.
Alloc The vector's allocator, used for all internal memory management. alloc

Model of

Random Access Container, Back Insertion Sequence.

Type requirements

None, except for those imposed by the requirements of Random Access Container and Back Insertion
Sequence.

Public base classes

None.

vector<T, Alloc> http://www.sgi.com/tech/stl/Vector.html

2 of 5 5/2/2006 11:59 AM

Members

Member Where
defined Description

value_type Container The type of object, T, stored in the
vector.

pointer Container Pointer to T.
reference Container Reference to T
const_reference Container Const reference to T
size_type Container An unsigned integral type.
difference_type Container A signed integral type.
iterator Container Iterator used to iterate through a

vector.
const_iterator Container Const iterator used to iterate through

a vector.
reverse_iterator Reversible

Container
Iterator used to iterate backwards
through a vector.

const_reverse_iterator Reversible
Container

Const iterator used to iterate
backwards through a vector.

iterator begin() Container Returns an iterator pointing to the
beginning of the vector.

iterator end() Container Returns an iterator pointing to the
end of the vector.

const_iterator begin() const Container Returns a const_iterator pointing
to the beginning of the vector.

const_iterator end() const Container Returns a const_iterator pointing
to the end of the vector.

reverse_iterator rbegin() Reversible
Container

Returns a reverse_iterator
pointing to the beginning of the
reversed vector.

reverse_iterator rend() Reversible
Container

Returns a reverse_iterator
pointing to the end of the reversed
vector.

const_reverse_iterator rbegin() const Reversible
Container

Returns a const_reverse_iterator
pointing to the beginning of the
reversed vector.

const_reverse_iterator rend() const Reversible
Container

Returns a const_reverse_iterator
pointing to the end of the reversed
vector.

size_type size() const Container Returns the size of the vector.
size_type max_size() const Container Returns the largest possible size of

the vector.
size_type capacity() const vector See below.

vector<T, Alloc> http://www.sgi.com/tech/stl/Vector.html

3 of 5 5/2/2006 11:59 AM

bool empty() const Container true if the vector's size is 0.
reference operator[](size_type n) Random

Access
Container

Returns the n'th element.

const_reference operator[](size_type n) const Random
Access
Container

Returns the n'th element.

vector() Container Creates an empty vector.
vector(size_type n) Sequence Creates a vector with n elements.
vector(size_type n, const T& t) Sequence Creates a vector with n copies of t.
vector(const vector&) Container The copy constructor.
template <class InputIterator>
vector(InputIterator, InputIterator)
[1]

Sequence Creates a vector with a copy of a
range.

~vector() Container The destructor.
vector& operator=(const vector&) Container The assignment operator
void reserve(size_t) vector See below.
reference front() Sequence Returns the first element.
const_reference front() const Sequence Returns the first element.
reference back() Back

Insertion
Sequence

Returns the last element.

const_reference back() const Back
Insertion
Sequence

Returns the last element.

void push_back(const T&) Back
Insertion
Sequence

Inserts a new element at the end.

void pop_back() Back
Insertion
Sequence

Removes the last element.

void swap(vector&) Container Swaps the contents of two vectors.
iterator insert(iterator pos,
 const T& x)

Sequence Inserts x before pos.

template <class InputIterator>
void insert(iterator pos,
 InputIterator f, InputIterator l)
[1]

Sequence Inserts the range [first, last)
before pos.

void insert(iterator pos,
 size_type n, const T& x)

Sequence Inserts n copies of x before pos.

iterator erase(iterator pos) Sequence Erases the element at position pos.
iterator erase(iterator first, iterator last) Sequence Erases the range [first, last)
void clear() Sequence Erases all of the elements.

vector<T, Alloc> http://www.sgi.com/tech/stl/Vector.html

4 of 5 5/2/2006 11:59 AM

void resize(n, t = T()) Sequence Inserts or erases elements at the end
such that the size becomes n.

bool operator==(const vector&,
 const vector&)

Forward
Container

Tests two vectors for equality. This is
a global function, not a member
function.

bool operator<(const vector&,
 const vector&)

Forward
Container

Lexicographical comparison. This is
a global function, not a member
function.

New members

These members are not defined in the Random Access Container and Back Insertion Sequence requirements,
but are specific to vector.

Member Description
size_type
capacity() const

Number of elements for which memory has been allocated. capacity() is always
greater than or equal to size(). [2] [3]

void
reserve(size_type
n)

If n is less than or equal to capacity(), this call has no effect. Otherwise, it is a
request for allocation of additional memory. If the request is successful, then
capacity() is greater than or equal to n; otherwise, capacity() is unchanged. In
either case, size() is unchanged. [2] [4]

Notes

[1] This member function relies on member template functions, which at present (early 1998) are not
supported by all compilers. If your compiler supports member templates, you can call this function with any
type of input iterator. If your compiler does not yet support member templates, though, then the arguments
must be of type const value_type*.

[2] Memory will be reallocated automatically if more than capacity() - size() elements are inserted into
the vector. Reallocation does not change size(), nor does it change the values of any elements of the vector.
It does, however, increase capacity(), and it invalidates [5] any iterators that point into the vector.

[3] When it is necessary to increase capacity(), vector usually increases it by a factor of two. It is crucial
that the amount of growth is proportional to the current capacity(), rather than a fixed constant: in the
former case inserting a series of elements into a vector is a linear time operation, and in the latter case it is
quadratic.

[4] Reserve() causes a reallocation manually. The main reason for using reserve() is efficiency: if you
know the capacity to which your vector must eventually grow, then it is usually more efficient to allocate
that memory all at once rather than relying on the automatic reallocation scheme. The other reason for using
reserve() is so that you can control the invalidation of iterators. [5]

[5] A vector's iterators are invalidated when its memory is reallocated. Additionally, inserting or deleting an
element in the middle of a vector invalidates all iterators that point to elements following the insertion or
deletion point. It follows that you can prevent a vector's iterators from being invalidated if you use
reserve() to preallocate as much memory as the vector will ever use, and if all insertions and deletions are
at the vector's end.

vector<T, Alloc> http://www.sgi.com/tech/stl/Vector.html

5 of 5 5/2/2006 11:59 AM

See also

deque, list, slist

STL Home

Using this site means you accept its terms of use | privacy policy | trademark information
Copyright © 1993-2003 Silicon Graphics, Inc. All rights reserved. | contact us

