
Corso di Programmazione++

Shahram Rahatlou

http://www.roma1.infn.it/people/rahatlou/programmazione++/

Arguments of C++ Applications
g++ options, Libraries

ifstream

Using ROOT Libraries

Roma, 27 April 2008

Sh. Rahatlou, Programmazione++ 2

Options of g++

$ man g++

GCC(1) GNU GCC(1)

NAME

gcc - GNU project C and C++ compiler

SYNOPSIS

gcc [-c|-S|-E] [-std=standard]

[-g] [-pg] [-Olevel]

[-Wwarn...] [-pedantic]

[-Idir...] [-Ldir...]

[-Dmacro[=defn]...] [-Umacro]

[-foption...] [-mmachine-option...]

[-o outfile] infile...

Only the most useful options are listed here; see below for the remainder.

g++ accepts mostly the same options

as gcc.

DESCRIPTION

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.

The ̀ `overall options'‘allow you to stop this process at an intermediate stage.

For example, the -c option says not to run the linker.

Then the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options control the

preprocessor and others the compiler itself. Yet other options control the assembler

and linker; most of these are not documented here, since you rarely need to use any

of them.

Sh. Rahatlou, Programmazione++ 3

Some Already Familiar Options

 -E : stop after running pre-compiler to resolve pre-compiler directives

 Don’t compile nor link the binary

 -c : stop after compilation

 Doesn’t link so no executable is produced

 -o : specify name of the output

$ ls -l color.*

-rw-r--r-- 1 rahatlou None 601 May 22 13:10 color.cpp

$ g++ -E -o color.pre-compiler color.cpp

$ ls -l color.*

-rw-r--r-- 1 rahatlou None 601 May 22 13:10 color.cpp

-rw-r--r-- 1 rahatlou None 681002 May 23 11:19 color.pre-compiler

$ g++ -c color.cpp

$ ls -lrt color.*

-rw-r--r-- 1 rahatlou None 601 May 22 13:10 color.cpp

-rw-r--r-- 1 rahatlou None 681002 May 23 11:19 color.pre-compiler

-rw-r--r-- 1 rahatlou None 29489 May 23 11:21 color.o

$ g++ -c color.cpp

$ ls -lrt

-rw-r--r-- 1 rahatlou None 601 May 22 13:10 color.cpp

-rw-r--r-- 1 rahatlou None 681002 May 23 11:19 color.pre-compiler

-rw-r--r-- 1 rahatlou None 29489 May 23 11:21 color.o

-rwxr-xr-x 1 rahatlou None 524423 May 23 11:22 a.out
Default name
of binary

Sh. Rahatlou, Programmazione++ 4

Increasing Warning Level

// app1.cpp

#include <string>

#include <iostream>

int index() {

int i = 27;

}

std::string name() {

std::string str("test of g++ options");

return str;

// text after return

int j = 56;

}

int main() {

int i = index();

std::string st = name();

std::cout << “i: “ << i

<< “st: “ << st

<< std::endl;

return 0;

}

Very often simple warnings
are a clear signal there is
something seriously wrong

$ g++ -o app1 app1.cpp

$ g++ -o app1 -Wall app1.cpp

app1.cpp: In function ̀ int index()':

app1.cpp:6: warning: unused variable 'i'

app1.cpp:7: warning: control reaches end of non-void function

app1.cpp: In function ̀ std::string name()':

app1.cpp:14: warning: unused variable 'j'

$./app1

i:0 st: test of g++ options

Value of index() is always 0! ignores completely you implementation!

Sh. Rahatlou, Programmazione++ 5

Debug Symbols with -g

 Produce debugging information to be used by debuggers, e.g. GDB

 larger binary

 Extremely useful when first developing your code

 You can see the high level labels (your function names and variables)

 It slows down a bit the code but might pay off in development phase

 Once code fully tested you can remove this option and fully optimize

-g Produce debugging information in the operating system's native format (stabs, COFF, XCOFF, or DWARF). GDB
can work with this debugging information.

On most systems that use stabs format, -g enables use of extra debugging information that only GDB can use;
this extra information makes debugging work better in GDB but will probably make other debuggers crash or
refuse to read the program. If you want to control for certain whether to generate the extra information,
use -gstabs+, -gstabs, -gxcoff+, -gxcoff, or -gvms (see below).

Unlike most other C compilers, GCC allows you to use -g with -O. The shortcuts taken by optimized code may
occasionally produce surprising results: some variables you declared may not exist at all; flow of control
may briefly move where you did not expect it; some statements may not be executed because they compute con-
stant results or their values were already at hand; some statements may execute in different places because
they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the optimizer
for programs that might have bugs.

Sh. Rahatlou, Programmazione++ 6

Libraries of Compiled Code

 Libraries are simple archives that contain compiled code
(object files)

 Two types of libraries

 Static Library: used by linker to include compiled code in the
executable at linking time.

 Larger executable since includes ALL binary code run during execution

 Does not require presence of libraries at runtime since all code already
included in the executable

 Shared Library: used by executable at runtime

 The binary holds only references to functions in the libraries but the code
is not included in the executable itself

 Smaller executable size but REQUIRES library to be available at runtime

 We will discuss shared libraries in a future lab session

Sh. Rahatlou, Programmazione++ 7

Creating and Using Static Libraries

$ g++ -c Datum.cc

$ g++ -c Result.cc

$ g++ -c InputService.cc

$ g++ -c Calculator.cc

$ ar -r libMyLib.a Datum.o Result.o InputService.o Calculator.o

ar: creating libMyLib.a

$ ar tv libMyLib.a

rw-r--r-- 1003/513 1940 May 23 12:21 2006 Datum.o

rw-r--r-- 1003/513 748 May 23 12:21 2006 Result.o

rw-r--r-- 1003/513 4482 May 23 12:21 2006 InputService.o

rw-r--r-- 1003/513 22406 May 23 12:21 2006 Calculator.o

$ g++ -o wgtavg wgtavg.cpp -lMyLib -L.

$./wgtavg

Sh. Rahatlou, Programmazione++ 8

Commonly Used g++ Options with External Libraries

 Usually when using external libraries you are provided with

 path to directory where you can find include files

 path to directory where you can find librararies

 NO access to source code!

 But you don’t need the source code to compile. Only header files. Remember only

interface matters!

 -L : path to directory containing libraries

 -L /usr/local/root/5.08.00/lib

 -I : path to directory containing header files
 -I /usr/local/root/5.08.00/include

 -l : specify name of libraries to be used at link time

 -l Core –lHbook

 you don’t have to specify the prefix “lib” nor the extension “.a”

Sh. Rahatlou, Programmazione++ 9

Optimizing Your Executable

 g++ offers many options to optimize your executable and reduce
execution time

 Compiler analyzes your code to determine the best execution path

 Takes longer to compile with optimization

 It’s harder to debug an optimized program

 Remember: your optimized and non-optimized executables MUST give the
same results or you have a bug!

Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler's goal is to reduce the cost of compilation and to make debugging
produce the expected results. Statements are independent: if you stop the program with a breakpoint between
statements, you can then assign a new value to any variable or change the program counter to any other statement
in the function and get exactly the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance and/or code size at the
expense of compilation time and possibly the ability to debug the program.

The compiler performs optimization based on the knowledge it has of the program. Using the -funit-at-a-time

flag will allow the compiler to consider information gained from later functions in the file when compiling a
function. Compiling multiple files at once to a single output file (and using -funit-at-a-time) will allow the
compiler to use information gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a flag are listed.

Sh. Rahatlou, Programmazione++ 10

Levels of Optimization

-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function.

With -O, the compiler tries to reduce code size and execution time, without performing any optimizations

that take a great deal of compilation time.

-O turns on the following optimization flags: -fdefer-pop -fmerge-constants -fthread-jumps -floop-optimize
-fif-conversion -fif-conversion2 -fdelayed-branch -fguess-branch-probability -fcprop-registers

-O also turns on -fomit-frame-pointer on machines where doing so does not interfere with debugging.

-O2 Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed
tradeoff. The compiler does not perform loop unrolling or function inlining when you specify -O2. As com-
pared to -O, this option increases both compilation time and the performance of the generated code.

-O2 turns on all optimization flags specified by -O. It also turns on the following optimization flags:
-fforce-mem -foptimize-sibling-calls -fstrength-reduce -fcse-follow-jumps -fcse-skip-blocks -fre-
run-cse-after-loop -frerun-loop-opt -fgcse -fgcse-lm -fgcse-sm -fgcse-las -fdelete-null-pointer-checks
-fexpensive-optimizations -fregmove -fschedule-insns -fschedule-insns2 -fsched-interblock -fsched-spec

-fcaller-saves -fpeephole2 -freorder-blocks -freorder-functions -fstrict-aliasing -funit-at-a-time
-falign-functions -falign-jumps -falign-loops -falign-labels -fcrossjumping

Please note the warning under -fgcse about invoking -O2 on programs that use computed gotos.

-O3 Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on the -finline-func-
tions, -fweb and -frename-registers options.

-O0 Do not optimize. This is the default. You should notice the difference
in your application when using –O3

Sh. Rahatlou, Programmazione++ 11

Passing Arguments to C++ Applications

 argc is number of command line arguments

 it includes the name of the application as well!

 argv is vector of pointers to characters

 interprets each set of disjoint characters as a token

// app2.cpp

#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

cout << "# of cmd line arguments argc: " << argc << endl;

cout << "argv[0]: " << argv[0] << endl;

cout << "Running " << argv[0] << endl;

return 0;

}

$ g++ -o app2 app2.cpp

$./app2

of cmd line arguments argc: 1

argv[0]: ./app2

Running ./app2

Sh. Rahatlou, Programmazione++ 12

Passing non-string values

// args.cpp

#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

cout << "# of cmd line arguments argc: " << argc << endl;

cout << "argv[0]: " << argv[0] << endl;

if(argc < 4) {

cout << "Error... not enough arguments!" << endl;

cout << "Usage: args <integer> <double> <string>" << endl;

cout << "now exiting..." << endl;

return -1; // can be used by user to determine error condition

}

int index = atoi(argv[1]);

double mean = atof(argv[2]);

std::string name(argv[3]);

cout << "Running " << argv[0]

<< " with "

<< "index: " << index

<< ", mean: " << mean

<< ", name: " << name

<< endl;

return 0;

}

$./args

of cmd line arguments argc: 1

argv[0]: ./args

Error... not enough arguments!

Usage: args <integer> <double> <string>

now exiting...

$./args 34

of cmd line arguments argc: 2

argv[0]: ./args

Error... not enough arguments!

Usage: args <integer> <double> <string>

now exiting...

$./args 34 3

of cmd line arguments argc: 3

argv[0]: ./args

Error... not enough arguments!

Usage: args <integer> <double> <string>

now exiting...

$./args 34 3.1322 sprogrammazione

of cmd line arguments argc: 4

argv[0]: ./args

Running ./args with index: 34, mean: 3.1322, name: sprogrammazione

atoi: converts char to int

atof: converts char to double

User responsibility to check

validity of arguments provided
at runtime

Sh. Rahatlou, Programmazione++

Input from file with ifstream

13

// readfile.cc

#include <iostream>

#include <fstream> // both input and output streams

#include <string>

using namespace std;

int main() {

// file name

const char filename[30] = "input.txt";

// create object for input file

ifstream infile(filename); //input file object

// string to hold each line

string line;

// make sure input file is open otherwise exit

if(!infile.is_open()) {

cerr << "cant open input file" << endl;

return -1;

}

You need to create an output stream

object which communicates with the file

Better than a plain file!

You can ask the object if the file
is actually there

Sh. Rahatlou, Programmazione++

Parsing input lines with sscanf

14

// readfile.cc -- continued

// variables to read in from file at each line

char nome[30];

double val, errpos;

float errneg;

// loop over file until end-of-file

while(! infile.eof()) {

// get current line

getline(infile,line);

if(line == "\n" || line == "") continue;

// parse line with the provided format and put data in variables

// NB: USING POINTERS TO VARIABLES

// format: %s string %f float %lf double

sscanf(line.c_str(),"%s %lf %lf %f",nome,&val,&errpos, &errneg);

// print out for debug purposes

cout << "nome: " << nome

<< "\tvalore: " << val << "\terr pos: " << errpos

<< "\terr neg: " << errneg << endl;

} // !eof

infile.close(); // close input file before exiting

return 0;

}

Boolean method tells you whether

end-of-file has been reached yet

Sh. Rahatlou, Programmazione++

Using external Libraries: ROOT

15

Sh. Rahatlou, Programmazione++5 June 2007 16

How you can use ROOT

 ROOT provides extensive set of tools for data analysis

 Use 1D histograms to plot your data

 Use canvas provided by root to store the histogram as output

in a file (eps or gif)

 Use root functionalities to make your plot nicer

 Change color, labels, names, fonts

 Become familiar with using external libraries without access
to source files

Sh. Rahatlou, Programmazione++5 June 2007 17

root: An object oriented data analysis framework

Reference guide is all you need!

http://root.cern.ch

http://root.cern.ch/

Sh. Rahatlou, Programmazione++5 June 2007 18

Interface and Libraries are All You Need!

Reference Guide -> Class and Members Reference Guide -> Your Favorite Class

You can also the complete

html reference guide to your machine
for offline access (~300 MB)

Sh. Rahatlou, Programmazione++5 June 2007 19

Documentation During Our Lab Sessions

 From outside use root.cern.ch or
http://labcalc.phys.uniroma1.it/home/rahatlou/root/5.22.00/

htmldoc/ClassIndex.html

 From your working stations:
http://server/home/rahatlou/root/5.22.00/htmldoc/ClassInde

x.html

http://labcalc.phys.uniroma1.it/home/rahatlou/root/doc/5.11.02/htmldoc/ClassIndex.html
http://labcalc.phys.uniroma1.it/home/rahatlou/root/doc/5.11.02/htmldoc/ClassIndex.html
http://labcalc.phys.uniroma1.it/home/rahatlou/root/doc/5.11.02/htmldoc/ClassIndex.html
http://server/home/rahatlou/root/doc/5.11.02/htmldoc/ClassIndex.html
http://server/home/rahatlou/root/doc/5.11.02/htmldoc/ClassIndex.html
http://server/home/rahatlou/root/doc/5.11.02/htmldoc/ClassIndex.html

Sh. Rahatlou, Programmazione++5 June 2007 20

Using root libraries and header files

$ setenv ROOTSYS /home/rahatlou/root/5.22.00

$ setenv LD_LIBRARY_PATH $ROOTSYS/lib on tcsh

$ export LD_LIBRARY_PATH=$ROOTSYS/lib on bash

$ g++ -o app1 app1.cpp `$ROOTSYS/bin/root-config --cflags --libs`

$./app1

TH1.Print Name = , Entries= 0, Total sum= 0

// app1.cpp

#include "TH1F.h"

int main() {

TH1F h1;

h1.Print();

return 0;

}

Needed at runtime to find libraries

Provide path to header files and libraries

Sh. Rahatlou, Programmazione++5 June 2007 21

root-config

 provides you with all options needed to compile and/or link
your application

 Use at on command line with `` quotes instead of writing

manually

 We will soon use makefiles to make such settings easier for
users

$ $ROOTSYS/bin/root-config --cflags --libs

-pthread -I/pool/home/rahatlou/root/5.11.02/include

-L/pool/home/rahatlou/root/5.11.02/lib

-lCore -lCint -lHist -lGraf -lGraf3d -lGpad -lTree -lRint

-lPostscript -lMatrix -lPhysics -pthread -lm -ldl -rdynamic

Sh. Rahatlou, Programmazione++5 June 2007 22

Classes To Use in Your Application

 TH1F: 1D histogram

 look at constructors

 public methods to add data to histogram

 public methods to add comments or change labels of axes

 TCavnvas: canvas to draw your histogram

 how to make one

 changing properties such as color

 drawing 1D histogram on a canvas

 storing the canvas as a graphic file, e.g. eps or gif

 TGraph: dealing with asymmetric errors

 more general than Histogram

 Allows asymmetric errors but similar graphic functionalities as 1D
histo

Sh. Rahatlou, Programmazione++5 June 2007 23

Simple Example with TH1

// app2.cpp

#include "TH1F.h"

#include "TCanvas.h"

int main() {

// create histogram

TH1F h1("h1","my first historgram",100,-6.0,6.0);

// fill histogram with 10000 random gaussian numbers

h1.FillRandom("gaus",10000);

// add labels to axis

h1.GetXaxis()->SetTitle("Gaussian variable");

h1.GetYaxis()->SetTitle("arbitrary Units");

// create a canvas to draw tour histogram

TCanvas c1("c1","my canvas",800,600);

// draw the histogram

h1.Draw();

// save canvas a JPG file

c1.SaveAs("canvas.jpg");

return 0;

}

$ g++ -Wall -o app2 app2.cpp ̀ root-config --libs --cflags`

$./app2

Sh. Rahatlou, Programmazione++5 June 2007 24

A Few Tips about Using ROOT

 Look at the reference guide to find out what is provided by
the interface

 Look at examples in

http://labcalc.phys.uniroma1.it/home/rahatlou/root/5.22.00/t
utorials/

 Start by simply creating new objects and testing them before
making fancy use of many different classes

http://labcalc.phys.uniroma1.it/home/rahatlou/root/5.11.02/tutorials/
http://labcalc.phys.uniroma1.it/home/rahatlou/root/5.11.02/tutorials/
http://labcalc.phys.uniroma1.it/home/rahatlou/root/5.11.02/tutorials/
http://labcalc.phys.uniroma1.it/home/rahatlou/root/5.11.02/tutorials/

Sh. Rahatlou, Programmazione++ 25

Common Mistakes in your Code

Sh. Rahatlou, Programmazione++

Where is the Mistake?

26

Never put using statements

in header files!

Sh. Rahatlou, Programmazione++

Find the Mistake

27

Never put using statements

in header files!

Sh. Rahatlou, Programmazione++ 28

Never put using statements

in header files!

Two methods with almost
exactly the same name

How can I understand what they do??

