
Corso di Programmazione++

Shahram Rahatlou

http://www.roma1.infn.it/people/rahatlou/programmazione++/

Object Oriented Programming:
Inheritance

Roma, 18 May 2009

Sh. Rahatlou, Programmazione++

Today’s Lecture

 Introduction to elements of object oriented programming
(OOP)

 Inheritance

 Polymorphism

 Base and Derived Classes

 Inheritance as a mean to provide common interface

2

Sh. Rahatlou, Programmazione++

What is Inheritance?

 Powerful approach to reuse software without too much re-
writing

 Often several types of object are in fact special cases of a

basic type

 keyboard and files are different types of an input stream

 screen and file are different types of output stream

 Resistors and capacitors are different types of circuit elements

 Circle, square, ellipse are different types of shapes

 In StarCraft, engineers, builders, soldiers are different types of units

 Inheritance allows to define a “base” class that provides

basic functionalities to “derived” classes

 Derived classes can extend the base class by adding new data
members and functions

3

Sh. Rahatlou, Programmazione++

Inheritance: Student “is a” Person

4

// example1.cpp

#include <string>

#include <iostream>

using namespace std;

class Person {

public:

Person(const string& name) {

name_ = name;

cout << "Person(" << name

<< ") called" << endl;

}

~Person() {

cout << "~Person() called for "

<< name_ << endl;

}

string name() const { return name_; }

void print() {

cout << "I am a Person. My name is “

<< name_ << endl;

}

private:

string name_;

};

class Student : public Person {

public:

Student(const string& name, int id) :

Person(name) {

id_ = id;

cout << "Student(" << name

<< ", " << id << ") called"

<< endl;

}

~Student() {

cout << "~Student() called for name:"

<< name() << " and id: " << id_

<< endl;

}

int id() const { return id_; }

private:

int id_;

};

A more compact mode equivalent to

Student(const string& name, int id) {

Person(name);

id_ = id;

}

Sh. Rahatlou, Programmazione++

Example of Inheritance in Use

5

// example1.cpp

int main() {

Person* john = new Person("John");

john->print();

Student* susan = new Student("Susan", 123456);

susan->print();

cout << "name: " << susan->name() << " id: " << susan->id() << endl;

delete john;

delete susan;

return 0;

}

$./example1

Person(John) called

I am a Person. My name is John

Person(Susan) called

Student(Susan, 123456) called

I am a Person. My name is Susan

name: Susan id: 123456

~Person() called for John

~Student() called for name:Susan and id: 123456

~Person() called for Susan

Sh. Rahatlou, Programmazione++

Student “behaves as” Person

 Methods of Person can be called with an object of type
Student

 Functionalities implemented for Person available for free

 No need to re-implement the same code over and over again

 If a functionality changes, we need to fix it just once!

6

Person* john = new Person("John");

john->print();

Student* susan = new Student("Susan", 123456);

susan->print();

cout << "name: " << susan->name()

<< " id: " << susan->id()

<< endl;

delete john;

delete susan;

return 0;

}

print() and name()

are methods of Person

id() is a method of Student

Sh. Rahatlou, Programmazione++

Student is an “extension” of Person

 Student provides all functionalities of Person and more

 Student has additional data members and member

functions

 Student is an extension of Person but not limited to be

the same
7

id() is a method of Student

Person* john = new Person("John");

john->print();

Student* susan = new Student("Susan", 123456);

susan->print();

cout << "name: " << susan->name()

<< " id: " << susan->id()

<< endl;

delete john;

delete susan;

return 0;

}

class Student : public Person {

public:

int id() const { return id_; }

private:

int id_;

};

Sh. Rahatlou, Programmazione++

Typical Error: Person is not Student!

 You can not use methods of Student on a Person object

 Inheritance is a one-way relation

 Student knows to be derived from Person

 Person does not know who could be derived from it

 You can treat a Student object (*susan) as a Person

object
8

// bad1.cpp

int main() {

Person* susan = new Student("Susan", 123456);

cout << "name: " << susan->name() << endl;

cout << "id: " << susan->id() << endl;

delete susan;

return 0;

}

$ g++ -o bad1 bad1.cpp

bad1.cpp: In function ̀ int main()':

bad1.cpp:53: error: 'class Person' has no member named 'id'

susan is a pointer to Person

but initialized by a Student!

OK… because a Student is also a Person!

elements of polymorphism

Sh. Rahatlou, Programmazione++

Student cannot Access Everything in Person

9

class Person {

public:

Person(const string& name) {

name_ = name;

cout << "Person(" << name

<< ") called" << endl;

}

~Person() {

cout << "~Person() called for "

<< name_ << endl;

}

string name() const { return name_; }

void print() {

cout << "I am a Person. My name is “

<< name_ << endl;

}

private:

string name_;

};

class Student : public Person {

public:

Student(const string& name, int id) :

Person(name) {

id_ = id;

cout << "Student(" << name

<< ", " << id << ") called"

<< endl;

}

~Student() {

cout << "~Student() called for name:"

<< name() << " and id: " << id_

<< endl;

}

int id() const { return id_; }

private:

int id_;

};

Student can use only public methods and data of Person

like anyone else

No special access privilege… as usual access can be granted not taken

Sh. Rahatlou, Programmazione++

public and private in public inheritance

 Student is derived from Person through public inheritance

 All public members of Person become public members

of Student as well

 Both data and functions

 Private members of Person REMAIN private and not
accessible directly by Student

 Access provided only through public methods (getters)

 You don’t need to access source code of a class to inherit

from it!

 Use public inheritance and add new data members and functions

10

class Student : public Person {

public:

private:

};

private and protected inheritance

are possible but rare and will not
be discussed here

Sh. Rahatlou, Programmazione++

protected members

 protected members become protected members of derived classes

 Protected is somehow between public and private

11

class Person {

public:

Person(const string& name, int age) {

name_ = name;

age_ = age;

cout << "Person(" << name << ", "

<< age << ") called" << endl;

}

~Person() {

cout << "~Person() called for “

<< name_ << endl;

}

string name() const { return name_; }

int age() const { return age_; }

void print() {

cout << "I am a Person. name: " << name_

<< " age: " << age_ << endl;

}

private:

string name_;

protected:

int age_;

};

class Student : public Person {

public:

Student(const string& name, int age,

int id) :

Person(name,age) {

id_ = id;

cout << "Student(" << name << ", "

<< age << ", " << id

<< ") called"

<< endl;

}

~Student() {

cout << "~Student() called for name:"

<< name()

<< " age: " << age_ << " and id: “

<< id_ << endl;

}

int id() const { return id_; }

private:

int id_;

};

protected members can be used by derived classes

Sh. Rahatlou, Programmazione++

Don’t Abuse protected!

 Bad habit to make everything protected

 Transfers responsibility for proper initialization and data handling to
derived classes

 Base class should be complete and self-sufficient

 If something must be protected in base class for your
derived class to work then almost always there is a mistake

or bad design

 Person::name_ has no reason to be protected!

 Proper implementation of derived class must correctly use base class
constructors

12

Sh. Rahatlou, Programmazione++

Constructors of Derived Classes

 Compiler calls default constructor of base class in
constructors of derived class UNLESS you call explicitly a

specific constructor

 Necessary to insure data members of the base class
ALWAYS initialized when creating instance of derived class

13

class Student : public Person {

public:

Student(const string& name, int id) {

id_ = id;

cout << "Student(" << name << ", "

<< id << ") called" << endl;

}

private:

int id_;

};

Bad Programming!

Constructor of Student does not call
constructor of Person

Compiler is forced to call Person() to
make sure name_ is intialized correctly

Bad: we rely on default constructor to do
the right thing

Sh. Rahatlou, Programmazione++

Common Error with Missing Constructors

14

class Person {

public:

Person(const string& name) {

name_ = name;

cout << "Person(" << name

<< ") called" << endl;

}

~Person() {

cout << "~Person() called for "

<< name_ << endl;

}

private:

string name_;

};

class Student : public Person {

public:

Student(const string& name, int id) {

id_ = id;

cout << "Student(" << name << ", "

<< id << ") called" << endl;

}

private:

int id_;

};

// bad2.cpp

int main() {

Person anna("Anna");

Student* susan =

new Student("Susan", 123456);

susan->print();

delete susan;

return 0;

}

$ g++ -o bad2 bad2.cpp

bad2.cpp: In constructor

`Student::Student(const std::string&, int)':

bad2.cpp:32: error: no matching function for call to

`Person::Person()'

bad2.cpp:7: note: candidates are:

Person::Person(const Person&)

bad2.cpp:9: note: Person::Person(const std::string&)

No default constructor implemented for Person

Compiler can use a default one to make anna

But gives error dealing with derived classes.
You need to provide a default constructor or call

one of the implemented constructors

Sh. Rahatlou, Programmazione++

Default Constructors are Crucial

 Very often you wondered why bother implementing the
default constructors

 They play a crucial role for polymorphic objects

 Derived classes rely heavily on base-class constructors to
initialize objects

 Empty default constructors are a bad habit. Use constructors

for what they are meant: initialize properly all data members

15

Sh. Rahatlou, Programmazione++

Bad Working Example

 Default constructor is called by compiler

 No name assigned to student by default

 Code compiles and runs but bad behavior

16

class Person {

public:

Person() { } // default constructor

Person(const string& name) {

name_ = name;

cout << "Person(" << name << ") called“

<< endl;

}

};

class Student : public Person {

public:

Student(const string& name, int id) {

id_ = id;

cout << "Student(" << name << ", “

<< id << ") called" << endl;

}

};

// bad3.cpp

int main() {

Student* susan =

new Student("Susan", 123456);

susan->print();

delete susan;

return 0;

}

$ g++ -o bad3 bad3.cpp

$./bad3

Student(Susan, 123456) called

I am a Person. My name is

~Student() called for name: and id: 123456

~Person() called for

Sh. Rahatlou, Programmazione++

Destructors

 Similar to constructors

 Compiler calls the default destructor of base class in
destructor of derived class

 No compilation error if destructor of base class not
implemented

 Default will be used but…

 Extremely important to implement correctly the destructors
to avoid memory leaks!

17

Sh. Rahatlou, Programmazione++

Member Functions of Derived Classes

 Derived classes can also overload functions provided by the
base class

 Same signature but different implementation

18

class Person {

public:

void print() {

cout << "I am a Person. My name is "

<< name_ << endl;

}

private:

string name_;

};
class Student : public Person {

public:

void print() {

cout << "I am Student "

<< name()

<< " with id " << id_

<< endl;

}

private:

int id_;

};

Sh. Rahatlou, Programmazione++

Overloading Methods from Base Class

19

// example3.cpp

#include <string>

#include <iostream>

using namespace std;

int main() {

Person* john = new Person("John");

john->print(); // Person::print()

Student* susan = new Student("Susan", 123456);

susan->print(); // Student::print()

susan->Person::print(); // Person::print()

Person* p2 = susan;

p2->print(); // Person::print()

delete john;

delete susan;

return 0;

}

$ g++ -o example3 example3.cpp

$./example3

Person(John) called

I am a Person. My name is John

Person(Susan) called

Student(Susan, 123456) called

I am Student Susan with id 123456

I am a Person. My name is Susan

I am a Person. My name is Susan

~Person() called for John

~Student() called for name:Susan and id: 123456

~Person() called for Susan

Compiler calls the correct version
of print() for Person and Student

We can use Person::print()

implementation for a Student object by

specifying its scope

Remember: a function is uniquely identified

by its namespace and class scope

