
Corso di Programmazione++

Shahram Rahatlou

http://www.roma1.infn.it/people/rahatlou/programmazione++/

Object Oriented Programming:
Inheritance

Roma, 18 May 2009

Sh. Rahatlou, Programmazione++

Today’s Lecture

 Introduction to elements of object oriented programming
(OOP)

 Inheritance

 Polymorphism

 Base and Derived Classes

 Inheritance as a mean to provide common interface

2

Sh. Rahatlou, Programmazione++

What is Inheritance?

 Powerful approach to reuse software without too much re-
writing

 Often several types of object are in fact special cases of a

basic type

 keyboard and files are different types of an input stream

 screen and file are different types of output stream

 Resistors and capacitors are different types of circuit elements

 Circle, square, ellipse are different types of shapes

 In StarCraft, engineers, builders, soldiers are different types of units

 Inheritance allows to define a “base” class that provides

basic functionalities to “derived” classes

 Derived classes can extend the base class by adding new data
members and functions

3

Sh. Rahatlou, Programmazione++

Inheritance: Student “is a” Person

4

// example1.cpp

#include <string>

#include <iostream>

using namespace std;

class Person {

public:

Person(const string& name) {

name_ = name;

cout << "Person(" << name

<< ") called" << endl;

}

~Person() {

cout << "~Person() called for "

<< name_ << endl;

}

string name() const { return name_; }

void print() {

cout << "I am a Person. My name is “

<< name_ << endl;

}

private:

string name_;

};

class Student : public Person {

public:

Student(const string& name, int id) :

Person(name) {

id_ = id;

cout << "Student(" << name

<< ", " << id << ") called"

<< endl;

}

~Student() {

cout << "~Student() called for name:"

<< name() << " and id: " << id_

<< endl;

}

int id() const { return id_; }

private:

int id_;

};

A more compact mode equivalent to

Student(const string& name, int id) {

Person(name);

id_ = id;

}

Sh. Rahatlou, Programmazione++

Example of Inheritance in Use

5

// example1.cpp

int main() {

Person* john = new Person("John");

john->print();

Student* susan = new Student("Susan", 123456);

susan->print();

cout << "name: " << susan->name() << " id: " << susan->id() << endl;

delete john;

delete susan;

return 0;

}

$./example1

Person(John) called

I am a Person. My name is John

Person(Susan) called

Student(Susan, 123456) called

I am a Person. My name is Susan

name: Susan id: 123456

~Person() called for John

~Student() called for name:Susan and id: 123456

~Person() called for Susan

Sh. Rahatlou, Programmazione++

Student “behaves as” Person

 Methods of Person can be called with an object of type
Student

 Functionalities implemented for Person available for free

 No need to re-implement the same code over and over again

 If a functionality changes, we need to fix it just once!

6

Person* john = new Person("John");

john->print();

Student* susan = new Student("Susan", 123456);

susan->print();

cout << "name: " << susan->name()

<< " id: " << susan->id()

<< endl;

delete john;

delete susan;

return 0;

}

print() and name()

are methods of Person

id() is a method of Student

Sh. Rahatlou, Programmazione++

Student is an “extension” of Person

 Student provides all functionalities of Person and more

 Student has additional data members and member

functions

 Student is an extension of Person but not limited to be

the same
7

id() is a method of Student

Person* john = new Person("John");

john->print();

Student* susan = new Student("Susan", 123456);

susan->print();

cout << "name: " << susan->name()

<< " id: " << susan->id()

<< endl;

delete john;

delete susan;

return 0;

}

class Student : public Person {

public:

int id() const { return id_; }

private:

int id_;

};

Sh. Rahatlou, Programmazione++

Typical Error: Person is not Student!

 You can not use methods of Student on a Person object

 Inheritance is a one-way relation

 Student knows to be derived from Person

 Person does not know who could be derived from it

 You can treat a Student object (*susan) as a Person

object
8

// bad1.cpp

int main() {

Person* susan = new Student("Susan", 123456);

cout << "name: " << susan->name() << endl;

cout << "id: " << susan->id() << endl;

delete susan;

return 0;

}

$ g++ -o bad1 bad1.cpp

bad1.cpp: In function ̀ int main()':

bad1.cpp:53: error: 'class Person' has no member named 'id'

susan is a pointer to Person

but initialized by a Student!

OK… because a Student is also a Person!

elements of polymorphism

Sh. Rahatlou, Programmazione++

Student cannot Access Everything in Person

9

class Person {

public:

Person(const string& name) {

name_ = name;

cout << "Person(" << name

<< ") called" << endl;

}

~Person() {

cout << "~Person() called for "

<< name_ << endl;

}

string name() const { return name_; }

void print() {

cout << "I am a Person. My name is “

<< name_ << endl;

}

private:

string name_;

};

class Student : public Person {

public:

Student(const string& name, int id) :

Person(name) {

id_ = id;

cout << "Student(" << name

<< ", " << id << ") called"

<< endl;

}

~Student() {

cout << "~Student() called for name:"

<< name() << " and id: " << id_

<< endl;

}

int id() const { return id_; }

private:

int id_;

};

Student can use only public methods and data of Person

like anyone else

No special access privilege… as usual access can be granted not taken

Sh. Rahatlou, Programmazione++

public and private in public inheritance

 Student is derived from Person through public inheritance

 All public members of Person become public members

of Student as well

 Both data and functions

 Private members of Person REMAIN private and not
accessible directly by Student

 Access provided only through public methods (getters)

 You don’t need to access source code of a class to inherit

from it!

 Use public inheritance and add new data members and functions

10

class Student : public Person {

public:

private:

};

private and protected inheritance

are possible but rare and will not
be discussed here

Sh. Rahatlou, Programmazione++

protected members

 protected members become protected members of derived classes

 Protected is somehow between public and private

11

class Person {

public:

Person(const string& name, int age) {

name_ = name;

age_ = age;

cout << "Person(" << name << ", "

<< age << ") called" << endl;

}

~Person() {

cout << "~Person() called for “

<< name_ << endl;

}

string name() const { return name_; }

int age() const { return age_; }

void print() {

cout << "I am a Person. name: " << name_

<< " age: " << age_ << endl;

}

private:

string name_;

protected:

int age_;

};

class Student : public Person {

public:

Student(const string& name, int age,

int id) :

Person(name,age) {

id_ = id;

cout << "Student(" << name << ", "

<< age << ", " << id

<< ") called"

<< endl;

}

~Student() {

cout << "~Student() called for name:"

<< name()

<< " age: " << age_ << " and id: “

<< id_ << endl;

}

int id() const { return id_; }

private:

int id_;

};

protected members can be used by derived classes

Sh. Rahatlou, Programmazione++

Don’t Abuse protected!

 Bad habit to make everything protected

 Transfers responsibility for proper initialization and data handling to
derived classes

 Base class should be complete and self-sufficient

 If something must be protected in base class for your
derived class to work then almost always there is a mistake

or bad design

 Person::name_ has no reason to be protected!

 Proper implementation of derived class must correctly use base class
constructors

12

Sh. Rahatlou, Programmazione++

Constructors of Derived Classes

 Compiler calls default constructor of base class in
constructors of derived class UNLESS you call explicitly a

specific constructor

 Necessary to insure data members of the base class
ALWAYS initialized when creating instance of derived class

13

class Student : public Person {

public:

Student(const string& name, int id) {

id_ = id;

cout << "Student(" << name << ", "

<< id << ") called" << endl;

}

private:

int id_;

};

Bad Programming!

Constructor of Student does not call
constructor of Person

Compiler is forced to call Person() to
make sure name_ is intialized correctly

Bad: we rely on default constructor to do
the right thing

Sh. Rahatlou, Programmazione++

Common Error with Missing Constructors

14

class Person {

public:

Person(const string& name) {

name_ = name;

cout << "Person(" << name

<< ") called" << endl;

}

~Person() {

cout << "~Person() called for "

<< name_ << endl;

}

private:

string name_;

};

class Student : public Person {

public:

Student(const string& name, int id) {

id_ = id;

cout << "Student(" << name << ", "

<< id << ") called" << endl;

}

private:

int id_;

};

// bad2.cpp

int main() {

Person anna("Anna");

Student* susan =

new Student("Susan", 123456);

susan->print();

delete susan;

return 0;

}

$ g++ -o bad2 bad2.cpp

bad2.cpp: In constructor

`Student::Student(const std::string&, int)':

bad2.cpp:32: error: no matching function for call to

`Person::Person()'

bad2.cpp:7: note: candidates are:

Person::Person(const Person&)

bad2.cpp:9: note: Person::Person(const std::string&)

No default constructor implemented for Person

Compiler can use a default one to make anna

But gives error dealing with derived classes.
You need to provide a default constructor or call

one of the implemented constructors

Sh. Rahatlou, Programmazione++

Default Constructors are Crucial

 Very often you wondered why bother implementing the
default constructors

 They play a crucial role for polymorphic objects

 Derived classes rely heavily on base-class constructors to
initialize objects

 Empty default constructors are a bad habit. Use constructors

for what they are meant: initialize properly all data members

15

Sh. Rahatlou, Programmazione++

Bad Working Example

 Default constructor is called by compiler

 No name assigned to student by default

 Code compiles and runs but bad behavior

16

class Person {

public:

Person() { } // default constructor

Person(const string& name) {

name_ = name;

cout << "Person(" << name << ") called“

<< endl;

}

};

class Student : public Person {

public:

Student(const string& name, int id) {

id_ = id;

cout << "Student(" << name << ", “

<< id << ") called" << endl;

}

};

// bad3.cpp

int main() {

Student* susan =

new Student("Susan", 123456);

susan->print();

delete susan;

return 0;

}

$ g++ -o bad3 bad3.cpp

$./bad3

Student(Susan, 123456) called

I am a Person. My name is

~Student() called for name: and id: 123456

~Person() called for

Sh. Rahatlou, Programmazione++

Destructors

 Similar to constructors

 Compiler calls the default destructor of base class in
destructor of derived class

 No compilation error if destructor of base class not
implemented

 Default will be used but…

 Extremely important to implement correctly the destructors
to avoid memory leaks!

17

Sh. Rahatlou, Programmazione++

Member Functions of Derived Classes

 Derived classes can also overload functions provided by the
base class

 Same signature but different implementation

18

class Person {

public:

void print() {

cout << "I am a Person. My name is "

<< name_ << endl;

}

private:

string name_;

};
class Student : public Person {

public:

void print() {

cout << "I am Student "

<< name()

<< " with id " << id_

<< endl;

}

private:

int id_;

};

Sh. Rahatlou, Programmazione++

Overloading Methods from Base Class

19

// example3.cpp

#include <string>

#include <iostream>

using namespace std;

int main() {

Person* john = new Person("John");

john->print(); // Person::print()

Student* susan = new Student("Susan", 123456);

susan->print(); // Student::print()

susan->Person::print(); // Person::print()

Person* p2 = susan;

p2->print(); // Person::print()

delete john;

delete susan;

return 0;

}

$ g++ -o example3 example3.cpp

$./example3

Person(John) called

I am a Person. My name is John

Person(Susan) called

Student(Susan, 123456) called

I am Student Susan with id 123456

I am a Person. My name is Susan

I am a Person. My name is Susan

~Person() called for John

~Student() called for name:Susan and id: 123456

~Person() called for Susan

Compiler calls the correct version
of print() for Person and Student

We can use Person::print()

implementation for a Student object by

specifying its scope

Remember: a function is uniquely identified

by its namespace and class scope

