Object Oriented Programming:

!'_ Polymorphism

Shahram Rahatlou
SAPTENZA

UNIVERSITA DI ROMA

http://www.romal.infn.it/people/rahatlou/programmazione++/

Corso di Programmazione++
Roma, 19 May 2009

Today'’s Lecture

Polymorphism with inheritance hierarchy

virtual and pure virtual methods
o When and why use virtual or/and pure virtual functions

virtual destructors

Abstract and Pure Abstract classes
o Providing common interface and behavior

Sh. Rahatlou, Programmazione++

Polymorphism

Ability to treat objects of an inheritance hierarchy as
belonging to the base class
o Focus on common general aspects of objects instead of specifics

Polymorphism allows programs to be general and extensible
with little or no re-writing
o resolve different objects of same inheritance hierarchy at runtime

o Recall videogame with polymorphic objects Soldier, Engineer,
Technician of same base class Unit

o Can add new ‘types’ of Unit without rewriting application

Base class provides interface common to all types in the
hierarchy

Application uses base class and can deal with new types not
yet written when writing your application!

Sh. Rahatlou, Programmazione++

Polymorphism in OOP (from Wikipedia)

-

& Polymorphism in object-oriented programming - Wikipedia. the free encyclopedia - Mozilla Firefox

M=%

File Edit ‘Wiew Go

e - - i

A

ic vl ot
AT

e Y= [:'s c
o 5 A

,‘:_‘_.;.L JE'_IL
WIKIPEDIA
The Free Encyclopedia

navigatian

u fain Page

= Community Portal

= Featured aricles

u Current events

m Recent changes

= Random article

= Help

[|

[|

Cortact Wikipedia
Donations

search

toolboe:

Whiat links here
Related changes

Upload file
Special pages

= PFrintable version

= Permanert link
m_("ite this_article

B e S | httpfen.wikipedia, orgwikifPalymorphism_in_object-oriented_programmming
L aF

|y Headiines |y Mews | Sport [CMS EShahram *.::*_. CERM W7 TuttoCitta® W/ wikipedia | Corso Particelle @Calendar 57 Yahoo! Cal Gungle

Bookmarks Tools Help

1 &
M & (Gl
Mow: Sunny, 63° F
2 Sign in / create account A

article dizcussian edit this page histary

rour corfirued dorafions keep Wikipediz wrming!

Polymorphism in object-oriented programming

From Wikipedia, the free encyclopedia

In abject-oriented programming theory, polymorphism is the ability of objects belonging to different types to respond to method calls of methods
of the same name, each one according to an appropriate type-specific behaviour. The programmer {and the program) does not have to know the
exact type of the object in advance, so this behavior can be implemented at run time (this is called late binding or disnarmic binding).

The different objects involved only need to present a compatible interface to the clients (the calling routines). That is, there must be public
methods with the same name and the same parameter sets in all the objects. In principle, the object types may be unrelated, but since they
share a common interface, they are often implemented as subclasses of the same parent class. Though it is not required, it is understood that the
different methods will also produce similar results (for example, returning values of the same type).
. [edit]
Advantages of polymorphism
Folymarphism allows client programs to be written based anly on the abstract interfaces of the objects which will be manipulated (interface
inheritance). This means that future extension in the form of new types of objects is easy, if the new objects confarm to the ariginal interface. In
particular, with object-oriented polymorphizm, the original client program does not even need to be recampiled {only relinked) in order to make use
of new types exhibiting new (but interface-conformant) behaviour. {In C++, for instance, this is possible because the interface definition for a class
defines a memory layout, the virtual function table describing where pointers to functions can be found. Future, new classes can wark with old,
precompiled code because the new classes must conform to the abstract class interface, meaning that the layout of the new class's virtual
function table is the same as before; the old, precompiled code can still look at the same memary offsets relative to the start of the object's
memary in arder to find a pointer to the new function. It is only that the new vittual function table points to a new implementation of the functions in
the table, thus allowing new, interface-compliant behavior with old, precompiled code.)

Since program evalution very often appears in the form of adding new types of objects (i.e. classes), this ability to cope with and localize change
that polymorphism allows is the key new contribution of object technalogy to software design.

Dane

o

Sh. Rahatlou, Programmazione++ 4

http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming

Examples of Polymorphism

= Application for graphic rendering
o Base class shape with draw () and move () methods

a Application expects all shapes to have such functionality

= Function in Physics

o We'll study this example in detail
o Guassian, Breit-Wigner, polynomials, exponential are all
functions
o A Function must have
» value (x)
» integral (x1,x2)
» primitive ()
» derivative ()

o Can write a fit application that can handle existing or not-yet
implemented functions using a base class Function

Sh. Rahatlou, Programmazione++

Reminders about Inheritance

Inheritance is a is-a relationship
o Object of derived class ‘is a’ base class object as well

Can treat a derived class object as a base class object
o call methods of base class on derived class
o can point to derived class object with pointer of type base class

Base class does not know about its derived classes
a Can not trat a base class object as a derived object

Methods of base class can be redefined in derived classes

o Same interface but different implementation for different types of
object in the same hierarchy

Sh. Rahatlou, Programmazione++

Person Inheritance Hierarchy

Person

AN

Student.
/ N\

Graduate Student

Sh. Rahatlou, Programmazione++

Student and GraduateStudent

class Person {
public:
Person (const std: :stringé& name) ;
~Person () ;

std::string name () const { return name_ ; }

void print () const;

private:
std: :string name_;

};

class Student :
public:
Student (const std: :stringé& name, int id);
~Student () ;
int id() const { return id_; }
void print () const;

public Person {

private:
int id_;

};

class GraduateStudent : public Student {
public:

GraduateStudent (const std: :string& name, int id,
const std::string& major) ;

~GraduateStudent() ;

std::string getMajor () const { return major_ ; }

void print () const;

private:
std::string major_;

};

Sh. Rahatlou, Programmazione++

Example

// examplel.cpp

int main() { Can point to Student or GraduateStudent
Person* john = new Person("John"); object with a pointer of type Person

john->print(); // Person::print()

Student* susan = new Student("Susan", 123456) ;

Can treat paolo and susan as Person

susan->print(); // Student: :print()

susan->Person: :print(); // Person::print()

Person* p2 = susan; _ Depending on the pointer different print ()
p2->print(); // Person: :print()

methods are called

GraduateStudent* paolo =
new GraduateStudent ("Paolo", 9856, "Physics");
paoclo->print() ;

Person* p3 = paolo; $ g++ -Wall -o examplel examplel.cpp *.cc
p3->print(); $./examplel
Person (John) called
I am a Person. My name is John
Person (Susan) called
Student (Susan, 123456) called
return 0; I am Student Susan with id 123456
} I am a Person. My name is Susan

delete john;
delete susan;

I am a Person. My name is Susan

. Person (Paolo) called

Bad MlStake! Student (Paolo, 9856) called

No delete for paolo!! GraduateStudent (Paolo, 9856,Physics) called

I am GraduateStudent Paolo with id 9856 major in Physics
I am a Person. My name is Paolo

Memory Leak! ~Person() called for John

~Student () called for name:Susan and id: 123456

~Person() called for Susan
Ol Rdlalou, FrogrartmaZiorics++

Problem with Previous Example

// examplel.cpp
$ g++ -Wall -o examplel examplel.cpp *.cc

$./examplel

Person (John) called

I am a Person. My name is John
Person (Susan) called

Student (Susan, 123456) called

Student* susan = new Student("Susan", 123456); 6 Ch} BIGTELIND BRCER TRt tHel Ak
susan->print(); // Student::print() 1 am a Person. My name is Susan

susan->Person: :print(); // Person: :print() I am a Person. My name is Susan
Person (Paolo) called

Student (Paolo, 9856) called

GraduateStudent (Paolo, 9856,Physics) called

I am GraduateStudent Paolo with id 9856 major in Physics
I am a Person. My name is Paolo

int main() {

Person* john = new Person("John") ;
john->print(); // Person::print()

Person* p2 = susan;
p2->print(); // Person: :print()

GraduateStudent* paolo =

new GraduateStudent ("Paolo", 9856, "Physics"); ~Person() called for John
paolo->print () ; ~Student () called for name:Susan and id: 123456

~Person() called for Susan
Person* p3 = paolo;
p3->print() ;

delete john;
delete susan;

return O;

}

= Call to method print () is resolved base on the type of the pointer
o print () methods is determined by pointer not the actual type of object

= Desired feature: use generic Person* pointer but call appropriate
print () method for paolo and susan based on ACTUAL TYPE of
these objects

Sh. Rahatlou, Programmazione++

Desired Feature: Resolve Different Objects at Runtime

= We would like to use the same Person* pointer but call
different methods based on the type of the object being

pointed to

= We DO NOT want to use the scope operator to specify the
function to call

Person* john = new Person ("John");

john->print(); // Person::print() Same Person* pointer used
Student* susan = new Student("Susan", 123456) ; fOI‘ three different Wpes Of ObjeCt
Person* p2 = susan; in the same hierarchy

p2->print(); // Person: :print()

GraduateStudent* paolo =
new GraduateStudent("Paolo", 9856, "Physics");

Person* p3 = paolo; Person (John) called
p3->print () ; I am a Person. My name is John

Person (Susan) called
Student (Susan, 123456) called
Same COde used by types I am Student Susan with id 123456

solved at runtime

Person (Paolo) called

Student (Paolo, 9856) called

GraduateStudent (Paolo, 9856, Physics) called

I am GraduateStudent Paolo with id 9856 major in Physics

Sh. Rahatlou, Programmazione++ 11

Polymorphic Behavior

int main() {

vector<Person*> people;

Person* john new Person ("
people.push back (john) ;

Student* susan
people.push back (susan) ;

GraduateStudent* paolo ne

people.push back (paolo) ;

for(int i=0;
i< people.size(); ++i) {
people[i] ->print() ;

Generic call
to print()

}
delete john;
delete susan;

delete paolo;

return O;

new Student ("Susan", 123456) ;

vector of generic type Person
No knowledge about specific types

John") ;

Different derived objects stored in the
vector of Person

w GraduateStudent ("Paolo", 9856, "Physics") ;

$ g++ -0 example2 example2.cpp *.cc

$./example2

Person (John) called

Person (Susan) called

Student (Susan, 123456) called

Person (Paolo) called

Student (Paolo, 9856) called
GraduateStudent (Paolo, 9856 ,Physics) called
I am a Person. My name is John

I am Student Susan with id 123456

Different functions called
based on the real type of

objects pointed to!!

How? virtual functions!

I am GraduateStudent Paoclo with id 9856 major in Physics
~Person () called for John

~Student () called for name:Susan and id: 123456

~Person() called for Susan

~GraduateStudent () called for name:Paolo id: 9856 major: Physics
~Student () called for name:Paolo and id: 9856

~Person() called for Paolo

Sh. Rahatlou, Programmazione++ 12

virtual functions

class Person { -

public:
Person (const std: :stringé& name) ;
~Person() ;
std: :string name () const { return name_; }
virtual void print () const;

private:

std: :string name_; [|

};

class Student : public Person {

public:
Student (const std: :string& name, int id) ; u
~Student () ;
int id() const { return id_; }
virtual void print() const;
private:
int id_; -

};

class GraduateStudent : public Student {
public:

GraduateStudent (const std: :string& name, int id, const std::stringé& major) ;

~GraduateStudent() ;
std::string getMajor () const { return major_; }
virtual void print() const;

private:
std::string major_;

};

Virtual methods of base class are
overridden NOT redefined by
derived classes

o if not overriden base class
function called
Type of objects pointed to
determine which function is called

Type of pointer (also called
handle) has no effect on the
method being executed

virtual allows polymorphic
behavior and generic code without
relying on specific objects

QDL INATIAuUud, T1 UBI diTirdZivuricTT

13

Dynamic (or late) binding

= Choosing the correct derived class function at run time based
on then type of the object being pointed to, regardless of the
pointer type, is called dynamic binding or late binding

= Dynamic binding works only with pointers and references not
using dot-member operators

o static binding: function calls resolved at compile time

// example3.cpp $ g++ -o example3 example3.cpp *.cc
$./example3

int . Person (John) called

int main() { Person (Susan) called

Student (Susan, 123456) called

Person john ("John") ; Person (Paolo) called
Student susan("Susan", 123456) ; Student (Paolo, 9856) called
GraduateStudent paolo("Paolo" , GraduateStudent (Paolo, 9856,Physics) called

. I am a Person. My name is John
" n .
9856, "Physics"); I am Student Susan with id 123456

I am GraduateStudent Paolo with id 9856 major in Physics

john.print(); static ~GraduateStudent () called for name:Paolo id: 9856 major: Physics
susan.print() ; bindi ~Student () called for name:Paolo and id: 9856
Inding

paolo.print() ; ~Person() called for Paolo
~Student () called for name:Susan and id: 123456

~Person() called for Susan

return O; ~Person() called for John

Sh. Rahatlou, Programmazione++

Another Example of Dynamic Binding

// exampled.cpp

Person* john = new Person("John") ;
Person* susan = new Student ("Susan", 123456);
Person* paolo = new GraduateStudent("Paolo", 9856, "Physics");

(*john) .print() ;
(*susan) .print () ;
(*paolo) .print() ;

$./example4

john->print() ; Person (John) called
susan->print() ; Person (Susan) called
paolo->print() ; Student (Susan, 123456) called

Person (Paolo) called

Student (Paolo, 9856) called

GraduateStudent (Paolo, 9856, Physics) called

am a Person. My name is John

am Student Susan with id 123456

am GraduateStudent Paolo with id 9856 major in Physics
am a Person. My name is John

am Student Susan with id 123456

am GraduateStudent Paolo with id 9856 major in Physics
~Person () called for John

~Person() called for Susan

~Person() called for Paolo

HHHHHH

Sh. Rahatlou, Programmazione++

15

Example: virtual Function at Runtime

int main() {

Type of object decided at runtime
by user.

Person* p = 0;
int value 0;
while (value<l || wvalue>10) {
cout << "Give me a number [1,10]: ";

cin >> wvalue;

}

cout << flush;

cout << "make
if (value>5) p

Compiler does not know what
object will be used

// write buffer to output
new derived object..." << endl;
new Student ("Susan", 123456) ;

a

else P = new GraduateStudent ("Paolo", 9856, "Physics") ;
cout << "call print() method ..." << endl;
p->print () ; $./exampleéb

Give me a number [1,10]: 3
delete p; make a new derived object...
return O; Person (Paolo) called

Student (Paolo, 9856) called

GraduateStudent (Paolo, 9856, Physics) called

call print () method ...

I am GraduateStudent Paolo with id 9856 major in Physics
~Person() called for Paolo

Virtual methods allow dynamic

binding at runtime

$./example6

Give me a number [1,10]: 9

make a new derived object...
Person (Susan) called

Student (Susan, 123456) called
call print() method ...

I am Student Susan with id 123456
~Person() called for Susan

-

16

Default for Virtual Methods

public:

~Professor () ;

private:
std: :string department_;

};

class Professor : public Person {

Professor (const std: :string& name,
const std::string& department) ;

std: :string department () const { return department ; }
//virtual void print() const;

print () not overriden in
Professor

// example5.cpp
int main() {

Person john ("John") ;
Student susan ("Susan", 123456) ;
GraduateStudent
paolo("Paolo", 9856, "Physics");
Professor

bob ("Robert", "Biology") ;

john.print();
susan.print() ;
paolo.print() ;
bob.print() ;

return O;

Person: :print () used by default

$ g++ -o example5 example5.cpp *.cc

$./example5

Person (John) called

Person (Susan) called

Student (Susan, 123456) called

Person (Paolo) called

Student (Paolo, 9856) called

GraduateStudent (Paolo, 9856, Physics) called
Person (Robert) called

Professor (Robert, Biology) called

I am a Person. My name is John

I am Student Susan with id 123456

I am GraduateStudent Paolo with id 9856 major in Physics
I am a Person. My name is Robert

Sh. Rahatlou, Programmazione++

17

Pure virtual Functions

virtual functions with no implementation
o All derived classes ARE REQUIRED to implement these functions

Typically used for functions that can’t be implemented (or at least in an
unambiguous way) in the base case

Class with at least one pure virtual method is called an “Abstract” class

class Function {
public:
Function (const std: :string& name) ;
virtual double value (double x) const = 0;
virtual double integrate (double x1, double x2) const = 0;

= 0 is called

private:
std: :string name_; pure SpeCifier
}i

#include "Function.h"

Function: :Function (const std: :stringé& name) ({
name = name;

}

Sh. Rahatlou, Programmazione++

18

ConstantFunction

#ifndef ConstantFunction_h
#define ConstantFunction_h

#include <string>
#include "Function.h"

class ConstantFunction : public Function {
public:
ConstantFunction(const std: :string& name, double value) ;
virtual double value (double x) const;
virtual double integrate (double x1, double x2) const;

private:
double value_;

};

#include "ConstantFunction.h"

ConstantFunction::ConstantFunction (const std: :string& name, double value)
Function (name) {
value_ = value;

}

double ConstantFunction: :value (double x) const {
return value_;

}

double ConstantFunction: :integrate (double x1, double x2) const {
return (x2-x1) *value_;

}

Sh. Rahatlou, Programmazione++

19

Typical Error with Abstract Class

// badl.cpp

#include <string>
#include <iostream>
using namespace std;
#include "Function.h"

int main() {

Function* gauss = new Function("Gauss") ;

return O;

} Cannot make an object of an Abstract
class!

Pure virtual methods not implemented and
the class is effectively incomplete

$ g++ -o badl badl.cpp Function.cc

badl.cpp: In function "int main()':

badl.cpp:10: error: cannot allocate an object of type "Function'

badl.cpp:10: error: because the following virtual functions are abstract:
Function.h:10: error: virtual double Function::integrate (double, double) const
Function.h:9: error: wvirtual double Function::value(double) const

Sh. Rahatlou, Programmazione++

Pure virtual Functions

virtual functions with no implementation
o All derived classes ARE REQUIRED to implement these functions

Typically used for functions that can’t be implemented (or at least in an
unambiguous way) in the base class

class Function {
public:
Function (const std: :string& name) ;

virtual double value (double x) const = 0;
virtual double integrate (double x1, double x2) const = 0;

= 0 is called

private:

std: :string name_; pure SpeCifier

};

#include "Function.h"

Function: :Function (const std: :stringé& name) ({

name_ = name,

}

Sh. Rahatlou, Programmazione++ 21

virtual and pure virtual

= No default implementation for pure virtual
o Requires explicit implementation in derived classes

= Use pure virtual when
o Need to enforce policy for derived classes
o Need to guarantee public interface for all derived classes

o You expect to have certain functionalities but too early to provide
default implementation in base class

o Default implementation can lead to error

> User forgets to implement correctly a virtual function
> Default implementation is used in a meaningless way

= Virtual allows polymorphism

= Pure virtual forces derived classes to ensure correct
implementation

Sh. Rahatlou, Programmazione++

Abstract and Concrete Classes

= Any class with at least one pure virtual method is called an
Abstract Class

o Abstract classes are incomplete
> At least one method not implemented
> Compiler has no way to determine the correct size of an incomplete type

o Cannotinstantiate an object of Abstract class

= Usually abstract classes are used in higher levels of hierarchy
a Focus on defining policies and interface
o Leave implementation to lower level of hierarchy

= Abstract classes used typically as pointers or references to
achieve polymorphism
o Point to objects of sub-classes via pointer to abstract class

Sh. Rahatlou, Programmazione++

23

Example of Bad Use of virtual

class BadFunction {
public:
BadFunction (const std: :stringé& name) ;
virtual double value (double x) const { return O0; }

virtual double integrate (double x1, double x2) const { return 0; }

private:
std: :string name_;

};

Default dummy

implementation

class Gauss : public BadFunction {
public:

Gauss (const std: :stringé& name, double mean, double width) ;

virtual double value (double x) const;
//virtual double integrate (double x1, double x2) const;

private:

Implement correctly
value() but use default
integrate()

double mean_; We can use ill-defined BadFunction

double width ;
};

int main() {

and wrongly use Gauss!

BadFunction £f1 = BadFunction ("bad");
Gauss gl ("gl",0.,1.); _ *
cout << "gl.value(2.): " << gl.value(2.) << endl; 3 gus € func2 func2 - CPP - cC
cout << "gl.integrate(0.,1000.): " $./func2
<< gl.integrate(0.,1000.) << endl; gl.value(2.): 0.0540047
} return 0; gl.integrate(0.,1000.): O

Sh. Rahatlou, Programmazione++

24

Function and BadFunction

class BadFunction {
public:
BadFunction (const std: :string& name) ;
virtual double value (double x) const { return 0; }
virtual double integrate (double x1, double x2) const { return 0; }

private:
std::string name_;

};

class Function {
public:
Function (const std: :string& name) ;
virtual double value (double x) const = 0;
virtual double integrate (double x1, double x2) const = 0;

private:
std: :string name_;

};

int main() {

BadFunction £f1 = BadFunction("bad");
Function £2 ("£2") ;

return 0; $ g++ -o func3 func3.cpp

} func3.cpp: In function "int main() ':
func3.cpp:13: error: cannot declare variable "f2' to be of type "Function'
func3.cpp:13: error: because the following virtual functions are abstract:

Function.h:10: error: virtual double Function::integrate (double, double) const
Function.h:9: error: wvirtual double Function: :value (double) const

Sh. Rahatlou, Programmazione++ 25

Use of virtual in Abstract Class Function

class Function {
public:
Function (const std::string& name) ;

virtual void print() const;

private:
std: :string name ;

};

virtual double value(double x) const = 0;
virtual double integrate (double x1, double x2) const =

virtual std::string name() const { return name ; }

0;

#include "Function.h"
#include <iostream>

Function: :Function (const std::string& name) ({
name = name;

}

void
Function: :print() const {
std: :cout << "Function with name "
<< name << std::endl;

Default implementation of name()

Unambiguous functionality: user will
always want the name of the particular
object regardless of its particular
subclass

print() can be overriden in sub-classes
to provide more details about sub-class
but still a function with a name

Sh. Rahatlou, Programmazione++

26

Concrete Class Gauss

#include "Gauss.h"
#include <cmath>
#include <iostream>
using std::cout;
using std::endl;

Gauss: :Gauss (const std::stringé& name,
double mean, double width)
Function (name) ({
mean_ = mean;
width = width;
}

double Gauss: :value (double x) const {
double pull = (x-mean_)/width_;
double y = (1/sqrt(2.*3.14*width_)) * exp (-pull*pull/2.);
return y;

}

double Gauss::integrate (double x1, double x2) const {

#ifndef Gauss_h
#define Gauss_h

#include <string>
#include "Function.h"

class Gauss
public:

Gauss (const std::string& name,
double mean, double width) ;

public Function {

virtual double value (double x) const;
virtual double integrate (double x1,

double x2) const;
virtual void print() const;

private:
double mean_;
double width ;
}i

cout << "Sorry. Gauss::integrate(xl,x2) not implemented yet..." #fendif
<< "returning 0. for now..." << endl;
return O;
' int main() {
void
Gauss: :print() const { Function* gl = new Gauss("gauss",0.,1.);
cout << "Gaussian with name: " << name() g1—>print() ;
<< " mean: " << mean_ double x = gl->integrate(0., 3.);
<< " width: " << width_
<< endl;
} delete gl;
$ g++ -o func5 func5.cpp *.cc return 0;
$./func5s }

Gaussian with name: gauss mean: 0 width: 1

Sorry. Gauss::integrate(x1l,x2) not implemented yet...returning 0. for now...

Sh. Rahatlou, Programmazione++

27

Bad Programming in Previous Example

= When using -wall option of g++ we get following warning

$ g++ -Wall -c Gauss.cc
In file included from Gauss.h:5,
from Gauss.cc:1:
Function.h:6: warning: "class Function' has virtual functions but
non-virtual destructor
In file included from Gauss.cc:1:
Gauss.h:7: warning: "class Gauss' has virtual functions but
non-virtual destructor

= In general with polymorphism and inheritance it is a VERY
GOOD idea to use virtual destructors

= Particularly important when using dynamically allocated
objects in constructors of polymorphic objects

Sh. Rahatlou, Programmazione++

Destructor of Person and Student

// example7.cpp $./example?7

int .
int main() { Person (Susan) called
Person* pl = new Student("Susan", 123456); Student (Susan, 123456) called
Person* p2 = new GraduateStudent ("Paolo", 9856, "Physics"); Person (Paolo) called

Student (Paolo, 9856) called

delete pl;

delete p2; ~Person () called for Susan

~Person() called for Paolo

return O;

; Note that ~Person () is called and not that of the sub class!

We did not declare the destructor to be virtual

destructor called based on the pointer and not the object! Not polymorphic

Person: :~Person () {
cout << "~Person() called for " << name_ << endl;

}

Student: :~Student() {

cout << "~Student() called for name:" <<
name () << " and id: " << id_ << endl;
}

GraduateStudent: :~GraduateStudent () {
cout << "~GraduateStudent () called for name:" << name ()
<< " id: " << id{()
<< " major: " << major_ << endl;

Sh. Rahatlou, Programmazione++

GraduateStudent (Paoclo, 9856 ,Physics) called

29

virtual destructors

Derived classes might allocate dynamically memory

o Derived-class destructor (if correctly written!) will take care of
cleaning up memory upon destruction

Base-class destructor will not do the proper job if called for
a sub-class object

Declaring destructor to be virtual is a simple solution to
prevent memory leak using polymorphism

virtual destructors ensure that memory leaks don't occur
when delete an object via base-class pointer

Sh. Rahatlou, Programmazione++ 30

Simple Example of virtual Destructor

// noVirtualDtor.cc
#include <iostream>

using std: :cout;
using std::endl;

class Base {

public:
Base (double x) {
X = new double (x);

c;ut << "Base(" << x << ") called" << endl;
}

~Base () {
cout << "~Base() called" << endl;
delete x_;
}
private:
double* x_; Destructor
bi Not virtual

class Derived : public Base {
public:
Derived (double x) : Base(x) {
cout << "Derived ("<<x<<") called" << endl;
}
~Derived () {
cout << "~Derived() called" << endl;
}
};

int main() {
Base* a = new Derived(l.2);
delete a;
return 0;

$ g++ -Wall -o noVirtualDtor noVirtualDtor.cc
L $./noVirtualDtor

Base(l1l.2) called

Derived(l1.2) called

~Base () called

‘ogrammazic

// virtualDtor.cc
#include <iostream>

using std::cout;
using std::endl;

class Base {

public:
Base (double x) {
X_ = new double (x);

cout << "Base (" << x << ") called" << endl;
}

virtual ~Base () {
cout << "~Base() called" << endl;

delete x_;
}
private: Virtual
double* x_; Destructor

};

class Derived : public Base {
public:
Derived (double x) : Base(x) {
cout << "Derived ("<<x<<") called" << endl;
}
virtual ~Derived() {
cout << "~Derived() called" << endl;
}
};

int main() {
Base* a = new Derived(1l.2);
delete a;
return O;

$ g++ -Wall -o virtualDtor virtualDtor.cc
$./virtualDtor

Base(l1.2) called

Derived(l1.2) called

~Derived () called

~Base () called

Revised Class Student

class Student : public Person {
public:

~Student() ;

virtual void print() const;
int id() const { return id_; }
void printCourses() const;

private:
int id_;

};

Student (const std::string& name,

void addCourse(const std::stringé& course);

const std::vector<std::string>* getCourses() const;

std: :vector<std::string>* courses_;

int id);

void Student::addCourse(const std::stringé&

course) {
courses_->push_back(course);

}

void
Student: :printCourses () const ({
cout << "student " << name ()

<< " currently enrolled in following

courses:"
<< endl;

for (int i=0; i<courses_->size(); ++i)
cout << (*courses_) [i] << endl;

}

const std::vector<std::string>*
Student: :getCourses () const {
return courses_;

}

{

Sh

Student: :Student (const std::string& name, int
id)
Person (name) {

id_ = id;
courses_ = new std::vector<std::string>();
cout << "Student(" << name << ", " << id <<
") called®
<< endl;

Student: :~Student () {
delete courses_;
courses_ = 0;
cout << "~Student() called for name:" <<
name ()
<< " and id: " << id_ << endl;

void Student::print() const {
cout << "I am Student " << name()
<< " with id " << id_ << endl;
cout << "I am now enrolled in "
<< courses_->size() << " courses." <<
endl;
}

. Rahatlou, Programmazion

el
C T T

32

Example of Memory Leak with Student

// example8.cpp
int main() {

Student* pl = new Student("Susan", 123456) ;
pl->addCourse (string ("algebra")) ;
pl->addCourse (string ("physics")) ;
pl->addCourse (string ("Art")) ;
pPl->printCourses () ;

Student* paolo = new Student ("Paolo", 9856) ;
paolo->addCourse ("Music") ;
paolo->addCourse ("Chemistry") ;

Person* p2 = paolo;
P P $./example8

pl->print();
P2->print() ;

Memory leak when deleting paolo
because nobody deletes courses_

Need to extend polymorphism also

to destructors to ensure that object
type not pointer determine correct

destructor to be called

Person (Susan) called
Student (Susan, 123456) called

student Susan currently enrolled in following courses:

delete pl; a;ge?ra
delete p2; paysics
Art
return 0: Person (Paolo) called

Student (Paolo, 9856) called
I am Student Susan with id 123456

I am now enrolled in 3 courses.

I am Student Paolo with id 9856

I am now enrolled in 2 courses.

~Student () called for name:Susan and id: 123456
~Person () called for Susan

~Person () called for Paolo

Sh. Rahatlou, Programmazione++ 33

virtual Destructor for Person and Student

class Person {
public:
Person(const std::string& name) ;
virtual ~Person();

virtual void print() const;
private:

std::string name_;

};

std: :string name() const { return name ; }

class Student :
public:

public Person {

virtual ~Student() ;
virtual void print() const;
int id() const { return id ; }

void printCourses() const;

Correct destructor is called using

private:
int id_;
std: :vector<std: :string>* courses_;

the base-class pointer to Student RE

Student (const std::string& name, int id);

void addCourse(const std::stringé& course);

const std::vector<std::string>* getCourses() const;

// example9.cpp
int main() {

Student* pl = new Student("Susan", 123456)
pl->addCourse(string("algebra")) ;
pl->addCourse (string("physics")) ;
pl->addCourse (string ("Art")) ;
pl->printCourses () ;

Student* paolo = new Student ("Paolo", 9856) ;
paolo->addCourse ("Music") ;

paolo->addCourse ("Chemistry") ;

Person* p2 = paolo;

delete pl;
delete p2;

return O;

$./example9
Person (Susan) called
Student (Susan, 123456) called

student Susan currently enrolled in following courses:

algebra

physics

Art

Person (Paolo) called
Student (Paolo, 9856) called

~Student () called for name:Susan and id:

~Person() called for Susan

~Student () called for name:Paolo and id:

~Person () called for Paolo

Sh. Rahatlou, Programmazione++

123456

9856

34

