
Corso di Programmazione++

Shahram Rahatlou

http://www.roma1.infn.it/people/rahatlou/programmazione++/

Object Oriented Programming:
Polymorphism

Roma, 19 May 2009

Sh. Rahatlou, Programmazione++ 2

Today‟s Lecture

 Polymorphism with inheritance hierarchy

 virtual and pure virtual methods

 When and why use virtual or/and pure virtual functions

 virtual destructors

 Abstract and Pure Abstract classes

 Providing common interface and behavior

Sh. Rahatlou, Programmazione++ 3

Polymorphism

 Ability to treat objects of an inheritance hierarchy as
belonging to the base class

 Focus on common general aspects of objects instead of specifics

 Polymorphism allows programs to be general and extensible

with little or no re-writing

 resolve different objects of same inheritance hierarchy at runtime

 Recall videogame with polymorphic objects Soldier, Engineer,
Technician of same base class Unit

 Can add new „types‟ of Unit without rewriting application

 Base class provides interface common to all types in the

hierarchy

 Application uses base class and can deal with new types not
yet written when writing your application!

Sh. Rahatlou, Programmazione++ 4

Polymorphism in OOP (from Wikipedia)

http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming

Sh. Rahatlou, Programmazione++ 5

Examples of Polymorphism

 Application for graphic rendering
 Base class Shape with draw() and move() methods

 Application expects all shapes to have such functionality

 Function in Physics

 We‟ll study this example in detail

 Guassian, Breit-Wigner, polynomials, exponential are all

functions

 A Function must have

 value(x)

 integral(x1,x2)

 primitive()

 derivative()

 Can write a fit application that can handle existing or not-yet
implemented functions using a base class Function

Sh. Rahatlou, Programmazione++ 6

Reminders about Inheritance

 Inheritance is a is-a relationship

 Object of derived class „is a‟ base class object as well

 Can treat a derived class object as a base class object

 call methods of base class on derived class

 can point to derived class object with pointer of type base class

 Base class does not know about its derived classes

 Can not trat a base class object as a derived object

 Methods of base class can be redefined in derived classes

 Same interface but different implementation for different types of
object in the same hierarchy

Sh. Rahatlou, Programmazione++ 7

Person Inheritance Hierarchy

Person

Student

Graduate Student

Professor

Sh. Rahatlou, Programmazione++ 8

Student and GraduateStudent

class Person {

public:

Person(const std::string& name);

~Person();

std::string name() const { return name_; }

void print() const;

private:

std::string name_;

};

class Student : public Person {

public:

Student(const std::string& name, int id);

~Student();

int id() const { return id_; }

void print() const;

private:

int id_;

};

class GraduateStudent : public Student {

public:

GraduateStudent(const std::string& name, int id,

const std::string& major);

~GraduateStudent();

std::string getMajor() const { return major_; }

void print() const;

private:

std::string major_;

};

Sh. Rahatlou, Programmazione++ 9

Example

// example1.cpp

int main() {

Person* john = new Person("John");

john->print(); // Person::print()

Student* susan = new Student("Susan", 123456);

susan->print(); // Student::print()

susan->Person::print(); // Person::print()

Person* p2 = susan;

p2->print(); // Person::print()

GraduateStudent* paolo =

new GraduateStudent("Paolo", 9856, "Physics");

paolo->print();

Person* p3 = paolo;

p3->print();

delete john;

delete susan;

return 0;

}

$ g++ -Wall -o example1 example1.cpp *.cc

$./example1

Person(John) called

I am a Person. My name is John

Person(Susan) called

Student(Susan, 123456) called

I am Student Susan with id 123456

I am a Person. My name is Susan

I am a Person. My name is Susan

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

I am GraduateStudent Paolo with id 9856 major in Physics

I am a Person. My name is Paolo

~Person() called for John

~Student() called for name:Susan and id: 123456

~Person() called for Susan

Can point to Student or GraduateStudent
object with a pointer of type Person

Can treat paolo and susan as Person

Depending on the pointer different print()

methods are called

Bad Mistake!
No delete for paolo!!

Memory Leak!

Sh. Rahatlou, Programmazione++ 10

Problem with Previous Example

 Call to method print() is resolved base on the type of the pointer
 print() methods is determined by pointer not the actual type of object

 Desired feature: use generic Person* pointer but call appropriate
print() method for paolo and susan based on ACTUAL TYPE of
these objects

$ g++ -Wall -o example1 example1.cpp *.cc

$./example1

Person(John) called

I am a Person. My name is John

Person(Susan) called

Student(Susan, 123456) called

I am Student Susan with id 123456

I am a Person. My name is Susan

I am a Person. My name is Susan

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

I am GraduateStudent Paolo with id 9856 major in Physics

I am a Person. My name is Paolo

~Person() called for John

~Student() called for name:Susan and id: 123456

~Person() called for Susan

// example1.cpp

int main() {

Person* john = new Person("John");

john->print(); // Person::print()

Student* susan = new Student("Susan", 123456);

susan->print(); // Student::print()

susan->Person::print(); // Person::print()

Person* p2 = susan;

p2->print(); // Person::print()

GraduateStudent* paolo =

new GraduateStudent("Paolo", 9856, "Physics");

paolo->print();

Person* p3 = paolo;

p3->print();

delete john;

delete susan;

return 0;

}

Sh. Rahatlou, Programmazione++ 11

Person* john = new Person("John");

john->print(); // Person::print()

Student* susan = new Student("Susan", 123456);

Person* p2 = susan;

p2->print(); // Person::print()

GraduateStudent* paolo =

new GraduateStudent("Paolo", 9856, "Physics");

Person* p3 = paolo;

p3->print();

Desired Feature: Resolve Different Objects at Runtime

 We would like to use the same Person* pointer but call
different methods based on the type of the object being

pointed to

 We DO NOT want to use the scope operator to specify the
function to call

Person(John) called

I am a Person. My name is John

Person(Susan) called

Student(Susan, 123456) called

I am Student Susan with id 123456

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

I am GraduateStudent Paolo with id 9856 major in Physics

Same Person* pointer used

for three different types of object
in the same hierarchy

Same code used by types
solved at runtime

Sh. Rahatlou, Programmazione++ 12

Polymorphic Behavior

int main() {

vector<Person*> people;

Person* john = new Person("John");

people.push_back(john);

Student* susan = new Student("Susan", 123456);

people.push_back(susan);

GraduateStudent* paolo = new GraduateStudent("Paolo", 9856, "Physics");

people.push_back(paolo);

for(int i=0;

i< people.size(); ++i) {

people[i]->print();

}

delete john;

delete susan;

delete paolo;

return 0;

}

$ g++ -o example2 example2.cpp *.cc

$./example2

Person(John) called

Person(Susan) called

Student(Susan, 123456) called

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

I am a Person. My name is John

I am Student Susan with id 123456

I am GraduateStudent Paolo with id 9856 major in Physics

~Person() called for John

~Student() called for name:Susan and id: 123456

~Person() called for Susan

~GraduateStudent() called for name:Paolo id: 9856 major: Physics

~Student() called for name:Paolo and id: 9856

~Person() called for Paolo

vector of generic type Person
No knowledge about specific types

Different derived objects stored in the
vector of Person

Generic call
to print()

Different functions called

based on the real type of
objects pointed to!!

How? virtual functions!

Sh. Rahatlou, Programmazione++ 13

class GraduateStudent : public Student {

public:

GraduateStudent(const std::string& name, int id, const std::string& major);

~GraduateStudent();

std::string getMajor() const { return major_; }

virtual void print() const;

private:

std::string major_;

};

virtual functions

 Virtual methods of base class are
overridden NOT redefined by
derived classes

 if not overriden base class
function called

 Type of objects pointed to
determine which function is called

 Type of pointer (also called
handle) has no effect on the
method being executed

 virtual allows polymorphic

behavior and generic code without
relying on specific objects

class Person {

public:

Person(const std::string& name);

~Person();

std::string name() const { return name_; }

virtual void print() const;

private:

std::string name_;

};

class Student : public Person {

public:

Student(const std::string& name, int id);

~Student();

int id() const { return id_; }

virtual void print() const;

private:

int id_;

};

Sh. Rahatlou, Programmazione++ 14

Dynamic (or late) binding

 Choosing the correct derived class function at run time based
on then type of the object being pointed to, regardless of the

pointer type, is called dynamic binding or late binding

 Dynamic binding works only with pointers and references not
using dot-member operators

 static binding: function calls resolved at compile time

$ g++ -o example3 example3.cpp *.cc

$./example3

Person(John) called

Person(Susan) called

Student(Susan, 123456) called

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

I am a Person. My name is John

I am Student Susan with id 123456

I am GraduateStudent Paolo with id 9856 major in Physics

~GraduateStudent() called for name:Paolo id: 9856 major: Physics

~Student() called for name:Paolo and id: 9856

~Person() called for Paolo

~Student() called for name:Susan and id: 123456

~Person() called for Susan

~Person() called for John

// example3.cpp

int main() {

Person john("John");

Student susan("Susan", 123456);

GraduateStudent paolo("Paolo",

9856, "Physics");

john.print();

susan.print();

paolo.print();

return 0;

}

static
binding

Sh. Rahatlou, Programmazione++ 15

Another Example of Dynamic Binding

// example4.cpp

Person* john = new Person("John");

Person* susan = new Student("Susan", 123456);

Person* paolo = new GraduateStudent("Paolo", 9856, "Physics");

(*john).print();

(*susan).print();

(*paolo).print();

john->print();

susan->print();

paolo->print();

$./example4

Person(John) called

Person(Susan) called

Student(Susan, 123456) called

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

I am a Person. My name is John

I am Student Susan with id 123456

I am GraduateStudent Paolo with id 9856 major in Physics

I am a Person. My name is John

I am Student Susan with id 123456

I am GraduateStudent Paolo with id 9856 major in Physics

~Person() called for John

~Person() called for Susan

~Person() called for Paolo

Sh. Rahatlou, Programmazione++ 16

Example: virtual Function at Runtime

int main() {

Person* p = 0;

int value = 0;

while(value<1 || value>10) {

cout << "Give me a number [1,10]: ";

cin >> value;

}

cout << flush; // write buffer to output

cout << "make a new derived object..." << endl;

if(value>5) p = new Student("Susan", 123456);

else p = new GraduateStudent("Paolo", 9856, "Physics");

cout << "call print() method ..." << endl;

p->print();

delete p;

return 0;

}

$./example6

Give me a number [1,10]: 3

make a new derived object...

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

call print() method ...

I am GraduateStudent Paolo with id 9856 major in Physics

~Person() called for Paolo

$./example6

Give me a number [1,10]: 9

make a new derived object...

Person(Susan) called

Student(Susan, 123456) called

call print() method ...

I am Student Susan with id 123456

~Person() called for Susan

Virtual methods allow dynamic
binding at runtime

Type of object decided at runtime
by user.

Compiler does not know what
object will be used

Sh. Rahatlou, Programmazione++ 17

Default for Virtual Methods

// example5.cpp

int main() {

Person john("John");

Student susan("Susan", 123456);

GraduateStudent

paolo("Paolo", 9856, "Physics");

Professor

bob("Robert", "Biology");

john.print();

susan.print();

paolo.print();

bob.print();

return 0;

}

$ g++ -o example5 example5.cpp *.cc

$./example5

Person(John) called

Person(Susan) called

Student(Susan, 123456) called

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

Person(Robert) called

Professor(Robert, Biology) called

I am a Person. My name is John

I am Student Susan with id 123456

I am GraduateStudent Paolo with id 9856 major in Physics

I am a Person. My name is Robert

class Professor : public Person {

public:

Professor(const std::string& name,

const std::string& department);

~Professor();

std::string department() const { return department_; }

//virtual void print() const;

private:

std::string department_;

};

print() not overriden in
Professor

Person::print() used by default

Sh. Rahatlou, Programmazione++ 18

Pure virtual Functions

 virtual functions with no implementation

 All derived classes ARE REQUIRED to implement these functions

 Typically used for functions that can‟t be implemented (or at least in an
unambiguous way) in the base case

 Class with at least one pure virtual method is called an “Abstract” class

class Function {

public:

Function(const std::string& name);

virtual double value(double x) const = 0;

virtual double integrate(double x1, double x2) const = 0;

private:

std::string name_;

};

= 0 is called

pure specifier

#include "Function.h"

Function::Function(const std::string& name) {

name_ = name;

}

Sh. Rahatlou, Programmazione++ 19

ConstantFunction

#ifndef ConstantFunction_h

#define ConstantFunction_h

#include <string>

#include "Function.h"

class ConstantFunction : public Function {

public:

ConstantFunction(const std::string& name, double value);

virtual double value(double x) const;

virtual double integrate(double x1, double x2) const;

private:

double value_;

};

#include "ConstantFunction.h"

ConstantFunction::ConstantFunction(const std::string& name, double value) :

Function(name) {

value_ = value;

}

double ConstantFunction::value(double x) const {

return value_;

}

double ConstantFunction::integrate(double x1, double x2) const {

return (x2-x1)*value_;

}

Sh. Rahatlou, Programmazione++ 20

Typical Error with Abstract Class

// bad1.cpp

#include <string>

#include <iostream>

using namespace std;

#include "Function.h"

int main() {

Function* gauss = new Function("Gauss");

return 0;

}

$ g++ -o bad1 bad1.cpp Function.cc

bad1.cpp: In function `int main()':

bad1.cpp:10: error: cannot allocate an object of type `Function'

bad1.cpp:10: error: because the following virtual functions are abstract:

Function.h:10: error: virtual double Function::integrate(double, double) const

Function.h:9: error: virtual double Function::value(double) const

Cannot make an object of an Abstract
class!

Pure virtual methods not implemented and
the class is effectively incomplete

Sh. Rahatlou, Programmazione++ 21

Pure virtual Functions

 virtual functions with no implementation

 All derived classes ARE REQUIRED to implement these functions

 Typically used for functions that can‟t be implemented (or at least in an
unambiguous way) in the base class

class Function {

public:

Function(const std::string& name);

virtual double value(double x) const = 0;

virtual double integrate(double x1, double x2) const = 0;

private:

std::string name_;

};

= 0 is called

pure specifier

#include "Function.h"

Function::Function(const std::string& name) {

name_ = name;

}

Sh. Rahatlou, Programmazione++ 22

virtual and pure virtual

 No default implementation for pure virtual

 Requires explicit implementation in derived classes

 Use pure virtual when

 Need to enforce policy for derived classes

 Need to guarantee public interface for all derived classes

 You expect to have certain functionalities but too early to provide
default implementation in base class

 Default implementation can lead to error

 User forgets to implement correctly a virtual function

 Default implementation is used in a meaningless way

 Virtual allows polymorphism

 Pure virtual forces derived classes to ensure correct
implementation

Sh. Rahatlou, Programmazione++ 23

Abstract and Concrete Classes

 Any class with at least one pure virtual method is called an
Abstract Class

 Abstract classes are incomplete

 At least one method not implemented

 Compiler has no way to determine the correct size of an incomplete type

 Cannot instantiate an object of Abstract class

 Usually abstract classes are used in higher levels of hierarchy

 Focus on defining policies and interface

 Leave implementation to lower level of hierarchy

 Abstract classes used typically as pointers or references to

achieve polymorphism

 Point to objects of sub-classes via pointer to abstract class

Sh. Rahatlou, Programmazione++ 24

Example of Bad Use of virtual

$ g++ -o func2 func2.cpp *.cc

$./func2

g1.value(2.): 0.0540047

g1.integrate(0.,1000.): 0

class BadFunction {

public:

BadFunction(const std::string& name);

virtual double value(double x) const { return 0; }

virtual double integrate(double x1, double x2) const { return 0; }

private:

std::string name_;

};

class Gauss : public BadFunction {

public:

Gauss(const std::string& name, double mean, double width);

virtual double value(double x) const;

//virtual double integrate(double x1, double x2) const;

private:

double mean_;

double width_;

};

int main() {

BadFunction f1 = BadFunction("bad");

Gauss g1("g1",0.,1.);

cout << "g1.value(2.): " << g1.value(2.) << endl;

cout << "g1.integrate(0.,1000.): "

<< g1.integrate(0.,1000.) << endl;

return 0;

}

Default dummy
implementation

Implement correctly
value() but use default
integrate()

We can use ill-defined BadFunction
and wrongly use Gauss!

Sh. Rahatlou, Programmazione++ 25

Function and BadFunction

class Function {

public:

Function(const std::string& name);

virtual double value(double x) const = 0;

virtual double integrate(double x1, double x2) const = 0;

private:

std::string name_;

};

class BadFunction {

public:

BadFunction(const std::string& name);

virtual double value(double x) const { return 0; }

virtual double integrate(double x1, double x2) const { return 0; }

private:

std::string name_;

};

int main() {

BadFunction f1 = BadFunction("bad");

Function f2("f2");

return 0;

}

$ g++ -o func3 func3.cpp

func3.cpp: In function ̀ int main()':

func3.cpp:13: error: cannot declare variable ̀ f2' to be of type `Function'

func3.cpp:13: error: because the following virtual functions are abstract:

Function.h:10: error: virtual double Function::integrate(double, double) const

Function.h:9: error: virtual double Function::value(double) const

Sh. Rahatlou, Programmazione++ 26

Use of virtual in Abstract Class Function

class Function {

public:

Function(const std::string& name);

virtual double value(double x) const = 0;

virtual double integrate(double x1, double x2) const = 0;

virtual void print() const;

virtual std::string name() const { return name_; }

private:

std::string name_;

};

#include "Function.h"

#include <iostream>

Function::Function(const std::string& name) {

name_ = name;

}

void

Function::print() const {

std::cout << "Function with name "

<< name_ << std::endl;

}

Default implementation of name()

Unambiguous functionality: user will

always want the name of the particular

object regardless of its particular
subclass

print() can be overriden in sub-classes

to provide more details about sub-class

but still a function with a name

Sh. Rahatlou, Programmazione++ 27

Concrete Class Gauss

#include "Gauss.h"

#include <cmath>

#include <iostream>

using std::cout;

using std::endl;

Gauss::Gauss(const std::string& name,

double mean, double width) :

Function(name) {

mean_ = mean;

width_ = width;

}

double Gauss::value(double x) const {

double pull = (x-mean_)/width_;

double y = (1/sqrt(2.*3.14*width_)) * exp(-pull*pull/2.);

return y;

}

double Gauss::integrate(double x1, double x2) const {

cout << "Sorry. Gauss::integrate(x1,x2) not implemented yet..."

<< "returning 0. for now..." << endl;

return 0;

}

void

Gauss::print() const {

cout << "Gaussian with name: " << name()

<< " mean: " << mean_

<< " width: " << width_

<< endl;

}

#ifndef Gauss_h

#define Gauss_h

#include <string>

#include "Function.h"

class Gauss : public Function {

public:

Gauss(const std::string& name,

double mean, double width);

virtual double value(double x) const;

virtual double integrate(double x1,

double x2) const;

virtual void print() const;

private:

double mean_;

double width_;

};

#endif

$ g++ -o func5 func5.cpp *.cc

$./func5

Gaussian with name: gauss mean: 0 width: 1

Sorry. Gauss::integrate(x1,x2) not implemented yet...returning 0. for now...

int main() {

Function* g1 = new Gauss("gauss",0.,1.);

g1->print();

double x = g1->integrate(0., 3.);

delete g1;

return 0;

}

Sh. Rahatlou, Programmazione++ 28

Bad Programming in Previous Example

 When using –Wall option of g++ we get following warning

 In general with polymorphism and inheritance it is a VERY

GOOD idea to use virtual destructors

 Particularly important when using dynamically allocated
objects in constructors of polymorphic objects

$ g++ -Wall -c Gauss.cc

In file included from Gauss.h:5,

from Gauss.cc:1:

Function.h:6: warning: `class Function' has virtual functions but

non-virtual destructor

In file included from Gauss.cc:1:

Gauss.h:7: warning: `class Gauss' has virtual functions but

non-virtual destructor

Sh. Rahatlou, Programmazione++ 29

Destructor of Person and Student

// example7.cpp

int main() {

Person* p1 = new Student("Susan", 123456);

Person* p2 = new GraduateStudent("Paolo", 9856, "Physics");

delete p1;

delete p2;

return 0;

}

$./example7

Person(Susan) called

Student(Susan, 123456) called

Person(Paolo) called

Student(Paolo, 9856) called

GraduateStudent(Paolo, 9856,Physics) called

~Person() called for Susan

~Person() called for Paolo

Person::~Person() {

cout << "~Person() called for " << name_ << endl;

}

GraduateStudent::~GraduateStudent() {

cout << "~GraduateStudent() called for name:" << name()

<< " id: " << id()

<< " major: " << major_ << endl;

}

Note that ~Person() is called and not that of the sub class!

We did not declare the destructor to be virtual

destructor called based on the pointer and not the object! Not polymorphic

Student::~Student() {

cout << "~Student() called for name:" <<

name() << " and id: " << id_ << endl;

}

Sh. Rahatlou, Programmazione++ 30

virtual destructors

 Derived classes might allocate dynamically memory

 Derived-class destructor (if correctly written!) will take care of
cleaning up memory upon destruction

 Base-class destructor will not do the proper job if called for
a sub-class object

 Declaring destructor to be virtual is a simple solution to

prevent memory leak using polymorphism

 virtual destructors ensure that memory leaks don‟t occur
when delete an object via base-class pointer

Sh. Rahatlou, Programmazione++ 31

Simple Example of virtual Destructor

// noVirtualDtor.cc

#include <iostream>

using std::cout;

using std::endl;

class Base {

public:

Base(double x) {

x_ = new double(x);

cout << "Base(" << x << ") called" << endl;

}

~Base() {

cout << "~Base() called" << endl;

delete x_;

}

private:

double* x_;

};

class Derived : public Base {

public:

Derived(double x) : Base(x){

cout << "Derived("<<x<<") called" << endl;

}

~Derived() {

cout << "~Derived() called" << endl;

}

};

int main() {

Base* a = new Derived(1.2);

delete a;

return 0;

}

// virtualDtor.cc

#include <iostream>

using std::cout;

using std::endl;

class Base {

public:

Base(double x) {

x_ = new double(x);

cout << "Base(" << x << ") called" << endl;

}

virtual ~Base() {

cout << "~Base() called" << endl;

delete x_;

}

private:

double* x_;

};

class Derived : public Base {

public:

Derived(double x) : Base(x){

cout << "Derived("<<x<<") called" << endl;

}

virtual ~Derived() {

cout << "~Derived() called" << endl;

}

};

int main() {

Base* a = new Derived(1.2);

delete a;

return 0;

}

$ g++ -Wall -o noVirtualDtor noVirtualDtor.cc

$./noVirtualDtor

Base(1.2) called

Derived(1.2) called

~Base() called

$ g++ -Wall -o virtualDtor virtualDtor.cc

$./virtualDtor

Base(1.2) called

Derived(1.2) called

~Derived() called

~Base() called

Destructor

Not virtual

Virtual

Destructor

Sh. Rahatlou, Programmazione++ 32

Revised Class Student

class Student : public Person {

public:

Student(const std::string& name, int id);

~Student();

void addCourse(const std::string& course);

virtual void print() const;

int id() const { return id_; }

const std::vector<std::string>* getCourses() const;

void printCourses() const;

private:

int id_;

std::vector<std::string>* courses_;

};

void Student::addCourse(const std::string&

course) {

courses_->push_back(course);

}

void

Student::printCourses() const {

cout << "student " << name()

<< " currently enrolled in following

courses:"

<< endl;

for(int i=0; i<courses_->size(); ++i) {

cout << (*courses_)[i] << endl;

}

}

const std::vector<std::string>*

Student::getCourses() const {

return courses_;

}

Student::Student(const std::string& name, int

id) :

Person(name) {

id_ = id;

courses_ = new std::vector<std::string>();

cout << "Student(" << name << ", " << id <<

") called“

<< endl;

}

Student::~Student() {

delete courses_;

courses_ = 0;

cout << "~Student() called for name:" <<

name()

<< " and id: " << id_ << endl;

}

void Student::print() const {

cout << "I am Student " << name()

<< " with id " << id_ << endl;

cout << "I am now enrolled in "

<< courses_->size() << " courses." <<

endl;

}

Sh. Rahatlou, Programmazione++ 33

Example of Memory Leak with Student

// example8.cpp

int main() {

Student* p1 = new Student("Susan", 123456);

p1->addCourse(string("algebra"));

p1->addCourse(string("physics"));

p1->addCourse(string("Art"));

p1->printCourses();

Student* paolo = new Student("Paolo", 9856);

paolo->addCourse("Music");

paolo->addCourse("Chemistry");

Person* p2 = paolo;

p1->print();

p2->print();

delete p1;

delete p2;

return 0;

}

$./example8

Person(Susan) called

Student(Susan, 123456) called

student Susan currently enrolled in following courses:

algebra

physics

Art

Person(Paolo) called

Student(Paolo, 9856) called

I am Student Susan with id 123456

I am now enrolled in 3 courses.

I am Student Paolo with id 9856

I am now enrolled in 2 courses.

~Student() called for name:Susan and id: 123456

~Person() called for Susan

~Person() called for Paolo

Memory leak when deleting paolo

because nobody deletes courses_

Need to extend polymorphism also
to destructors to ensure that object

type not pointer determine correct
destructor to be called

Sh. Rahatlou, Programmazione++ 34

// example9.cpp

int main() {

Student* p1 = new Student("Susan", 123456);

p1->addCourse(string("algebra"));

p1->addCourse(string("physics"));

p1->addCourse(string("Art"));

p1->printCourses();

Student* paolo = new Student("Paolo", 9856);

paolo->addCourse("Music");

paolo->addCourse("Chemistry");

Person* p2 = paolo;

delete p1;

delete p2;

return 0;

}

virtual Destructor for Person and Student

class Student : public Person {

public:

Student(const std::string& name, int id);

virtual ~Student();

void addCourse(const std::string& course);

virtual void print() const;

int id() const { return id_; }

const std::vector<std::string>* getCourses() const;

void printCourses() const;

private:

int id_;

std::vector<std::string>* courses_;

};

class Person {

public:

Person(const std::string& name);

virtual ~Person();

std::string name() const { return name_; }

virtual void print() const;

private:

std::string name_;

};

$./example9

Person(Susan) called

Student(Susan, 123456) called

student Susan currently enrolled in following courses:

algebra

physics

Art

Person(Paolo) called

Student(Paolo, 9856) called

~Student() called for name:Susan and id: 123456

~Person() called for Susan

~Student() called for name:Paolo and id: 9856

~Person() called for Paolo

Correct destructor is called using
the base-class pointer to Student

