Midterm Exercise

Shahram Rahatlou

http://www.romal.infn.it/people/rahatlou/programmazione++/

Corso di Programmazione++ Roma, 25 May 2009

Exercise 1: Object Oriented Kinematics

B₀

- Consider the two body decay $B^0 \rightarrow \pi^+ \pi^-$
 - B⁰: mass 5280 MeV
 - $\pi+$: mass 140 MeV
 - Each particle can be represented by a 4-Vector
 - > P4 = (P_x, P_y, P_z, E)
- Assume B⁰ moves along Z axis: $P_x(B^0) = P_v(B^0) = 0$
- Assume $P_{z}(B^{0})$ is a Gaussian distribution with mean μ =2000 MeV and width σ =200 MeV
- Simulate 1000 decays of B^0 to two particles. For each B^0
 - Generate momentum of B⁰
 - Calculate the momentum of two daughters from conservation of energy and momentum
- Show the distribution of the px, py,pz, E, and the angle between the two pions in the laboratory

 π^+

 π^{-}

How Many Classes Do You Need?

- Each particles can be represented by its 4-momentum
 you need a 4-vector class to do arithmetics
- Use TRandom class of root to generate random numbers
- Histograms: use TH1F class of root
- Lorentz Transformation: if you need to go from center of mass frame to laboratory you will need to perform Lorentz Transformation
 - Different solution possible
 - Transformation as method of 4-vector
 - Create a new matrix class that interacts with 4-vectors

Midterm Deadline

- The complete project must be sent to me by 12:00 on Wednesday 3 June
- You must provide one application .cpp file and all necessary source and header files and instructions on how to compile, link and run the executable

You can

- send a tar file via email including all the material
- CD or DVD with all the files
- Arrange to meet me in the office