
Corso di Programmazione++

Shahram Rahatlou

http://www.roma1.infn.it/people/rahatlou/programmazione++/

More on Templates
Standard Template Library

exception in C++

Roma, 15 June 2008

Sh. Rahatlou, Programmazione++

Today’s Lecture

 More on Template

 Inheritance

 static data members

 friend and Template

 example: auto_ptr<T>

 Standard template library

 Error handling in applications

 Typical solutions

 advantages and disadvantages

 C++ exception

 What is it?

 How to use it

2

Sh. Rahatlou, Programmazione++

Template and Runtime Decision

 Fundamental difference between Template and Inheritance

 All derived classes share common functionalities

 Can point to any derived class object via base-class pointer

 No equivalent of base-class pointer for class-template
specializations

 Dummy<string> and Dummy<double> are different classes

 No polymorphism at run time!

3

Sh. Rahatlou, Programmazione++

Template and Inheritance

 Inheritance provides run-time polymorphism

 Templates provide compile-time polymorphism

 Code generated by compiler at compilation time using the Template
class or function and the specified parameter

 All specialized templates are identical except for the data type

 Template-class specialization is equivalent to any regular non-
template class

 But remember…

 Class template NOT EQUIVALENT to base class

 No base-class pointer mechanism for different specializations

 No runtime polymorphism

 Different specializations are different classes with no inheritance
relation

4

Sh. Rahatlou, Programmazione++

Difference between Template and Inheritance

5

int main() {

Person* p = 0;

int value = 0;

while(value<1 || value>10) {

cout << "Give me a number [1,10]: ";

cin >> value;

}

cout << flush; // write buffer to output

cout << "make a new derived object..." << endl;

if(value>5) p = new Student("Susan", 123456);

else p = new GraduateStudent("Paolo", 9856, "Physics");

cout << "call print() method ..." << endl;

p->print();

delete p;

return 0;

}

int main() {

Dummy<std::string>* d1 = 0;

Dummy<double>* d2 = 0;

int value = 0;

while(value<1 || value>10) {

cout << "Give me a number [1,10]: ";

cin >> value;

}

cout << flush;

if(value>5) d1 = new Dummy<std::string>("string");

else d2 = new Dummy<double>(1.1);

if(d1 != 0) d1->print();

if(d2 != 0) d2->print();

return 0;

}

Same base-class pointer used

to initialize data based on user input

one call to ::print()

no if statement

no checking for null pointer

Need as many pointers as possible

outcomes of input by user

No base-class pointer No polymorphism

Check specific pointers to be non-null

before calling DIFFERENT ::print() methods

$./example0

Give me a number [1,10]: 3

Dummy<T>::print() with type T = d, *data_: 1.1

$./example0

Give me a number [1,10]: 7

Dummy<T>::print() with type T = Ss, *data_: string

Sh. Rahatlou, Programmazione++

Template and Inheritance

 Can use specializations as any other class

 But can’t inherit from a class template

 A class template can be derived from a non-template class
 template<class T> class GenericPerson : public Person { };

 A class template can be derived from a class-template specialization
 template<class T> class MyString : public Dummy<std::string> {};

 A class-template specialization can be derived from a class-template
specialization

 class Dummy<Car> : public Vector<Object> { };

 A non-template class can be derived from a class-template specialization

 class Student : public Dummy<std::string> { };

6

Sh. Rahatlou, Programmazione++

Template and static

 All specializations of a class template have their copy of own
static data

 Treat class-template specialization as equivalent to normal non-
template class

7

// example1.cpp

#include <iostream>

#include <string>

#include <typeinfo>

using namespace std;

#include "Dummy.h"

int main() {

Dummy<std::string> d1("d1");

Dummy<std::string> d2("d2");

Dummy<std::string> d3("d3");

Dummy<double> f1(0.1);

Dummy<double> f2(-56.45);

cout << "Dummy<std::string>::total(): " << Dummy<std::string>::total() << endl;

cout << "Dummy<double>::total(): " << Dummy<double>::total() << endl;

cout << "Dummy<int>::total(): " << Dummy<int>::total() << endl;

return 0;

}

$ g++ -Wall -o example1

example1.cpp

$./example1

Dummy<std::string>::total(): 3

Dummy<double>::total(): 2

Dummy<int>::total(): 0

Sh. Rahatlou, Programmazione++

Static data with Dummy<T>

8

template< typename T >

class Dummy {

public:

Dummy(const T& data);

~Dummy();

void print() const;

static total() { return total_; }

private:

T* data_;

static int total_;

};

All code in Dummy.h

Remember no source file!

template<class T>

int Dummy<T>::total_ = 0;

template<class T>

Dummy<T>::Dummy(const T& data) {

data_ = new T(data);

total_++;

}

template<class T>

Dummy<T>::~Dummy() {

total_--;

delete data_;

}

template<class T>

void

Dummy<T>::print() const {

std::cout << "Dummy<T>::print() with type T =

"

<< typeid(T).name()

<< ", *data_: " << *data_

<< std::endl;

}

Sh. Rahatlou, Programmazione++

Template and friend Functions

 All usual rules for friend methods and classes are still valid

 You can declare functions to be friends of

 all specializations of a template-class or specific specializations

 Your Favorite combination of template classes and functions

9

template< typename T >

class Foo {

public:

Foo(const T& data);

~Foo();

void print() const;

// friend of all specializations

friend void nicePrint();

// friend of specialization with same type

friend void specialPrint(const Foo<T>& obj);

// member function of Bar friend of all specializations

friend void Bar::printFoo();

// member function of Dummy with same type

friend void Dummy<T>::print(const Foo<T> & f)

private:

T* data_;

};

nicePrint() friend of

Foo<int> and Foo<string>

specialPrint(string) friend of

Foo<string> but NOT friend of Foo<int>

Bar::printFoo() friend of

Foo<int> and Foo<string>

Dummy<int>::print(int) friend of

Foo<int> but NOT friend of Foo<string>

Sh. Rahatlou, Programmazione++

Standard Template Library

 Library of container classes, algorithms, and iterators

 Covers many of basic algorithms and data structures of common use

 Very efficient through compile-time polymorphism achieved by using
Template

 Containers: classes whose purpose is to contain any type of
objects

 Sequence containers: vector, list,
seq, deque

 Associative containers: set, multiset,
map, multimap

 Algorithms: methods used to manipulate container items

 Finding, sorting, reverting items

 Iterators: generalization of pointer
to provide access to items in a container

10

Sh. Rahatlou, Programmazione++

containers

 Address different needs with different perfmance

 Vector: fast random access. Rapid insertion
and deletion at the end of vector

 List: rapid insertion and deletion
anywehere

 No sequential storage of data

11

vector

list

Sh. Rahatlou, Programmazione++

Requirements for type T objects in containers

 Any C++ type and class can be used but a minimum set of
functionality required

 Inserting an object of type T corresponds to copying object

into the container

 Sequential containers require a proper copy constructor and
assignment operator (=) for class T

 Default implementations is fine as long as non-trivial data members
are used

 Associative containers often perform comparison between

elements
 Class T should provide equality (==) and less-than (<) operators

12

Sh. Rahatlou, Programmazione++

iterators

 Allows user to traverse through all elements of a container regardless of
its specific implementation

 Allow pointing to elements of containers

 Hold information sensitive to particular containers

 Implemented properly for each type of container

 Five categories of iterators

13

Sh. Rahatlou, Programmazione++

iterator Operations

 Predefined iterator typedef’s
found in class
definitions

 iterator

 Forward read-write

 const_iterator

 Forward read-only

 reverse_iterator

 Bacward read-write

 const_reverse_iterator

 backward read-only

14

Sh. Rahatlou, Programmazione++

Using iterators

 Two member functions begin() and end() returning

iterators to beginning and end of container
 begin() points to first object

 end() is slightly different. Points to NON-EXISTING object past last

item

15

vector<Student> v1; // declare vector

// create iterator from container

vector<Student>::const_iterator iter;

// use of iterator on elements of vector

for(iter = v1.begin();

iter != v1.end();

++iter) {

cout << iter->name() << endl;

(*iter).print();

}

Sh. Rahatlou, Programmazione++

Algorithms

 Almost 70 different algorithms provided by STL to be usedu
generically with variety of containers

 Algorithms use iterators to interact with containers

 This feature allows decoupling algorithms from containers!

 Implement methods outside specific containers

 Use generic iterator to have same functionality of many containers

 Many algorithms act on range of elements in a container
identified by pair of iterators for first and last element to be

used

 Iterators used to return result of an algorithm

 Points to element in the container satisfying the algorithm

16

Sh. Rahatlou, Programmazione++

Non-modifying Algorithms

17

Sh. Rahatlou, Programmazione++

Modifying algorithms

18

swap() allows fast and

non-expensive copy
of elements between

containers

Commonly used to optimize

performance and minimize
unnecessary copy

operations

Sh. Rahatlou, Programmazione++

Comments and Criticism to STL

 Heavy use of template make STL very sensitive to changes
or capabilities of different compilers

 Compilation error messages can be hard to decipher by

developer

 Tools being developed to provide indention and better formatting of
improved error messages

 Generated code can be very large hence leading to
significant increase in compilation time and memory usage

 Careful coding necessary to prevent such problems

 Common problem with invalid pointers when element deleted
from a container

 Iterator not update hence pointing to non-existing element
19

Sh. Rahatlou, Programmazione++ 20

Error Handling in C++

Sh. Rahatlou, Programmazione++

Exception Handling: What does it mean?

 Under normal circumstances applications should run
successfully to completion

 Exceptions: special cases when errors occur

 ‘exception’ is meant to imply that such errors occur rarely and are an
exception to the rule (successful running)

 Warning: exceptions SHOULD NEVER be used as replacement for
conditionals!

 C++ Exceptions provide mechanism for error handling and
writing fault-tolerant applications

 errors can occur deep into the program or in third party software not
under our control

 Applications use exceptions to decide if terminate or continue
execution

21

Sh. Rahatlou, Programmazione++

Hierarchy of C++ STL Exceptions

22

Sh. Rahatlou, Programmazione++

C++ Exceptions

23

#include <iostream>

#include <stdexcept>

using std::cin;

using std::cout;

using std::endl;

using std::runtime_error;

double ratio(int i1, int i2) {

if(i2 == 0) throw std::runtime_error("error in ratio");

return i1/i2;

}

int main() {

int i1 = 0;

int i2 = 0;

cout << "enter two numbers (ctrl-D to end): ";

while(cin >> i1 >> i2) {

try {

cout << "ratio: " << ratio(i1,i2) << endl;

} catch(std::runtime_error& ex) {

cout << "error occured..." << ex.what() << endl;

}

cout << "enter two numbers (ctrl-Z to end): ";

}

return 0;

}

$ g++ -Wall -o example3 example3.cpp

$./example3

enter two numbers (ctrl-D to end): 7876 121

ratio: 65

enter two numbers (ctrl-D to end): 34 14

ratio: 2

enter two numbers (ctrl-D to end): 56 0

error occured...error in ratio

enter two numbers (ctrl-D to end):

throw an exception when error
condition occurs

exception is a C++ object!

include code that can throw
exception in a try{} block

use catch() {} to catch possible
exceptions thrown within the try{}
block

Sh. Rahatlou, Programmazione++

Exceptions Defined by Users

24

// example4.cpp

#include <iostream>

#include <stdexcept>

using std::cin;

using std::cout;

using std::endl;

using std::runtime_error;

class MyError : public std::runtime_error {

public:

MyError() : std::runtime_error("dividing by zero") {}

};

double ratio(int i1, int i2) {

if(i2 == 0) throw MyError();

return i1/i2;

}

int main() {

int i1 = 0;

int i2 = 0;

cout << "enter two numbers (ctrl-Z to end): ";

while(cin >> i1 >> i2) {

try {

cout << "ratio: " << ratio(i1,i2) << endl;

} catch(MyError& ex) {

cout << "error occured..." << ex.what() << endl;

}

cout << "enter two numbers (ctrl-Z to end): ";

}

return 0;

}

New exceptions can be
implemented by users

Inherit from existing exceptions
and specialize for use case relevant
for your application

$ g++ -Wall -o example4 example4.cpp

$./example4

enter two numbers (ctrl-Z to end): 6 5

ratio: 1

enter two numbers (ctrl-Z to end): 5 0

error occured...dividing by zero

enter two numbers (ctrl-Z to end):

