
Corso di Programmazione++

Shahram Rahatlou

http://www.roma1.infn.it/people/rahatlou/programmazione++/

Elements of Unified Modeling
Language

Roma, 22 June 2009

Sh. Rahatlou, Programmazione++

Today’s Lecture

 Introduction to UML

 object modeling language

 Class diagrams

 Relations between classes

 Suggestions for further reading

2

Sh. Rahatlou, Programmazione++

Object Oriented Analysis (OOA)

 Build a system composed of objects

 Behavior of system defined by collaboration between objects
through sending messages to each other

 State of system defined by states of individual collaborating
objects

 Does not take into account implementations constraints such
as distribution and persistency

 Result of OOA is a conceptual model focused on ideas and
concepts to be implemented

3

Sh. Rahatlou, Programmazione++

Object Oriented Design (OOD)

 Start from conceptual model provided by OOA and add
implementation constraints, e.g. specific programming
language

 Treat the objects as instances of collection of classes within
a class hierarchy

 Typically four stages in Design:

 Identify classes and objects

 Identify their responsibilities

 Identify their relationship

 Provide class interface and implementation

4

Sh. Rahatlou, Programmazione++

Object Modeling Language

 Standardized set of symbols and relations between them to
model object oriented design

 Visual and graphical representation provides higher level of
abstraction important in early analysis and design stage

 Focus on interaction and relation between objects

 Define interface rather than internal structure

 Software modeling tools can be used to implement code
from visual modeling diagrams

5

Sh. Rahatlou, Programmazione++

Brief History of Object Modeling Language

 Booch Method

 Developed by Grady Booch

 Better for design

 Object modeling technique (OMT)

 Developed by Jim Rumbaugh

 Better for analysis

 Objectory

 Developed by Ivar Jacobsen

 Treat Use Cases

 Use case: interaction between system and end user
to achieve a specific goal

 Class-Responsibility-Collaboration Cards

 Proposed by Ward Cunningham

6

Sh. Rahatlou, Programmazione++

Booch Method

7

Sh. Rahatlou, Programmazione++

Object Modeling Technique

8

Sh. Rahatlou, Programmazione++

Unified Modeling Language (UML)

 Many approaches on the market by mid 1990s

 Object Management Group (OMG) called for development of
a unified approach

 Consortium including Booch, Jacobsen, and Rumbaugh has
developed what today is called Unified Modeling Language

9

http://www.uml.org/

http://www.uml.org/

Sh. Rahatlou, Programmazione++

Unified Modeling Language (UML)

10

http://en.wikipedia.org/wiki/Unified_Modeling_Language

Sh. Rahatlou, Programmazione++

UML Diagrams

 Thirteen diagrams in UML 2.0 organized

11

Sh. Rahatlou, Programmazione++

Categories of Diagrams

 Structure diagrams: emphasize what things must be in the system
 Class diagram

 Component diagram

 Object diagram

 Composite structure diagram

 Deployment diagram

 Package diagram

 Behavior diagrams: emphasize what must happen in the system
 Activity diagram

 Use case diagram

 State Machine diagram

 Interaction Diagrams: subset of behavior diagrams, emphasize flow of
control and data among the things in the system

 Sequence diagram

 Collaboration (UML 1.x)/Communication diagram (UML 2.0)

 Interaction overview diagram (UML 2.0)

 Timing diagram (UML 2.0)

12

Sh. Rahatlou, Programmazione++

Class Diagram

 Type of static structure diagram describing structure of a system by
showing

 system's classes

 relationships between classes

 Graphical representation: box with 3 compartments for

 Name of class

 attributes or data members

 operations or methods

13

Person

name_ : std::string

+ name() : string

+ print()

class Person {

public:

Person(const std::string& name);

~Person();

std::string name() const { return name_; }

void print() const;

private:

std::string name_;

};

Name
of class

Attributes

Operations + public
private

protected

Sh. Rahatlou, Programmazione++

Relations between Classes

 Generalization or Inheritance

 an is-a relationship

 Association

 can be mutual or uni-directional

 Aggregation

 Whole/part relationship. no lifetime control

 Composition

 Aggregation with lifetime control

 Dependence

 uni-directional association

 only B knows about A

14

AB

AB

AB

AB

AB

Sh. Rahatlou, Programmazione++

Generalization or Inheritance

 Is-A relationship between A and B: B is also an A

 relationship between a base class
(super-type, parent) and a
derived class (sub-type, child)

15

AB

Person

- name_ : std::string

+ name() : string

+ print()

Student

- id_ : int

+ id() : int

GraduateStudent

- major_ : string

+ major() : string

Sh. Rahatlou, Programmazione++

Association

 A and B exchange messages

 Call methods of each other

16

AB

class Department {

private:

University* myUniversity_;

public:

void print() {

cout << “My University is: : <<

<< myUniv_->name()

<< endl;

}

}

class University {

private:

Department* myDep_;

public:

string department() {

return myDep_->name();

}

}

Department

- myUniv_ : University
- name_ : string

+ print()

+name() : string

University

- myDep_ : Department

+ print()

+department() : string

Sh. Rahatlou, Programmazione++

Aggregation

 Whole/part association with
no lifetime control

 B contains a pointer to A

 B does not control lifetime of A

 A exists regardless of B

17

AB

class University {

private:

vector<Student*> students_;

public:

vector<Student*> students() {

return students_;

}

void addStudent(Student* s) {

students_->push_back(s);

}

}

University

- students_ : vector<Student*>

+ print()

+students() : vector<Student*>

+ addStudent(Student)

Student

- id_ : int

+ id() : int

All instances of Student exist regardless
of the instance of University

Only keeps pointers but does not control
lifetime of objects pointed to

Sh. Rahatlou, Programmazione++

Composition

 Whole/part association with
lifetime control

 B contains instance of A

 B is responsible for creation of its copies of A and their destruction

 B can transfer ownership of it’s a to others

18

class Department {

private:

string name_;

public:

string name() { return name_; }

}

class University {

private:

vector<Department>* deps_;

public:

University() {

deps_ = new vector<Department>;

deps_->push_back(“physics”);

}

~University() { delete deps_; }

vector<Departments> departments() {

return *deps_;

}

}

Department

- name_ : string

+ print()

+name() : string

University

- myDeps_ : vector<Department>*

+ print()

+departments() : vector<Department>

AB

Sh. Rahatlou, Programmazione++

Dependence

 B knows about A but A has no knowledge of B

 Mostly when A is used in definition of A

19

class University {

private:

vector<Department>* deps_;

public:

University() {

deps_ = new vector<Department>;

deps_->push_back(“physics”);

}

~University() { delete deps_; }

vector<Departments>* departments() {

return *deps_;

}

}

University

- myDeps_ : vector<Department>*

+ print()

+departments() : vector<Department>

vector<T>

AB

Sh. Rahatlou, Programmazione++

Multiplicity (a.k.a Cardinality)

 Multiplicity of a role describes number of instances
participating in the association

 * or 0..* : zero to many

 1..* : one to many

 0..1 : zero or one

 1 : one and only one

 n..m : n or m

20

University Student

Department

1 0..*

University might have no student

Each University has at least 1 department

1

1..*

Sh. Rahatlou, Programmazione++

Additional Readings

 Few very good books to improve your skills and learn more about object oriented
programming techniques

 Effective C++ : 55 Specific Ways to Improve Your
Programs and Designs, Scott Meyers

 More Effective C++: 35 New Ways to Improve Your
Programs and Designs, Scott Meyers

 Design Patterns: Elements of Reusable
Object-Oriented Software, E. Gamma et al.

 Learning UML 2.0, K. Hamilton, R. Miles

21

http://www.amazon.com/gp/product/0321334876/qid=1151488804/sr=2-1/ref=pd_bbs_b_2_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/020163371X/qid=1151488804/sr=2-2/ref=pd_bbs_b_2_2/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0201633612/qid=1151489046/sr=1-1/ref=sr_1_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0596009828/qid=1151489231/sr=1-7/ref=sr_1_7/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0321334876/qid=1151488804/sr=2-1/ref=pd_bbs_b_2_1/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/020163371X/qid=1151488804/sr=2-2/ref=pd_bbs_b_2_2/002-9539447-2437651?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0201633612/qid=1151489046/sr=1-1/ref=sr_1_1/002-9539447-2437651?s=books&v=glance&n=283155

