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(prerequisites necessary to understand the second part)

ONDE NON LINEARI 2

Paolo Maria Santini

1 Dynamical systems and vector fields

Here we summarise some known facts on dynamical systems (systems of
ODEs).

The dynamical system

dxi

dt
= ui(~x, t), i = 1, . . . , N

(

d~x
dt

= ~u(~x, t)
)

.
~u(~x, t) = (u1(~x, t), . . . , uN(~x, t)) ∈ R

N ,
~x = (x1, . . . , xN) ∈ R

N , ∇~x = (∂x1 , . . . , ∂xN ),

(1)

together with the initial condition ~x(t0) = ~x0 ∈ R
N , define a flow (a trajec-

tory in the phase space R
N), tangent to the vector field ~u(~x, t) (see Fig. 1).

The general solution of (1), depending on N arbitrary constants ~c, is
characterized by the system of nondifferential equations:

ϕj(~x, t) = cj, j = 1, . . . , N, (2)

where the cj’s are N independent constants. Solving the system wrt ~x, if
∂(ϕ1,...,ϕN )
∂(x1,...,xN )

, one obtains the general solution of (1):

~x = ~X(t,~c). (3)

Definition 1. I(~x, t) is an integral of motion of (1) iff I satisfies the linear
PDE:

It + ~u · ∇~xI = 0 (4)

(I is constant on the characteristic curves (integral curves) of (1)).

Definition 2. Equation (4) can be written as

ûI = 0,

û := ∂t + ~u · ∇~x =
N
∑

k=0

uk∂xk , u0 = 1, x0 = t.
(5)
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where the first order linear operator û is also called vector field
associated with the ODE (1).

The application of û to a scalar differentiable function f(~x, t):

ûf(~x, t) (6)

is the “directional derivative of f , at the point (~x, t) ∈ R
N+1 of the extended

phase space, in the direction of the vector (1, ~u(~x, t)) (whose components
are the coefficients of the vector field û)”. We are therefore identifying the
extended vector field (1, ~u(~x, t)) = (1, u1, . . . , uN) with the operator û, that
takes a directional derivative in the direction of (1, ~u)! One of the advantages
of such identification is that û does not depend on coordinates.

Definition 3. A dynamical system (1) is Hamiltonian, and/or the associ-
ated vector field û is Hamiltonian, iff N is even and there exists a function
H(q, p, t) such that the ODE (1) and û can be written in the form:

dqi
dt

=
∂H(q,p,t)

∂pi
, i = 1, . . . , n = N

2
,

dpi

dt
= −∂H(q,p,t)

∂qi
, i = 1, . . . , n,

(7)

û = ∂t + {H, ·}p,q, (8)

where ~x = (q1, . . . , qn, p1, . . . , pn)
T , and the expression {f, g}p,q is the well-

known Poisson bracket of f and g wrt p, q

{f, g}p,q =

N/2
∑

n=1

(

∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)

= J

( ∇qf

∇pf

)

·
( ∇qg

∇pg

)

. (9)

More precisely, the vector ~u(~x, t) can be written in the form:

~u(~x, t) =

( ∇pH

−∇qH

)

= J

( ∇qH

∇pH

)

, (10)

where

J :=

(

0n In
−In 0n

)

, (11)

~x =



















q1
...
qn
p1
...
pn



















, ∇~x =

( ∇q

∇p

)

=



















∂q1
...
∂qn
∂p1
...
∂pn



















, (12)
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so that

~u(~x, t) · ∇~x = (∇pH) · ∇q − (∇qH) · ∇p = J

( ∇qH

∇pH

)

·
( ∇q

∇p

)

, (13)

and the directional derivative of f in the direction of the Hamiltonian vector
field reads:

ûf = ft +
(

(∇pH) · ∇q − (∇qH) · ∇p

)

f =

ft + J

( ∇qH

∇pH

)

·
( ∇qf

∇pf

)

=: ft + {H, f}p,q
(14)

i.e, equation (8).

Definition 4. The vector field ~u(~x, t) (û) is divergence - less iff ∇~x · ~u = 0.

Proposition 1.

1. If the dynamical system (1) associated with a divergence-less vector
field ~u, it gives rise to volume preserving flows (prove it!).

2. A Hamiltonian vector field is divergence-less (check it!), but the op-
posite may not be true..

3. A two-dimensional divergence-less vector field is Hamiltonian (check
it!).

Proposition 2.

1. Vector fields û form a Lie algebra whose Lie bracket is given by the
usual commutator. Indeed (check it!):

[û, v̂] = ŵ, (15)

where
û =

∑

k

uk∂xk , v̂ =
∑

k

vk∂xk ,

ŵ =
∑

k

wk∂xk , wk := ûvk − v̂uk.
(16)

2. If the vector fields û1, û2

ûj = ∂tj + ~uj · ∇~x, j = 1, 2,
~uj = (u1

j(~x, t), . . . , u
N
j (~x, t)), j = 1, 2,

(17)
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are Hamiltonian, with Hamiltonians H1, H2, then the following identity
holds true (check it !):

[û1, û2] =
n
∑

i=1

(

∂H12

∂pi

∂
∂qi

− ∂H12

∂qi
∂
∂pi

)

= (∇pH12) · ∇q − (∇qH12) · ∇p,

H12 := {H1, H2}p,q +H2t1 −H1t2 .
(18)

1.1 Symmetries of ODEs and commutation of vector
fields

Proposition 3 The following statements are equivalent.

1. The two dynamical systems

d~x
dt1

= ~u1(~x,~t), ~t = (t1, t2),
d~x
dt2

= ~u2(~x,~t)
(19)

commute (or the flows generated by them commute; or one dynamical
system is symmetry of the other).

2. The vector fields û1 and û2 defined in (17) commute (see Fig. 2):

[û1, û2] = 0̂. (20)

3. The following two linear PDEs

û1ψ = û2ψ = 0 (21)

are satisfied for the same eigenfunction ψ (the two ODEs share the
same constant of motion ψ).

4. The following quasilinear PDEs of hydrodynamic type for the compo-
nents of the vectors ~u1(~x,~t), ~u2(~x,~t) are satisfied:

û1~u2 = û2~u1 ⇔ ~u2t1 + (~u1 · ∇)~u2 = ~u1t2 + (~u2 · ∇)~u1. (22)

Proposition 4. If the two commuting vector fields are Hamiltonian, then
(check it!):

[û1, û2] = 0 ⇔ H12 = {H1, H2}p,q +H2t1 −H1t2 = 0. (23)

4



x(t)

u

x0

u1
^

[ , ]=0u1 u2
^ ^

u2

u1

u2
^

^

^

Fig. 1 The flow generated by ~u. Fig. 2 Commuting vector fields.

2 Linear and quasi-linear PDEs of the first

order [1, 2]

Consider the evolution equation in N + 1 dimensions:

ψt +

N
∑

k=1

ukψxk = h (24)

Different cases

1. If the coefficients
uk = uk(~x, t) ∈ R

N (25)

are given functions, it’s a linear first order PDE in N + 1 dimensions
for the unknown ψ(~x, t).

2. If the arguments of the ui’s and h depend also on the unknown ψ(~x, t):

ui = ui(~x, t, ψ), h = h(~x, t, ψ), (26)

it’s a first order quasi-linear PDE (linear in the highest derivatives) in
N + 1 dimensions for the unknown ψ(~x, t).

3. If h = 0, it is a homogeneous equation.
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2.1 Quasi-linear PDEs

The first order quasi-linear PDE in n dimensions

P (x, ψ) · ∇xψ = Q(x, ψ) (27)

x = (x1, . . . , xn) is intimately related to the following system of n ODEs:

dx1

P1
= · · · = dxn

Pn
= dψ

Q
. (28)

If one of the independent variables is time t = xn, the PDE becomes, more
conveniently,

∂ψ

∂t
+ ~u(~x, t, ψ) · ∇~xψ = h(~x, t, ψ) (29)

where

~x = (x1, . . . , xN), ~u = (
P1

Pn
, . . . ,

Pn−1

Pn
)T , h =

Q

Pn
, N = n− 1, (30)

and the ODE becomes
d~x
dt

= ~u(x, ψ),
dψ
dt

= h(x, ψ).
(31)

To show these relations, let
ϕ(x, ψ) = c (32)

be the equation defining a solution of (27) (if ∂ϕ
∂ψ

6= 0, we can solve it wrt ψ,

obtaing the solution ψ(x) of (27)). Equation (32) defines an integral surface S
of (27)) in the (n+1)-dimensional (x, ψ) space (an hypersurface of dimension
n).

Since, from (32),

∇xϕ+
∂ϕ

∂ψ
∇xψ = 0, (33)

if ∂ϕ
∂ψ

6= 0, it follows that

P · ∇xϕ+Q
∂ϕ

∂ψ
= (P,Q) · (∇x, ∂ψ)ϕ = 0. (34)

Since the gradient of ϕ: (∇x, ∂/∂ψ)ϕ is normal to the integral surface S, the
(n + 1)-dimensional vector V = (P ,Q) is tangent to S at the point (x, ψ),
and defines a direction on S at that point. Moving along that direction, one
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construct a “characteristic curve”, always tangent to S. If s is the arc length
parameter along the characteristic curve, then dx/ds is parallel to V :

dx

ds
= µP,

dψ

ds
= µQ (35)

implying the system of n ODEs (28) or (31). The opposite is also true:

Proposition 4. The general solution of the system of n ODEs (28) generates
the general solution of the first order quasi-linear PDE in n dimension (27).
Proof. The general solution of (31) is described by the n = N + 1 equations

ϕj(x, ψ) = cj, j = 1, . . . , n, (36)

where the c′j are n independent constants, so that we can write

φ(c1, . . . , cn) = 0, ⇒ cn = F (c1, . . . , cn−1)

(

if
∂φ

∂cn
6= 0

)

, (37)

where φ is an arbitrary differentiable function of n arguments and F is an
arbitrary differentiable function of (n− 1) arguments, so that:

ϕn(x, ψ) = F (ϕ1(x, ψ), . . . , ϕn−1(x, ψ)) . (38)

Solving (38) wrt to ψ = ψ(x), one obtains the general solution of the PDE
(27), given in terms of an arbitrary function F of (n− 1) variables. Indeed,

dϕn(~x(t), t, ψ(t))

dt
=
∂ϕn
∂t

+ ~u · ∇~xϕn + h
∂ϕn
∂ψ

= 0, (39)

equivalent to (29), after using (34). 2

2.2 Linear PDEs

In the linear case, equation (29) reduces to

ψt + ~u(~x, t) · ∇~xψ = h0(~x, t) + h1(~x, t)ψ, (40)

and solutions of (40) are in one to one correspondence with solutions of the
system of ODEs:

d~x
dt

= ~u(~x, t),
dψ
dt

= h0(~x, t) + h1(~x, t)ψ
(41)
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which is now decoupled, and the characteristic curves are defined by (41a).
In the important homogeneous subcase h0 = h1 = 0

ûψ = ψt + ~u(~x, t) · ∇~xψ = 0, (42)

that we are going to discuss from now on, solutions of (42) are in one to one
correspondence with solutions of the system of ODEs:

d~x
dt

= ~u(~x, t),
dψ
dt

= 0 (⇒ ψ = cN+1) .
(43)

Indeed, from solutions of (42) one obtains solutions of (43) specializing the
above procedure. Viceversa, from the general solution of (43a), we construct
the general solution of (42). Indeed, the general solution of (43a) is charac-
terized by the system of nondifferential equations

φj(~x, t) = cj, j = 1, . . . , N (⇒ ~x = ~x (t, c1, . . . , cN)) ; (44)

from the usual condition cN+1 = F (c1, . . . , cN) it follows that the general
solution of the PDE (42) reads

ψ(~x, t) = F (φ1(~x, t), . . . , φN(~x, t)) , (45)

where F is an arbitrary differentiale function of N arguments (to check it,
i) verify that the N functions φj(~x, t), j = 1, . . . , N are particular solutions
of (40); ii) verify that N + 1 solutions of (40) are dependent, so that N
independent solutions form a basis (see Proposition 5); iii) verify that the
space of solutions of (40) form a ring (see Proposition 5)).

Proposition 5

1. Equation (42) admits N independent solutions.
Proof. Suppose we have N + 1 solutions

ψi(~x, t), i = 1, . . . , N + 1, (46)

of (42); then the corresponding system

ψit + ~u · ∇~xψi = 0, i = 1, . . . , N + 1, (47)
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viewed as an algebraic system for the N components of ~u, gives rise to
a nontrivial solution iff

∂(ψ1, . . . , ψN+1)

∂(x1, . . . , xN , t)
= 0; (48)

i.e., the N + 1 solutions ψ1, . . . , ψN+1 of the PDE (40) are dependent
2.

2. The solution space of (42) is a ring; i.e., an arbitrary differentiable
function f(ψ1, . . . , ψN) of solutions of (42) is a solution of (42) (check
it!). Also, if {ψ1, . . . , ψN} is a basis of solutions of (42), then any
solution ψ of (42) can be written in the form

ψ = F (ψ1, . . . , ψN ), (49)

for some differentiable function F of N arguments (check it!).

3. If the vector field associated with (40) is Hamiltonian, then the solution
space of (42) is also a Lie algebra, whose Lie bracket is the Poisson
bracket.

Proof. If ψ1, ψ2 are solutions of (40) and û is Hamiltonian:

ûψj = ψjt + ~u · ∇~xψj = ψjt + {H,ψj} = 0, j = 1, 2 (50)

Then

û{ψ1, ψ2} = {ψ1, ψ2}t + {H, {ψ1, ψ2}} = {ψ1t, ψ2} + {ψ1, ψ2t}−
{ψ2, {H,ψ1}} − {ψ1, {ψ2, H}} =
{ψ1, ψ2t + {H,ψ2}} + {ψ1t + {H,ψ1}, ψ2} = 0,

(51)
having used the Jacobi identity, implying that also {ψ1, ψ2} is solution
of (40) (see (14)) 2.

2.3 Homogeneous version of the quasi-linear PDE (27)

If Q = h = 0:
ψt + ~u(~x, t, ψ) · ∇~xψ = 0; (52)

then ψ is constant on the characteristic curves defined by (31):

dψ
dt

= 0, ⇒ ψ = const = F (~ξ),
d~x
dt

= ~u(~x, t, ψ) = ~u(~x, t, f(~ξ)).
(53)
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The general solution of (53b) is characterized by the N = n−1 nondifferential
equations:

ϕj(~x, t, F (~ξ)) = ξj, j = 1, . . . , N = n− 1 (54)

where ~ξ = (ξ1, . . . , ξN) is an arbitrary constant vector. Inverting this equation

wrt ~ξ: ~ξ = ~ξ(~x, t), and replacing it in (53a), one obtains

ψ(~x, t) = F (~ξ(~x, t)), (55)

where F is an arbitrary function of N variables. Equations (??) and (55)
characterize the general solution of (27).

Basic example We consider, as basic example (with ρ = ψ), the following
first order quasi-linear PDE in multidimension:

ρt + ~u(ρ) · ∇~xρ = 0, ρ = ρ(~x, t), (56)

which is nothing but the continuity equation

ρt + ∇~x · ~Q(ρ) = 0,

~u(ρ) = ∂ ~Q(ρ)
∂ρ

,
(57)

for some “density” ρ and some “flux vector” ~Q(ρ) = ρ~v(ρ). If N = 1 and
u1(ρ) = ρ, this equation reduces to the famous Hopf equation:

ρt + ρρx = 0, (58)

the simplest prototypical model in the description of the gradient catastrophe
(wave breaking) of one dimensional waves.

From the above considerations, the solution ρ(~x, t) of (56) is constant on
the characteristic curves defined by the system of ODEs:

d~x

dt
= ~u(ρ(~x, t)) = ~const. (59)

Therefore (59) can be trivially integrated:

~ϕ = ~x− ~u(F (~ξ))t = ~ξ (60)

where ~ξ is an arbitrary N -dimensional contant vector, describing an N -
parameter family of characteristic straight lines in R

N+1, and the constant
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value of ρ on the straight line labelled by ~ξ is F (~ξ), where F is an arbi-
trary scalar function of N variables. Therefore the solution ρ(~x, t) of (56) is
characterized by the non-differential equations

ρ(x, t) = F (~ξ),

~x = ~u(F (~ξ))t+ ~ξ.
(61)

Solving (61b) wrt ~ξ: ~ξ = ~ξ(~x, t), and replacing it in (61a), one obtains:

ρ(x, t) = F (~ξ(~x, t)), (62)

where F is an arbitrary scalar function of N variables.
Equivalently, this general solution is also characterized by the implicit

nondifferential equation
ρ = F (~x− ~u(ρ)t). (63)

If we add, for instance, the initial condition

ρ(~x, 0) = ρ0(~x), ~x ∈ R
N , (64)

then F = ρ0 and:
ρ = ρ0(~x− ~u(ρ)t). (65)

3 Analytic, geometric and universal aspects

of wave-breaking in 1+1 dimensions

For the geometric aspects, see [3, 4]; for the analytic aspects, see [5] and
below.

Consider the evolution of a localized one-dimensional wave according to
the Hopf equation

ut + uux = 0.
u(x, 0) = F (x), x ∈ R

(66)

Such evolution is described by the implicit equation

u = F (ξ),
ξ = x− F (ξ)t,

(67)

in which equation (67b) must be solved with respect to ξ, obtaining ξ =
ξ(x, t), and substituted in (67a), to get the solution u = F (ξ(x, t)).
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Such inversion is possible if the ξ-derivative of (67b) is different from zero.
Therefore the 1-dimensional (movable) Singularity Manifold (SM) of
(66) is described by the equation:

S(ξ, t) = 1 + Fξ(ξ)t = 0 ⇒ t = − 1

Fξ(ξ)
. (68)

Since

ux =
Fξ

1 + tFξ
, (69)

the wave breaks on the singularity manifold.
We are interested in the first time tb in which the breaking of the solution

occurs, corresponding to the characteristic values ξb such that

tb = t(ξb) = global min{t(ξ)} > 0 ⇒
Fξξ(ξb) = 0, Fξ(ξb) < 0, Fξξξ(ξb) > 0,

(70)

ξb is an inflection point of the initial profile.
At tb, the wave breaks in the point xb of the x-axis defined by

xb = F (ξb)tb + ξb. (71)

Now we study the solution (67) near breaking:

x = xb + x′, t = tb + t′, ξ = ξb + ξ′, (72)

where x′, t′, ξ′ are small:

ξ = x− F (ξ)t ⇒ ξ′
3
+ b(t′)ξ′ − γX(x′, t′) = 0, (73)

where
b(t′) =

6Fξ

tbFξξξ
t′, X(x′, t′) = x′ − F (ξb)t

′, γ = 6
tbFξξξ

(74)

corresponding to the maximal balance

|X| = O(|t′|3/2), |z| = O(|t′|1/2). (75)

At the same order, the SM equation reads:

SM : 0 = S(ξ, t) ∼ Fξ(ξb)t
′ +

Fξξξ(ξb)

2
tbξ

′2. (76)
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t

t b

ξ ξb

The singularity manifold

ξ+ξ (t)(t)−

The three roots of this cubic are given by the well-known Cardano’s for-
mula:

ξ′0 (x′, y′, t′) = (S+)
1

3 + (S−)
1

3 ,

ξ′± (x′, y′, t′) = 1
2

(

(S+)
1

3 + (S−)
1

3

)

±
√

3
2
i
(

(S+)
1

3 − (S−)
1

3

)

,
(77)

where
S± = R±

√
∆, ∆ = R2 +Q3

Q(t′) = b(t′)
3
, R(x′, t′) = γ

2
X(x′, t′).

(78)

Once ξ(x′, t′) is known from the solution of the cubic, implying also:

ξ′x′ =
1

S , ξ′x′x′ = −tbFξξξ
ξ′ξ′2x′

S , (79)

then the solution of the Hopf equation and its derivatives are then approxi-
mated, near breaking, by the formulae:

u(x, t) ∼ F (ξb + ξ′),

ux(x, t) ∼ F ′(ξ)ξ′x′ ∼
Fξ(ξb+ξ

′)

Gξt′+
Gξξξ

2
ξ′2tb

,

uxx(x, t) ∼ F ′′(ξ)(ξ′x′)
2 + F ′(ξ)ξ′xx.

(80)

Before breaking
If t < tb (t′ < 0), S and ∆ are strictly positive, and only the root ξ ′0 is real;
correspondingly, the real solution of (66) is single valued:

u ∼ F (ξb + ξ′0(x
′, t′)). (81)
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and the slope ux of the profile, finite ∀x, reaches its minimum at the inflection
point xf (t

′), at wich X = 0 ⇒ ξ′ = 0, ξ′xx = 0, uxx = 0:

xf (t
′) = xb + F (ξb)t

′ (X = x− xf(t
′)),

u(xf(t), t) = F (ξb), ux(xf (t), t) = 1
t−tb , uxx(xf (t), t) = 0.

(82)

To analyse the solution in a smaller region around the inflection point, we
choose

|X| = |x− xf (t
′)| = O(|t′|p+ 1

2 ), p > 1, (83)

Then ξ′3 << bξ′ ∼ −γX and the solution becomes more explicit:

ξ′ ∼ γX

b
=
x′ − F (ξb)t

′

Fξ(ξb)t′
, (84)

and the real solution of (66) reduces to the
exact similarity solution of the Hopf equation:

u ∼ F (ξb + ξ′) ∼ x− xb
t− tb

, (85)

describing the tangent to the profile at the inflection point.

t < t b

xf(t) xb

The analytic expression of the slope of the profile:

ux ∼ −
(

|t− tb| +
Fξξξ(ξb)

2
t2b

(

x− xf (t
′)

t− tb

)2
)−1

. (86)

14



ux ∼ (t − tb)
−1 in this very thin region; but ux = O(1) in the region |x −

xf (t)| = O(|t′|).

At breaking
In the limit t ↑ tb,
i) the inflection point reaches the breaking point: xf (t) → xb, and the tangent
to the inflection point becomes the vertical line x = xb.
ii) the solution of the cubic simplifies:

ξ′ = 3
√

γ(x− xb), (87)

and, correspondingly,

u ∼ F
(

ξb + 3
√

γ(x− xb)
)

, ux ∼
γ

3

F
(

ξb + 3
√

γ(x− xb)
)

(x− xb)2/3
, (88)

describing the typical vertical inflection at t = tb, in the neighborhood of xb:

xb

t = t b

x
f (t)

After breaking
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t

t b

ξ ξb

The singularity manifold

ξ+ξ (t)(t)−

The line t = const, t > tb intersects the SM in the two points

ξ±(t) = ξb ± ξM , ξM =

√

γ|Fξ(ξb)|(t−tb)
3

. (89)

Corresponding points on the physical axes:

x±(t′) = xf (t) ± xM , xM = 2

√

γ|Fξ(ξb)|3
27

(t− tb)
3/2 (90)

If |ξ′| < ξM(t) (x−(t) < x < x+(t)), ∆ = Q3 +R2 < 0 and all the three roots
of the cubic are real, and the solution of (66) becomes three-valued:

u0(x, t) = F (ξb + ξ′0(x
′, t′)), u±(x, t) = F (ξb + ξ′±(x′, t′)). (91)

xfxb (t)x (t)− x (t)+

t>t b
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At the end points ξ± (x±) of the segments, ∆ = 0 and the two real roots ξ+
and ξ− coincide (branch points):

ξ+(x+) = ξ−(x+) = ξM , ξ+(x−) = ξ−(x−) = −ξM , (92)

Expanding the cubic around these branch points, the solution exhibits the
universal square root behavior:

u± ∼ F

(

ξb + Z ±
√
γ(x−x−)

(3b)1/4 ,

)

, x > x−, |x− x−| << O(|t′|3/2),

u± ∼ F

(

ξb − Z ±
√
γ(x+−x)
(3b)1/4 ,

)

, x < x+, |x− x+| << O(|t′|3/2),
Z ≡

√

γ
3
|Fξ|(t− tb).

(93)

The movable singularity manifold presents several universal features. Corre-
spondingly, also the solution of the Cauchy problem for the Hopf equation
presents universality features near the singularity manifold
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