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1 Introduction

The nonlinear Schrödinger (NLS) equation

iut(x, t) + uxx(x, t) + 2ηu2(x, t)u∗(x, t) = 0, η = ±1, u(x, t) ∈ C, x, t ∈ R
(1)

and the nonlocal, nonlinear Schrödinger (NLNLS) equation (or PTNLS
equation)

ivt(x, t) + vxx(x, t) + 2ηv2(x, t)v∗(−x, t) = 0, η = ±1, (x, t) ∈ C, x, t ∈ R
(2)

where ∗ indicate complex conjugation and x, t ∈ R, are two distinguished
integrable reductions of the NLS system

iqt(x, t) + qxx(x, t) + 2q2(x, t)r(x, t) = 0, q(x, t), r(x, t) ∈ C,
−irt(x, t) + rxx(x, t) + 2r2(x, t)q(x, t) = 0

(3)

corresponding respectively to the choices.............
Their integrability scheme is given by the following Lax pair .......
The above reductions can obviously be written in a unified manner

through the four equations

iut(x, t) + uxx(x, t) + 2ηu2(x, t)u∗(νx, t) = 0, η, ν = ±1, (4)

reducing to the focusing and defocusing NLS for ν = 1 and respectively
η = 1 and η = −1, and to the focusing and defocusing PTNLS for ν = −1,
and respectively η = 1 and η = −1. The associated four Lax pairs read

Ψx(λ;x, t) = X(λ;x, t)Ψ(λ;x, t),
Ψt(λ;x, t) = T (λ;x, t)Ψ(λ;x, t),

(5)

where Ψ is a 2× 2 matrix fundamental solution of (11), and

X(λ;x, t) = −iλσ3 + iU(x, t),
T (λ;x, t) = 2λX(λ;x, t) + iV (x, t),

σ3 = (1,−1), U =

(
0 u(x, t)

ηu∗(νx, t) 0

)
,

V =

(
ηu(x, t)u∗(νx, t) iux(x, t)
−iηu∗x(νx, t) −ηu(x, t)u∗(νx, t)

)
.

(6)
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...... (7)

where .................
In this paper we first construct, via Darboux-Dressing (DD) techniques,

the formulas for the general N -soliton solution of equations (8),(2),(3) as a
ratio of determinants, and its degenerate structure, corresponding to the case
in which both determinants tend to zero in suitable limits of the parameters.
Then we use elementary symmetry properties of the above equations and of
some distinguished classes of exact solutions constructed via the DD formu-
las, to generate in a straightforward way, from given distinguished classes of
solutions of one of the four equations (??), classes of exact solutions of the
other three equations.

In particular in this way, we identify a family of x-periodic exact solu-
tions of focusing PTNLS from the well known class of soliton solutions of
Akhmediev type of focusing NLS equation, relevant in the x periodic RW
Cauchy problem, and we discover the following interesting fact: while the
space-periodic and time-localized solutions of focusing NLS, describing ana-
lytically RWs, are regular in space-time for all values of the arbitrary param-
eters present in the solution, the space-periodic and time-localized solutions
of focusing PTNLS maybe blow up in points of space-time starting from
regular initial data, in suitable regions of the space of free parameters.

Since, applying the recent results obtained in [4, 7] on the solution of
the periodic RW Cauchy problem for NLS to the case of PTNLS equation,
it is in principle possible to give an analytic characterization of the class of
initial data giving rise to a regular RW recurrence, and of the class of initial
data giving rise instead to blow-up at finite time, when the RW appears,
analytically describing all the blow-up features in terms of the Cauchy data
[?].

2 The DD formulas for the N soliton solution

Here we outline the derivation of the DD formulas depending on both pa-
rameters η and ν, enabling one to simultaneously construct the N -soliton
solutions oover any given starting solution, of the equations (8),(2),(3). Here
we follow the derivation given in [?] for the construction of the N soliton
solution of focusing NLS over the background solution u0(x, t) = exp(2it),
first presented in [?] in the case in which u0(x, t) = 0. DD formulas written
separatly for focusing and defocusing NLS can be found, f.i., in ; for defo-
cusing PTNLS, in .. Since the derivation is by now standard, we omit too
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many details, that can be found in the above references.
ocusing nonlinear Schrödinger (NLS) equation

iut + uxx + 2η|u|2u = 0, η = ±1, u(x, t) ∈ C, (8)

describes quasi-monochromatic waves in weekly nonlinear media in Nature.
Its constant background solution

u0(x, t) = e2iηt (9)

describing, for instance, Stokes waves in the theory of surface waves in deep
water, a state of constant light intensity in nonlinear optics, and a state
of constant boson density in the theory of Bose - Einstein condensates,
is unstable under monochromatic perturbations of sufficiently long wave
length, and this instability is considered the main cause for the formation
of rogue waves (RWs) in Nature.

The NLS equation (8) is the compatibility condition [10]

Xt − Tx + [X,T ] = 0 (10)

for the Zakharov - Shabat (ZS) Lax pair

Ψx(λ;x, t) = X(λ;x, t)Ψ(λ;x, t),
Ψt(λ;x, t) = T (λ;x, t)Ψ(λ;x, t)

(11)

where Ψ is a 2× 2 matrix fundamental solution of (11) (so that the inverse
matrix Ψ−1 exists), and

X(λ;x, t) = −iλσ3 + iU(x, t),
T (λ;x, t) = 2λX(λ;x, t) + iV (x, t),

U =

(
0 u
ηū 0

)
, V =

(
η|u|2 iux
−iηūx −η|u|2

) (12)

EsRW 01. Verify that the NLS equation (8) is the integrability condition
for (10)-(12).

Since

X†(λ̄) = −NX(λ)N , T †(λ̄) = −NT (λ)N , N = diag(η, 1) (13)

it follows that Ψ−1(λ) and Ψ†(λ̄) satisfy the same matrix equations

Fx = −FX, Ft = −FT ; (14)
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therefore the normalization of the fundamental solution can be chosen such
that

Ψ−1(λ) = NΨ†(λ̄)N , (15)

if detΨ(λ) = 1 (we often omit to indicate the dependence on x, t, if not
necessary).

Let u0(x, t) be a particular solution of NLS, and let Ψ0(λ;x, t) be the cor-
responding fundamental solution of (11). Again its normalization is chosen
such that

Ψ−1
0 (λ) = NΨ†0(λ̄)N . (16)

3 Darboux dressing [8, 9]

We look for the following relation

Ψ(λ;x, t) = χ(λ;x, t)Ψ0(λ;x, t) (17)

between the matrix solutions Ψ(λ;x, t) and Ψ0(λ;x, t) of (11), corresponding
to the particular solutions u(x, t) and u0(x, t) of NLS, where χ(λ;x, t) is the
so-called Darboux (Dressing) matrix.

We also assume that

χ(λ;x, t) = I +
χ̃(x, t)

λ
+O(λ−2), |λ| � 1. (18)

If Ψ and Ψ0 satisfy (15) and (16), then

χ−1(λ) = Nχ†(λ̄)N . (19)

Substituting (17) in (11) and using (18), we infer that

U = U0 + [σ3, χ̃], (20)

implying that
u(x, t) = u0(x, t) + 2 (χ̃(x, t))12 , (21)

where (M)12 is the component 12 of matrix M . In addition we have the
symmetry:

χ̃21 = −ηχ̃12. (22)

EsRW 02. Verify (21).

From the definition (17) we also infer that

χx = Xχ− χX0, χt = Tχ− χT0 (23)
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and that
X(λ) = −χ(λ) (∂x −X0(λ))χ−1(λ),
T (λ) = −χ(λ) (∂t − T0(λ))χ−1(λ).

(24)

We remark that the matrices X0, T0, X, T must depend on λ polinomially:

X0(λ;x, t) = −iλσ3 + iU0(x, t), X(λ;x, t) = −iλσ3 + iU(x, t),
T0(λ;x, t) = 2λX0(λ;x, t) + iV0(x, t), T (λ;x, t) = 2λX(λ;x, t) + iV (x, t),

(25)
and this will imply suitable constraints on χ.

3.0.1 Rational dependence on λ

We also assume that χ(λ) be a rational function of λ:

χ(λ;x, t) = I +
N∑
m=1

Am(x, t)

λ− λm
, λm ∈ C, (26)

implying that

u(x, t) = u0(x, t) + 2

N∑
m=1

(Am(x, t))12 . (27)

Using (19) it follows that

I = χ(λ)χ−1(λ) = χ(λ)Nχ†(λ̄)N , (28)

Consequently we have

I = χ(λ)χ−1(λ) ∼ χ(λ̄n)N A†n

λ− λ̄n
N , λ ∼ λ̄n (29)

implying that
χ(λ̄n)NA†n = 0, 1 ≤ n ≤ N. (30)

It follows that the matrices An, A
†
n are degenerate

det(An) = det(A†n) = 0, ∀n (31)

with the following representation

An = p(n) · q(n)T , A†n = q(n) · p(n)
T
, (32)

where

v =

(
v1

v2

)
, vT = (v1, v2), (33)
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or, in components:

(An)αβ = p(n)
α q

(n)
β ,

(
A†n

)
αβ

= q
(n)
α p

(n)
β . (34)

Therefore the constraint (30) is satisfied if

χ(λ̄n)Nq(n) = 0. (35)

In addition, equations (19) and (24) imply that, if X0, T0 have the λ-
dependence indicated in (25), X,T would be singular in λ̄n:

X(λ) ∼ −χ(λ̄n)
(
∂x −X0(λ̄n)

)
q(n) · p(n)

T
(λ− λ̄n)−1, λ ∼ λ̄n. (36)

But since X,T must have the λ-dependence indicated in (25) as well, it
follows that the residue of the expression in (36) must be zero. Consequently,
using also (35), we infer that

χ(λ̄n)
(
Nq(n)

x −X0(λ̄n)Nq(n)
)

= 0. (37)

Since Ψ0(λ̄n) is a fundamental solution of

Ψ0x(λ̄n) = X0(λ̄n)Ψ0(λ̄n), (38)

then
Nq(n) ≡ Ψ0(λ̄n) ξ(n) (39)

solves (37), satisfying: Nq(n)
x−X0(λ̄n)Nq(n) = 0, where ξ(n) be a constant

2D vector.
Given the q(n)’s from (39), we observe that (35) can be rewritten as a

linear inhomogeneous system for the p(n)’s:

N∑
m=1

Bnm p
(m) = q(n), n = 1, . . . , N, (40)

where
Bnm ≡ <Nq(n),q(m)>

λm−λn
.

< Nq(n), q(m) >≡
2∑

α=1
gαq

(n)
α q

(m)
α , g1 = η, g2 = 1.

(41)

EsRW 03. Verify that (41) define the proper p(m)’s.

Recapitulating, from a given solution u0(x, t) of NLS and from the cor-
responding fundamental solution Ψ0(λ) of the Lax pair (11), one constructs
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the q(n)’s and the p(n)’s from (39) and (41). Then χ(λ) is known from (26)
and the new (dressed) solution u(x, t) is constructed from (27) as follows

u(x, t) = u0(x, t) + 2
N∑
n=1

p
(n)
1 (x, t)q

(n)
2 (x, t). (42)

We remark that the solution of the linear system (41) reads

p
(n)
i = − 1

detB

∣∣∣∣∣∣∣∣∣∣

0 δ1n . . . δnN

giq
(1)
i B11 . . . B1N
...

...
...

...

giq
(N)
i BN1 . . . BNN

∣∣∣∣∣∣∣∣∣∣
, 1 ≤ n ≤ N, i = 1, 2, (43)

and the solution (42) of NLS can be written as ratio of determinants in the
following form

u(x, t) = u0(x, t)− 2
detA

detB
, (44)

where

A =


0 q

(1)
2 . . . q

(N)
2

ηq
(1)
1 B11 . . . B1N
...

...
...

...

ηq
(N)
1 BN1 . . . BNN

 . (45)

In the simplest case N = 1,

p
(1)
1 = ηq

(1)
1 /B11, B11 =

|q(1)|2

2iImλ1
, (46)

and (42) becomes

u(x, t) = u0(x, t) + 4iη Imλ1
q

(1)
1 q

(1)
2

|q(1)|2
. (47)

EsRW 04. Prove (47) from (42).

If the initial solution is the unstable background (9), the corresponding
fundamental solution of the Lax pair is

Ψ0(λ) = 1√
2µ(µ+λ)

eiηtσ3
(

eiΘ(λ) −η(µ+ λ)e−iΘ(λ)

(µ+ λ)eiΘ(λ) e−iΘ(λ)

)
,

Θ(λ) ≡ µ(x+ 2λt),

(48)
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where σ3 = diag(1,−1) is the Pauli matrix and µ, λ are complex parameters
satisfying the constraint

µ2 = η + λ2. (49)

EsRW 05. Verify that (48) is the fundamental solution of (11) correspond-
ing to (9), and satisfying det Ψ0 = 1.

Since we look for solutions periodic in x (having in mind, for instance,
Stokes water waves) and exponentially blowing or decaying in t (to describe
the modulation instability), we must choose −1 < µ < 1 and λ ∈ iR, with
|λ| < 1. It is therefore convenient to parametrize the relation (49) in the
dollowing way

µ = cosφ, λ = i sinφ, φ ∈ R, (50)

so that
Θ(λ) = (cosφ)x+ i(sin 2φ)t, µ+ λ = eiφ. (51)

Replacing λ by λ̄ is equivalent to replacing φ by −φ; correspondingly

Θ(λ̄) = (cosφ)x− i(sin 2φ)t ≡ kx− iσt
2

, (52)

where
k = 2µ = 2 cosφ (53)

plays the role of wave number and

σ = k
√

4− k2 = 2 sin 2φ (54)

that of amplification factor (growing rate). Therefore

Ψ0(λ̄) =
1√
2µ
eitσ3

(
e
ikx+σt+iφ

2 −e−
ikx+σt+iφ

2

e
ikx+σt−iφ

2 e−
ikx+σt−iφ

2

)
. (55)

Choosing ξ = (γ, γ−1)T , then, from (39)

q = Ψ0(λ̄) ξ =
1√
k
eiηtσ3

(
γ

(
e
ikx+σt+iφ

2

e
ikx+σt−iφ

2

)
+ γ−1

(
−e−

ikx+σt+iφ
2

e−
ikx+σt−iφ

2

))
(56)

Going from the arbitrary real parameters |γ|, arg γ to the real parameters
x1, t1 via

x1 = −2

k
arg γ − π/4, t1 = − 2

σ
log |γ|, (57)
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we finally obtain

q =
1√
k
eitσ3

(
e
i(k(x−x1)−π/2)+σ(t−t1)+iφ

2 − e−
i(k(x−x1)−π/2)+σ(t−t1)+iφ

2

e
i(k(x−x1)−π/2)+σ(t−t1)−iφ

2 + e−
i(k(x−x1)−π/2)+σ(t−t1)−iφ

2

)
(58)

At last, after some algebra (see (47) and (34)), one obtains
1) the so-called Akhmediev breather [1, 2]

u(x, t) = A(x, t;φ, x1, t1, ρ), (59)

A(x, t;x1, t1, ρ) ≡ e2it+iρ cosh[σ(t− t1) + 2iφ] + sinφ cos[k(x− x1)]

cosh[σ(t− t1)]− sinφ cos[k(x− x1)]
(60)

exact solution of NLS for all values of the real parameters φ, x1, t1, ρ, and
k, σ are defined in (53), (54).
2) The corresponding matrix eigenfunction

Ψ(λ, x, t) =
(
I + A(x,t)

λ−i sinφ

)
Ψ0(λ, x, t) =

eitσ3√
2µ

(
I + i sin(φ)B

cosh[σ(t−t1)]−sinφ cos[k(x−x1)])

)( e
ikx−σt−iφ

2 −e−
ikx−σt−iφ

2

e
ikx−σt+iφ

2 e−
ikx−σt+iφ

2

)
.

(61)
where

A(x, t) = i sinφ
cosh[σ(t−t1)]−sinφ cos[k(x−x1)])e

itσ3B(x, t)e−itσ3 ,

B(x, t) =

(
cosh[σ(t− t1)]− sin[k(x− x1) + φ] sinh[σ(t− t1) + iφ]− i cos[k(x− x1)]

sinh[σ(t− t1)− iφ] + i cos[k(x− x1)] cosh[σ(t− t1)]− sin[k(x− x1)− φ]

)
,

Ψ0(λ) = eitσ3√
2µ

(
e
ikx−σt−iφ

2 −e−
ikx−σt−iφ

2

e
ikx−σt+iφ

2 e−
ikx−σt+iφ

2

)
.

(62)

EsRW 06. Complete the algebraic steps to get (59)-(62). Why is it possible
to insert in (60) the factor exp(iρ), ρ ∈ R?

The solution (60) is exponentially localized in time over the background
u0, and changes it by the multiplicative phase factor e4iφ:

A(x, t;φ, x1, t1, ρ)→ e2it+i(ρ±2φ), as t→ ±∞; (63)

in addition, its modulus takes its maximum at the point (x1, t1)

|A(x1, t1;φ, x1, t1, ρ)| = 1 + 2 sinφ. (64)
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Figure 1. 3D plot of the modulus of (60).

4 A simple Cauchy problem

We now study the Cauchy problem for (8) on the segment [0, L], with pe-
riodic boundary conditions, and we consider, as initial condition, a generic,
smooth, periodic, zero average, small perturbation of the background solu-
tion (9):

u(x, 0) = 1 + εv(x), v(x+ L) = v(x), 0 < ε� 1, (65)

It is well-known that, in this Cauchy problem, the Modulation Instability
(MI) is due to the fact that, expanding the initial perturbation in Fourier
components:

v(x) =
∑
j≥1

(
cje

ikjx + c−je
−ikjx

)
, kj =

2π

L
j, |cj | = O(1), (66)

and defining N ∈ N+ as N = bL/πc, the first N modes ±kj , 1 ≤ j ≤ N , are
unstable, since they give rise to exponentially growing and decaying waves
of amplitudes O(εe±σjt), where the growing rates σj are defined by

σj = kj

√
4− k2

j > 0, (67)

while the remaining modes give rise to oscillations of amplitude O(εe±iωjt),

where ωj = kj
√
k2
j − 4, and therefore are stable.

EsRW 7. Show it.

We have in mind the following qualitative recurrence scenario for finite
N . The exponentially growing waves becomeO(1) at times ofO(σj

−1| log ε|),
when one enters the nonlinear stage of MI. In this second time interval one
expects the generation of a transient, O(1), coherent structure, described
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by a soliton - like solution of NLS over the unstable background (9), the
so-called RW. Such a RW will have an internal structure, due to the non-
linear interaction between the N unstable Fourier modes, fully described
by the integrable NLS theory. Due again to MI, such a coherent RW is
expected to be destroyed in a finite time interval, and one enters the third
asymptotic stage, characterized, like the first one, by the background plus
an O(ε) perturbation, and described again by the NLS theory linearized
around the background. This second linearized stage is expected, due again
to MI, to give rise to the formation of a second nonlinear stage of MI. This
procedure should iterate forever, in the integrable NLS model, giving rise to
the generation of an infinite sequence of RWs. Therefore one is expected to
be dealing with the following basic deterministic issues. For a given generic
initial condition of the type (65), how to predict: 1) the “generation time”
of the first RW; 2) the “recurrence times” measuring the time intervals be-
tween two consecutive RWs; the analytic form of this deterministic sequence
of RWs.

We first consider the case in which the initial perturbation (65), (66)
excites only the unstable modes (the sum in (66) goes up to N). Then, for
|t| ≤ O(1):

u(x, t) = e2it

(
1 +

N∑
j=1

(
|αj |

sin 2φj
eσjt+iφj cos[kj(x−Xj)]+

|βj |
sin 2φj

e−σjt−iφj cos[kj(x−X−j )]
))

+O(ε2),

(68)

where

αj = e−iφjcj − eiφjc−j , βj = eiφjc−j − e−iφjcj ,
Xj =

arg(αj)+π/2
kj

, X−j =
− arg(βj)+π/2

kj
, j = 1, . . . , N,

σj = 2 sin(2φj), kj = 2 cosφj ⇔ φj = arccos(kj/2), j = 1, . . . , N.
(69)

EsRW 8. Get equations (68), (69).

Therefore the initial datum splits into exponentially growing and decay-
ing waves, respectively the α- and β-waves, each one carrying half of the
information encoded into the initial datum. At t = O(| log ε|), the expo-
nentially growing α-waves become O(1) and the solution is described by an
exact NLS solution matching with the asymptotic formula

u(x, t) ∼ e2it
N∑
j=1

(
1 +

|αj |
sin 2φj

eσjt+iφj cos[kj(x−Xj)]

)
, (70)
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obtained evaluating (68) in the intermediate region 1� t� O(| log ε|).
From now on we concentrate on the simplest case, choosing N = 1.

Therefore we are looking, in the nonlinear region t = O(| log ε|), for an
exact 1-mode, x-periodic, transient solution of NLS, matching with (70) for
N = 1 in the overlapping region 1� t� O(| log ε|). The natural candidate
for such a solution is the Akhmediev breather (60). Evaluating (60) in the
overlapping region 1 � t � O(| log ε|) and imposing a good matching with
(70) with N = 1, one fixes all the free parameters in (60) as follows

k = k1, σ = σ1, φ = φ1, ρ = 2φ1,

x1 = X1, t1 = T1 ≡ 1
σ1

log
(

σ2
1

2|α1|

)
= O(σ−1

1 | log ε|) (71)

EsRW 9. Verify the matching formulas (71).

Therefore the first RW appears in the finite t-interval |t − T1| ≤ O(1),
and is described by the Akhmediev breather solution of NLS:

u(x, t) = A
(
x, t;φ1, X1, T1, 2φ1

)
+O(ε), (72)

whose parameters are expressed in terms of the initial data through ele-
mentary functions. It is important to remark that the first RW contains
informations only on half of the initial data (the half encoded in the param-
eter α1: the α1-wave), and that the modulus of the first RW generated by
the initial condition (65),(66) acquires its maximum at t = T1 in the point
x = X1, mod L; and the value of this maximum is

|u(X1, T1)| = 1 + 2 sinφ1 < 1 +
√

3 ∼ 2.732. (73)

This upper bound, 2.732 times the background amplitude, is consequence
of the formula sinφ1 =

√
1− (π/L)2, π < L < 2π, and is obtained when

L→ 2π.

EsRW 10. Verify (73).

We also notice that the position x = X1 of the maximum of the RW
coincides with the position of the maximum of the growing sinusoidal wave
of the linearized theory; this is due to the absence of nonlinear interactions
with other unstable modes, if the simplest case N = 1.

Similar considerations can be made to study this Cauchy problem at
negative times, obtaining the following result.
The first RW appearing at negative times, in the finite t-interval |t+ T−1 | ≤
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O(1), is described again by the Akhmediev solution of NLS, but with different
parameters:

u(x, t) = A
(
x, t;φ1, X

−
1 ,−T

−
1 ,−2φ1

)
+O(ε),

T−1 = 1
σ1

log
(

σ2
1

2|β1|

)
.

(74)

It is important to remark that this RW contains informations only on the
second half of the initial data (the half encoded in the parameter β1: the
β1-wave), and that the modulus of the first RW generated by the initial con-
dition (65),(66) acquires its maximum at t = −T−1 < 0 in the point x = X−1 .
Since NLS is invariant under t-translations, one infers the following exact
RW recurrence, in the case of a single unstable mode.

The solution of the x-periodic Cauchy problem describes, in the case of one
unstable mode ±k1, an exact recurrence of Akhmediev breathers, whose pa-
rameters, changing at each appearance, are expressed in terms of the initial
data via elementary functions. T1 is the first appearance time of the RW
(the time at which the RW achieves the maximum of its modulus), X1, is
the position of such a maximum, 1 + 2 sinφ1 is the value of the maximum,

∆T = T1 + T−1 =
2

σ1
log

(
σ2

1

2ε
√
|α1β1|

)
, (75)

is the recurrence time (the time interval between two consecutive RW ap-
pearances),

∆Xn = X1 −X−1 =
arg(α1β1)

k1
, mod L (76)

is the x-shift of the position of the maxima in the recurrence. In addition,
after each appearance, the RW changes the background by the multiplicative
phase factor exp(4iφ1) (see Figures 2 and 3). This exact RW recurrence,
an interesting example of Fermi-Pasta-Ulam recurrence [3], and it is in good
agreement with a nonlinear optics experiment [6]
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Figures 2 and 3. 3D plot and density plot of |u(x, t)| describing the RW
recurrence of one unstable mode.

EsRW 11. Verify this recurrence.

The deterministic aspects of the RW dynamics for a finite number of
unstable modes has been recently completely clarified in [7]. The matched
asymptotics expansions techniques used in the case of one unstable mode
are not adequate anymore, and techniques involving the finite gap method
(a nonlinear analogue of the Fourier series method for linear PDEs) have
been used.
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