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2 Esercizi proposti (raccolta provvisoria)

2.1 Propagazione ondosa lineare e non lineare

2.1.1 Onde dispersive lineari [1, 5]

1) Given the Fourier integral representation

u(x, t) =
1

2π

∫

R

û0(k)e
i(kx−ω(k)t)dk, (1)

where û0(k) is the Fourier transform of the initial condition u(x, 0):

û0(k) =

∫

R

e−ikyu(y, 0)dy, (2)

1. show that (1) can be written in the following suggestive form:

u(x, t) =

∫

R

S(x− y, t)u(y, 0)dy, (3)

where S(x, t) is the “fundamental” solution of the PDE defined as:

S(x, t) =
1

2π

∫

R

ei(kx−ω(k)t)dk. (4)

2. If ω(k) = kn, then S(x, t) is the following similarity solution of the PDE:

S(x, t) = 1
t1/n

f
(

x
t1/n

)

,

f(ξ) = 1
2π

∫

R
ei(kξ−kn)dk.

(5)

3. Show that, if u ∈ R, then:

û0(k) = û0(−k), k ∈ R

u(x, t) = 1
πRe

∞
∫

0

û0(k)e
i(kx−ω(k)t)dk

(6)
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If, in addition, û0(k) can be prolongued outside the real axis, then

û0(k) = û0(−k̄). (7)

(for the second of (6) we have also assumed that ω(k) is odd: ω(−k) =
−ω(k))

2) Given the following linear PDEs:

iut + uxx = 0, free particle Schrödinger equation,
ut + uxxx = 0, linearized KdV equation,
utt − uxx + u = 0, Klein - Gordon equation,

(8)

1. Construct the fundamental similarity solution (5).
2. Study the longtime behavior, for t >> 1, x/t = O(1), of the solutions of
their Cauchy problem using the stationary phase, Laplace, or saddle point
methods, depending on the situation, and estimate the error.
3. Study of the relevance of exact similarity solution.
Solution:
i) Free particle Schrödinger equation:

S(x, t) = 1
2
√
πt
ei(

x2

4t
−π

4
),

u(x, t) = S(x, t)
(

A(ξ) + 1
tB(ξ) +O(t−2)C(ξ)

)

, ξ = x
2t = O(1), t >> 1

A(ξ) = û0(ξ), B(ξ) = − i
4Aξξ

(9)
ii) Linear KdV. For x/t > 0, the lines of constant v(k) are the imaginary
axis and the hyperbola kR

2 − 3kI
2 + x/t = 0. The steepest descent contour

passing through the critical point i
√

x
3t is the upper branch of the hyperbola,

while the steepest descent contour passing through the critical point −i
√

x
3t

is the imaginary axis.

S(x, t) = 1
(3t)1/3

Ai
(

x
(3t)1/3

)

,

u(x, t) ∼ û0(|x/3t|1/2)√
4π|3x/t|1/2t

e−i2|x/3t|3/2t+iπ/4 + c.c., x
3t = O(1) < 0, t >> 1,

u(x, t) ∼ û0(i|x/3t|1/2)√
12π|3x/t|1/2t

e−2|x/3t|3/2t, x
3t = O(1) > 0, t >> 1,

u(x, t) ∼ û0(0)

2π(3t)1/3
Ai

(

x
(3t)1/3

)

− iû′
0
(0)

2π(3t)2/3
Ai′

(

x
(3t)1/3

)

, x
(3t)1/3

= O(1), t >> 1,

u(x, t) ∼ û0(0)
2π S(x, t), x

(3t)1/3
= O(1), t >> 1,

(10)
where Ai(ξ) is the Airy function

Ai(ξ) =
1

2π

∫

R

ei(kξ−k3)dk, (11)
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solution of the ODE: f(ξ)′′ − ξf(ξ) = 0.
iii) Klein-Gordon equation. The dispersion relation is two-valued (since the
PDE is second order in t):

ω±(k) = ±
√

k2 + 1; (12)

therefore the phase velocity is greater than the light speed 1, while the group
velocity is less than 1:

ω

k
=

√
k2 + 1

k
> 1,

dω

dk
=

k√
k2 + 1

< 1 (13)

The Fourier representation of the real solution reads:

u(x, t) =
1

2π

∫

R

A(k)ei(kx+
√
k2+1t)dk +

1

2π

∫

R

A(−k)ei(kx−
√
k2+1t)dk, (14)

where

A(k) =
1

2

(

û0(k)− i
û0t(k)√
k2 + 1

)

. (15)

For x/t < 1 (inside the light cone) and t >> 1:

u ∼ 1√
2πt

(

1−
(x

t

)2
)−3/4

A

(

− x√
t2 − x2

)

ei
√
t2−x2+iπ/4 + c.c. (16)
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Figures 1. Three time steps (t = 0, t = T/2, t = T ) of the evolution of
a gaussian initial condition according to, respectively, the wave, the Klein-
Gordon, the linear Schrödinger, and the linear KdV equations (numerical
solution).
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3) Study the longtime behavior, for t >> 1, x/t = O(1), of the Fourier
integral

u(x, t) =
1

2π

∫

R

û0(k)e
i(kx−ω(k)t)dk (17)

under the hypothesis that there exists a unique stationary phase point
k0(x/t) ∈ R, and that ω′′(k0) = 0, ω′′′(k0) 6= 0.

4) Given the linear PDE P(∂t,∇~x)u(~x, t) = 0, ~x ∈ R
n, t ∈ R in (n + 1)

dimensions, with u ∈ L1(R
n) ∩ L2(R

n),
i) show that the solution of its Cauchy problem:

P(∂t,∇~x)u(~x, t) = 0, u(~x, 0) = u0(~x) ∈ L1(R
n) ∩ L2(R

n) (18)

is given by the Fourier integral:

u(~x, t) =
∫

Rn û0(~k)e
i(~k·~x−ω(~k)t) d~k

(2π)n

û0(~k) =
∫

Rn u0(~x)e
−i~k·~xd~x

(19)

ii) Show that, under the hypothesis that the vector equation for ~k

~x

t
= ∇~k

ω(~k) (20)

admits a unique real solution ~k0 = ~k0(~x/t) ∈ R
n, the extension of the

stationary phase method for multiple integrals gives the following longtime
behavior:

u ∼
(

1
2πt

)n/2
(

det
(

∂2ω(~k0)
∂ki∂kj

))−1/2

û0(~k0)e
i(~k0·~x−ω(~k0)t+mπ

4
),

m ≡ −
n
∑

j=1
sgn(λj)

(21)

where λj , j = 1, .., n are the (real) eigenvalues of matrix
(

∂2ω(~k0)
∂ki∂kj

)

.

5) Let Γ(z) be the Euler Γ function:

Γ(z) =

∞
∫

0

e−ttz−1dt, Re z > 0. (22)

i) Show that it is the generalization of the factorial: Γ(n+ 1) = n!, n ∈ N.
ii) Use the Laplace method to construct the Stirling formula:

n! = nne−n
√
2πn

(

1 +O(n−1)
)

, n >> 1. (23)
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2.1.2 Onde iperboliche e la catastrofe del gradiente[15, 9, 7, 17, 8]

1) Show that the following linear PDE:

ρt + c(x, t)ρx + a(x, t)ρ = b(x, t) (24)

is equivalent to the system of two ODEs

dρ
dt + a(x, t)ρ = b(x, t),
dx
dt = c(x, t)

(25)

on the characteristic curve dx/dt = c(x, t).

2) Find the general solution of the following linear PDEs:

ut + t2ux + xu = 0,
(

u = F (x− t3/3)e−(t4/12+t(x−t3/3))
)

,

xux + yuy = 0, (u = F (y/x)) ,
xux + yuy = x2,

(

u = x2/2 + F (y/x)
)

,
xux + yuy = u, (u = xF (y/x)) ,
xux + yuy + zuz = 0, (u = F (y/x, z/x)) ,
gyux − gxuy = 0, g(x, y) given, (u = F (g(x, y)))

(26)

3) Find the general solution of the following quasi-linear PDEs:

i) ut + c(u)ux = 0, u = F (x− c(u)t),
ii) ut + c(u)ux = 1,
c(u) = u ⇒ u = t+ F (x− ut+ t2/2),
c(u) = u2 ⇒ u = t+ F (x− u2t+ ut2 − t3/3)

(27)

4) Given the two Cauchy problems for the Hopf equation:

ut + uux = 0, u = u(x, t), x ∈ R, t ≥ 0,

i) u(x, 0) = e−x2

,
ii) u(x, 0) = (x2 + 1)−1,

(28)

i) draw the 1-parameter family of characteristic curves; ii) find the first
characteristic parameter ζb and the first breaking point (xb, tb).

5) Compression and rarefaction waves Consider the Cauchy problem:

ut + uux = 0, u = u(x, t), x ∈ R, t ≥ 0,
u(x, 0) = a2H(−1− x) + a1H(x− 1) +H(1− x2)

(

a1+a2
2 − a2−a1

2 x
)

,
(29)
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in the two cases
i) a2 > a1 > 0,
ii) a1 > a2 > 0.

(30)

Solve it explicitely, draw the characteristic curves and show that they de-
scribe respectively a compression and a rarefaction wave. Indicate if there
is wave breaking and, if so, find ζb and (xb, tb).

6) Consider the Cauchy problem

ut + uux = 0,
u(x, 0) = f(x),

(31)

where f describes a single bump, and study the behavior of the solution
near breaking.

7) Given the following system of PDEs, establish if they are hyperbolic and,
if so, write them in characteristic form.

i) The wave equation utt − c2uxx = 0.
ii) The Klein - Gordon equation utt − c2uxx + u = 0.
iii) The system

ut + c(u, v)ux = 0,
vt + c(u, v)vx = u

(32)

iv) The system
ut + c(u)ux = 0,
vt + c(u)vx + c′(u)vux = 0

(33)

v) The gas dynamics equations

ρt + uρx + ρux = 0,
ut + uux +

px
ρ = 0,

St + uSx = 0,

(34)

where p = p(ρ, S).

8) Find the Riemann invariants of the wave equation utt− c2uxx = 0 and of
the gas dynamics equations (34) (under the constant entropy S hypothesis).
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Figures 2. The evolution of a gaussian according to the Hopf equation
(numerical inversion of the analytic solution).

2.1.3 Il problema della regolarizzazione

1) Regularize the compression wave of problem 5) of section 2.1.2

2) What happens if we look for discontinuous solutions of ut + uux = 0 in
the form u = H(s(t) − x)u−(x, t) +H(x − s(t))u+(x, t), where H(x) is the
Heaviside step function and u±(x, t) are smooth functions?

3) Consider the Cauchy problem

ut + uux = 0,
u(x, 0) = f(x),

(35)

where f(x) describes a single bump, and study the behavior of the regular-
ized (shock ) solution near breaking.
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4) Given the Cauchy problem

ut + c(u)ux = 0, c(u) = Q′(u),
u(x, 0) = f(x),

(36)

where f(x) describes a single bump,
i) show that the shock condition

ṡ =
Q(u2)−Q(u1)

u2 − u1
(37)

is equivalent of placing the shock in order to cut equal area lobi of the three
valued solution.
ii) Show that, if c(u) = u, Q(u) = u2/2, the shock equations involving
s(t), η1(t), η2(t) can be reformulated as cutting equal area lobi on the initial
profile:

η2
∫

η1

f(η)dη =
1

2
(η1 − η2)(f(η1) + f(η2)) (38)

5) Given the Burgers equation ut + uux = νuxx, i) find its traveling wave
solution satisfying the boundary conditions u(x, t) → u±, x → ±∞, where
u± are constants, and discuss the shock structure. ii) Find its similarity
solutions.
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Figures 3. Three time steps (t = 0, t = T/2, t = T ) of the evolution of
a gaussian initial condition according to the Burgers equation with small
dissipation (numerical solution).
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2.2 La propagazione ondosa in Natura, il metodo multiscala
e le equazioni modello [4, 8, 1, 3, 14]

1) Consider the two anharmonic oscillators

q̈ + q − ǫ
6q

3 = 0, cubic pendulum, 0 < ǫ << 1,
q̈ + q + ǫq̇3 = 0, with nonlinear friction

(39)

with the same initial conditions

q(0) = 1, q̇(0) = 0. (40)

Use the multiscale method to show that

q(t) = cos
(

t− 1
16εt

)

+O(ε),

q(t) =
(

1 + 3
4εt

)−1/2
cos t+O(ε)

(41)

2) Use the multiscale method to construct the solution

q(t) =
a0e

εt/2

√

1 +
(

a0
2

)2
(eεt − 1)

cos(t+ φ0) +O(ε) (42)

of the Van Der Pol oscillator

q̈ + q − ε(1− q2)q̇ = 0, (43)

and show that
q(t) → 2 cos(t+ φ0), t→ ∞. (44)

3) Derive the dKP(3,1) equation from the equations of Acoustics, under the
hypothesis of i) weak nonlinearity and ii) quasi one-dimensionality.

4) Derive the KdV equation (see [1, 3]) in the context of surface water wave
in (1 + 1) dimensions, under the hypothesis of i) small amplitudes and ii)
shallow water (kh << 1, where k is the wave number and h is the depth of
the fluid). Derive the KP equation (see [2, 3]) in the context of surface water
waves in (2 + 1) dimensions, under the hypothesis of i) small amplitudes,
ii) shallow water, and iii) quasi one-dimensionality. Show that, neglecting
dispersion, one obtains the dKP(2,1) equation.

5) Derive (see [3]) the NLS equation in the context of surface water waves
in (1 + 1) dimensions, under the hypothesis of i) small amplitude (a << λ)
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and ii) quasi monocromatic waves in sufficiently deep water. Derive its
multidimensional generalization in the context of surface water waves in
(2 + 1) dimensions, under the hypothesis of

6) Derive (see [18]) the NLS equation in the framework of Langmuir waves
in a plasma, described by the system of equations:

nt + (nv)x = 0, vt + vvx = φx − nx/n, φxx = n− 1,

with boundary onditions n → 1, v → 0, φ → 0 as |x| → ∞, where n is the
electron density, v is the electron velocity and φ is the electrostatic poten-
tial in dimensionless variables, expanding the fields around the equilibrium
solution:

n = 1 + εn1 + ε2n2 +O(ε3), v = εv1 +O(ε2), φ = εφ1 +O(ε2).

7) Derive (see [8]) the NLS equation in nonlinear optics, for a homogeneous
and isotropous dielectric.

2.3 La teoria dei solitoni

1) Analyticity projectors. Show that the operators

P±f(λ) := ± 1

2πi

∫

R

f(λ′)
λ′ − (λ± iε)

dλ. (45)

are analyticity projectors on the real line; i.e., they map a Holder function
f(λ), λ ∈ R decaying at ∞ sufficiently fast into functions analytic in the
upper and lower halves of the complex λ plane respectively. ii) Show, in
particular, that

(P+)2 = P+, (P−)2 = P−, P+P− = P−P+ = 0, P+ + P− = 1. (46)

2) Given an Holder function f(λ) for λ ∈ R decaying at ∞ sufficiently fast,
a polynomial P (λ), a set of complex numbers {k+j , R+

j , j = 1, . . . , N+,

k−j , R
−
j , j = 1, . . . , N−}, where Im k+j > 0 and Im k−j < 0, show that the

unique solution of the Riemann problem

ψ+(λ)− ψ−(λ) = f(λ), λ ∈ R (47)
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where ψ±(λ) are analytic in the upper and lower halves of the complex λ
plane respectively, except for the simple poles k±j ’s with residues R±

j ’s, and

ψ±(λ) → P (λ), |λ| >> 1, is

ψ±(λ) = P (λ) +
N+

∑

j=1

R+
j

λ− k+j
+

N−
∑

j=1

R−
j

λ− k−j
± P±f(λ). (48)

3) Let u(x) = −Aδ(x − x0), A ∈ R, be the potential of the Schrödinger
equation [−∂2x + u(x)]ψ = k2ψ. Evaluate explicitly: i) the eigenfunctions
of the continuous spectrum and the coefficients a(k), b(k), R(k), T (k); ii)
the discrete spectrum pj , the corresponding eigenfunctions and the norming
constants bj . Show that the existence of discrete spectrum depends on the
sign of A.

4) Assume u(x) = O(ε), ε << 1, and construct the first two terms of the ε
- expansion of the eigenfunctions and of the spectral data.

5) Scattering problem. Study the scattering problem described by the Schrödinger
equation

−ψ′′(x, k) + u(x)ψ(x, k) = k2ψ(x, k), x ∈ R, k > 0,

where ψ(x, k), the eigenfunction of the continuous spectrum of the Schrödinger
operator −d2/dx2 + V (x), represents the wave function of a particle beam
scattered by the localized potential u(x) e E = k2 > 0 is the energy of the
beam (the continuous spectrum σc = {E > 0}), with the following boundary
conditions:

ψ(x, k) ∼ R(k)e−ikx + eikx, x ∼ −∞; ψ(x, k) ∼ T (k)eikx, x ∼ ∞

describing an incoming beam of particles of wave number k and intensity 1,
partially reflected and transmitted through the potential (R(k) e T (k) are
respectively the reflection and transmission coefficients).
i) Observe that the function φ(x, k) = ψ(x, k)/T (k) satisfies a simpler scat-
tering problem:

φ′′(x, k) + k2φ(x, k) = u(x)φ(x, k), x ∈ R, , k > 0

φ(x, k) ∼ R(k)

T (k)
e−ikx +

eikx

T (k)
, x ∼ −∞; φ(x, k) ∼ eikx, x ∼ ∞

12



and use the advanced Green function of the operator d2/dx2+ k2 to rewrite
such a problem as a Volterra integral equation [5], obtaining:

φ(x, k) = eikx −
∞
∫

x

dy
sin k(x− y)

k
u(y)φ(y, k)

and the following integral representations for the reflection and trnsmission
coefficients:

1

T (k)
= 1−

∫

R

dk
e−iky

2ik
u(y)φ(y, k),

R(k)

T (k)
=

∫

R

dk
eiky

2ik
u(y)φ(y, k).

Such an integral equation, equivalent to the Schrödinger differential equation
+ boundary conditions, is the most convenient formulation of the problem
to extract informations.
ii) Use the method of successive approximations to study the properties of
φ in the following way.
a) Rerwrite the integral equation for the unknown f(x, k) = φ(x, k)e−ikx,
such that f ∼ 1, x→ ∞:

f(x, k) = 1 +

∞
∫

x

e2ik(y−x) − 1

2ik
u(y)f(y, k)dy

and look for the solution as a Neumann series:

f(x, k) =
∞
∑

i=0

hi(x, k), h0 = 1, (49)

obtaining the recursion relation:

hj+1(x, k) =

∞
∫

x

e2ik(y−x) − 1

2ik
u(y)hj(y, k)dy, j ≥ 0. (50)

b) From the inequality: |e2ik(y−x) − 1|/|2ik| ≤ 1, valid for Im k ≥ 0, k 6= 0,
show that

|hj+1(x, k)| ≤ 1
|k|

∞
∫

x
|u(y)||hj(y, k)|dy, (51)

and then that:

|hn(x, k)| ≤ 1
n!

(

A(x)
|k|

)n
≤ 1

n!

(

A(−∞)
|k|

)n
,

A(x) :=
∞
∫

x
|V (y)|dy.

(52)
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Therefore the Neumann series representing the solution is absolutely and
uniformely convergent for Im k ≥ 0, k 6= 0, if u(x) ∈ L1(R). Under these
conditions, the solution exists unique, and it is analytic in the upper half
of the complex k plane. Analogously one can prove that 1/T (k) is analytic
in the upper half of the complex k plane. Under more stringent conditions
on u, one could show, in a similar manner, that the eigenfunction is also
continuous on the real k axes, where the physics takes place.
c) Let kj , j = 1, .., N be the zeroes of the function 1/T (k) in the upper half of
the complex k plane (the poles of the transmission coefficient). Then, since
λj = Ej = k2j ∈ R, it follows that a) kj is purely imaginary: kj = ipj , pj >
0, j = 1, .., N , b) the functions φ(x, kj), j = 1, .., N are exponentially
localized:

φj(x) := φ(x, kj) = O(e−pj |x|), |x| → ∞, j = 1, ..N

and then they are eigenfunctions of the Schrödinger operator in L2(R):

−φ′′j (x) + u(x)φj(x) = −p2jφj(x), x ∈ R

corresponding to negative eigenvalues λj = Ej = −p2j < 0 of the energy

(the discrete spectrum: σp = {−p2j}N1 ). Summarizing: σ = σp ∪ σc =

{−p2j}N1 ∪ R
+.

d) Show that the set of λj = −p2j , j = 1, .., N bounded from below.
Hint. Take the scalar product of the eigenfunction φj , normalized to 1, with
the Schrödinger equation, obtaining:

λj − (φj , uφj) = (φ′j , φ
′
j) ≥ 0 ⇒ |λj | ≤ −(φj , V φj) ≤ |(φj , uφj)| ≤ ||u||∞.

e) Show that, if u(x) = u0δ(x−x0), the integral equation admits the solution

φ(x, k) = eikx − u0H(x0 − x)
sin k(x− x0)

k
eikx0 .

Then:

φ(x, k) =
2ik − u0

2ik
eikx +

u0e
2ikx0

2ik
e−ikx, x < x0

T (k) =
2ik

2ik − u0
, R(k) =

u0e
2ikx0

2ik − u0
.

Found φ(x, k), at last reconstruct ψ(x, k) = 2ik
2ik−u0

φ(x, k).
f) Verify that the solution we found for k ∈ R, if extended outside the real k
axis, diverges always at + or - infinity, unless k = −iu0/2 ∈ iR+. Therefore,

14



if the potential is positive (u0 > 0), no eigenfunctions exist in L2(R); if,
instead, the potential is negative, then there exists one and only one L2(R)
eigenfunction ψ1(x) := φ(x, i|u0|/2) ∈ L2(R):

ψ1(x) = H(x− x0)e
− |u0|

2
x +H(x0 − x)e

|u0|
2

x

corresponding to the negative energy E1 = k21 = −u20/4, and describing a
bound state (a localized quantum particle): σp = {E1}.
g) If u(x) = ǫv(x), ǫ << 1, show that:

φ(x, k) = eikx − ǫ

∞
∫

x

dy
sin k(x− y)

k
v(y)eiky +O(ǫ2),

T (k) = 1 +
ǫ

2ik

∫

R
dxv(x) +O(ǫ2), R(k) =

ǫ

2ik

∫

R
dxv(x)e−2ikx +O(ǫ2)

6) Using the above strategy, study the scattering problem

φ′′(x, k) + k2φ(x, k) = u(x)φ(x, k), x ∈ R, φ(x, k) ∼ e−ikx, x ∼ −∞

showing that, in this case, it is convenient to use the retarded Green function
of the operator d2/dx2 + k2.

2.4 Equazioni non lineari integrabili di tipo idrodinamico e
la rottura di onde multidimensionali

2.4.1 Campi vettoriali commutanti ed equazioni integrabili di
tipo idrodinamico

2.4.2 Trasformata spettrale per campi vettoriali

2.4.3 Come si rompono onde quasi - unidimensionali in Natura

1) Given the dKPn equation:

(ut + uux)x +∆⊥u = 0, u = u(x, ~y, t), ~y = (y1, . . . , yn−1)

∆⊥ =
n−1
∑

i=1
∂2yi , n ≥ 2,

(53)

i) show that it is invariant under motions on the associated paraboloid

x+
1

4t

n−1
∑

i=1

y2i = ξ. (54)
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ii) Use such invariance to look for particular solutions in the form

u = v(ξ, t), ξ = x+
1

4t

n−1
∑

i=1

y2i , (55)

obtaining the exact (but implicit) solution

u =















t−
n−1

2 F

(

x+ 1
4t

n−1
∑

i=1
y2i − 2ut

3−n

)

, n 6= 3,

t−1F

(

x+ 1
4t

n−1
∑

i=1
y2i − u t ln t

)

, n = 3,

(56)

where F is an arbitrary function of a single variable. What kind of wave is
described by this solution?

2) Write the Fourier representation of the solution of the Cauchy problem
for the linearized dKP equation:

uxt +∆⊥u = 0,
u(x, ~y, 0) = u0(x, ~y)

(57)

and show that, for t >> 1, the solution reads

u(x, ~y, t) ∼ t−
n−1

2 G

(

x+ 1
4t

n−1
∑

i=1
y2i ,

~y
2t

)

, (58)

where

G (ξ, ~η) := 2−nπ−
n+1

2

∫

R
dλ|λ|n−1

2 û0(λ, λ~η)e
iλξ−iπ

4
(n−1) signλ, (59)

in the space-time region

(x− ξ)/t, yi/t = O(1), i = 1, . . . , n, (60)

on the paraboloid (54). Outside the paraboloid, the solution decays faster.

3)
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