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1 Propagazione ondosa lineare e non lineare

1.1 Onde dispersive lineari [1, 5, 16]

1) Given the Cauchy problem

ut + iω(−i∂x)u = 0, u(x, 0) given, x ∈ R, t ≥ 0, (1)

1. show that the Fourier integral representation of its solution is

u(x, t) =
1

2π

∫
R
û0(k)ei(kx−ω(k)t)dk, (2)

where û0(k) is the Fourier transform of the initial condition u(x, 0):

û0(k) =

∫
R
e−ikyu(y, 0)dy. (3)

and ω(k) is an entire function of k (so that, f.i., if ω(k) = k2, then ω(−i∂x) =
(−i∂x)2 = −∂2

x).
2. Show that (2) can be written as a convolution integral, in the suggestive
form:

u(x, t) =

∫
R
S(x− y, t)u(y, 0)dy, (4)

where S(x, t) is the “fundamental” solution of the PDE, defined as:

S(x, t) =
1

2π

∫
R
ei(kx−ω(k)t)dk. (5)

3. If ω(k) = kn, then S(x, t) is the following similarity solution of the PDE:

S(x, t) = 1
t1/n

f
(

x
t1/n

)
,

f(ξ) = 1
2π

∫
R e

i(kξ−kn)dk.
(6)

4. Show that, if u ∈ R and ω(−k) = −ω(k), then:

û0(k) = û0(−k), k ∈ R

u(x, t) = 1
πRe

∞∫
0

û0(k)ei(kx−ω(k)t)dk
(7)
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If, in addition, û0(k) can be prolongued outside the real axis, then

û0(k) = û0(−k̄). (8)

2) Given the following linear PDEs:

i) iut + uxx = 0, free particle Schrödinger equation,
ii) ut + uxxx = 0, linearized KdV equation,
iii) utt − uxx + u = 0, Klein - Gordon equation,

(9)

1. Construct the fundamental similarity solution (6) (only for i) and ii)).
2. Study the longtime behavior, for t >> 1, x/t = O(1), of the solutions of
their Cauchy problem using the stationary phase, Laplace, or saddle point
methods, depending on the situation, and estimate the error.
3. Study of the relevance of the exact similarity solution in the longtime
behavior (only for i) and ii)).
Solution:
i) Free particle Schrödinger equation:

S(x, t) = 1
2
√
πt
ei(

x2

4t
−π

4
),

u(x, t) = S(x, t)
(
A(ξ) + 1

tB(ξ) +O(t−2)C(ξ)
)
, ξ = x

2t = O(1), t >> 1
A(ξ) = û0(ξ), B(ξ) = − i

4Aξξ
(10)

ii) Linear KdV. For x/t > 0, the lines of constant v(k) are the imaginary
axis and the hyperbola kR

2 − 3kI
2 + x/t = 0. The steepest descent contour

passing through the critical point i
√

x
3t is the upper branch of the hyperbola,

while the steepest descent contour passing through the critical point −i
√

x
3t

is the imaginary axis. The asymptotics is obtained replacing the integration
real line by the steepest descent contour passing through i

√
x
3t .

S(x, t) = 1
(3t)1/3

Ai
(

x
(3t)1/3

)
,

u(x, t) ∼ û0(|x/3t|1/2)√
4π|3x/t|1/2t

e−i2|x/3t|
3/2t+iπ/4 + c.c., x

3t = O(1) < 0, t >> 1,

u(x, t) ∼ û0(i|x/3t|1/2)√
12π|3x/t|1/2t

e−2|x/3t|3/2t, x
3t = O(1) > 0, t >> 1,

u(x, t) ∼ û0(0)

2π(3t)1/3
Ai
(

x
(3t)1/3

)
− iû′0(0)

2π(3t)2/3
Ai′
(

x
(3t)1/3

)
, x

(3t)1/3
= O(1), t >> 1,

u(x, t) ∼ û0(0)
2π S(x, t), x

(3t)1/3
= O(1), t >> 1,

(11)
where Ai(ξ) is the Airy function

Ai(ξ) =
1

2π

∫
R
ei(kξ−k

3)dk, (12)
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solution of the ODE: f ′′(ξ)− ξf(ξ) = 0.
iii) Klein-Gordon equation. The dispersion relation is two-valued (since the
PDE is second order in t):

ω±(k) = ±
√
k2 + 1; (13)

therefore the phase velocity is greater than the light speed 1, while the group
velocity is less than 1:

ω

k
=

√
k2 + 1

k
> 1,

dω

dk
=

k√
k2 + 1

< 1 (14)

The Fourier representation of the real solution reads:

u(x, t) =
1

2π

∫
R
B(k)ei(kx+

√
k2+1t)dk +

1

2π

∫
R
B(−k)ei(kx−

√
k2+1t)dk, (15)

where

B(k) =
1

2

(
û0(k)− i û′0(k)√

k2 + 1

)
, (16)

where û0(k) and û′0(k) are the Fourier transforms of respectively u(x, 0) and
ut(x, 0). For |x/t| < 1 (inside the light cone) and t >> 1:

u ∼ 1√
2πt

(
1−

(x
t

)2
)−3/4

B

(
− x√

t2 − x2

)
ei
√
t2−x2+iπ/4 + c.c. (17)
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Figures 1. Three time steps (t = 0, t = T/2, t = T ) of the numerical
evolution of a gaussian initial condition according to, respectively, the wave,
the Klein-Gordon, the linear Schrödinger (in this case we plot the real part
of the complex wave function), and the linear KdV equations. The last two
plots are the graphs of the analytic formula describing the asymptotics of
the real part of the solution of the linear Schrödinger equation for a gaussian
initial condition at t = 10 and at t = 12, to show that i) at fixed t, increasing
x the wave-length decreases; ii) as t increases, if I travel with a crest, the
distance of the neighboring crests increases; iii) if I travel with a certain
wave number (a certain constant speed), crests overtake me.
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3) Study the longtime behavior, for t >> 1, x/t = O(1), of the Fourier
integral

u(x, t) =
1

2π

∫
R
û0(k)ei(kx−ω(k)t)dk (18)

under the hypothesis that there exists a unique stationary phase point
k0(x/t) ∈ R, and that ω′′(k0) = 0, ω′′′(k0) 6= 0.

4) Given the linear PDE P(∂t,∇~x)u(~x, t) = 0, ~x ∈ Rn, t ∈ R in (n + 1)
dimensions, with u ∈ L1(Rn) ∩ L2(Rn),
i) show that the solution of its Cauchy problem:

P(∂t,∇~x)u(~x, t) = 0, u(~x, 0) = u0(~x) ∈ L1(Rn) ∩ L2(Rn) (19)

is given by the Fourier integral:

u(~x, t) =
∫
Rn û0(~k)ei(

~k·~x−ω(~k)t) d~k
(2π)n

û0(~k) =
∫
Rn u0(~x)e−i

~k·~xd~x
(20)

where ω(~k) is obtained solving the equation P(−iω, i~k) = 0 wrt ω.
ii) Show that, under the hypothesis that the vector equation for ~k

~x

t
= ∇~kω(~k) (21)

admits a unique real solution ~k0 = ~k0(~x/t) ∈ Rn, the extension of the
stationary phase method for multiple integrals gives the following longtime
behavior:

u ∼
(

1
2πt

)n/2 (
det
(
∂2ω(~k0)
∂ki∂kj

))−1/2

û0(~k0)ei(
~k0·~x−ω(~k0)t+mπ

4
),

m ≡ −
n∑
j=1

sign(λj)
(22)

where λj , j = 1, .., n are the (real) eigenvalues of symmetric matrix
(
∂2ω(~k0)
∂ki∂kj

)
.

5) Let Γ(z) be the Euler Γ function:

Γ(z) =

∞∫
0

e−ttz−1dt, Re z > 0. (23)

i) Show that it is the generalization of the factorial: Γ(n+ 1) = n!, n ∈ N.
ii) Use the Laplace method to construct the Stirling formula:

n! = nne−n
√

2πn
(
1 +O(n−1)

)
, n >> 1. (24)
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6) Given the Airy function Ai(x), defined by

Ai(x) =
1

2π

∫
R
ei(kx−k

3)dk, x ∈ R, (25)

i) use the saddle point method to show that

Ai(x) = e−
2
3x

3/2

2
√
πx1/4

(1 +O(x−3/2)), x� 1,

Ai(x) = 1
π|x|1/4 cos

(
2
3 |x|

3/2 − π
4

)
(1 +O(x−3/2)), x� −1.

(26)

ii) Use the above asymptotics to show that the longtime behavior of the
solutions of the Cauchy problem for the linearized KdV equation in the
region |x|/t1/3 = O(1), t� 1, matches well with the asymptotics in the left
and right regions |x|/t = O(1), t� 1, x < 0 and x > 0.

7) Given the integral

f(x, t) =

b∫
a

g(k)ei(kx−k
2t)dk, t� 1, x/t = O(1), (27)

where g(k) is analytic in the domain delimited by the real axis and the
line bisecting the second and fourth quadrants, i) show that the saddle
point is x/2t and the saddle point contour is given by the straight line
passing through x/2t and parallel to the line bisecting the second and fourth
quadrants. ii) Show that, if a < x/2t and b > x/2t, including the cases
a = −∞ and b =∞, the asymptotics of f(x, t) are given by the saddle point
formula

f(x, t) =
1√
4πt

g
( x

2t

)
ei
x2

4t
−iπ

4 (1 +O(1/t)), t� 1, x/t = O(1). (28)

iii) Show that, if a < x/2t and b ∈ C, with 0 < arg b < π/2, the leading
asymptotics is given, instead, by the integration by parts formula:

f(x, t) =
g(b)ei(bx/t−b

2)t

2πi(x/t− 2b)t
(1 +O(1/t)), t� 1, x/t = O(1). (29)

1.2 Onde iperboliche e la catastrofe del gradiente[18, 9, 7,
20, 8]

1) Show that the following linear PDE for the field ρ(x, t):

ρt + c(x, t)ρx + a(x, t)ρ = b(x, t) (30)
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is equivalent to the system of two ODEs for the fields (ρ̃(t), x̃(t)):

dρ̃
dt + a(x̃, t)ρ = b(x̃, t),
dx̃
dt = c(x̃, t).

(31)

2) Find the general solution of the following linear PDEs:

ut + t2ux + xu = 0,
(
u = F (x− t3/3)e−(t4/12+t(x−t3/3))

)
,

iγut + yux − xuy = 0, (...) ,
yux − xuy = 0,

(
u = F (x2 + y2)

)
,

yux + xuy = 0,
(
u = F (x2 − y2)

)
,

xux + yuy = 0, (u = F (y/x)) ,
xux − yuy = 0, (u = F (xy)) ,
xux + yuy = x2,

(
u = x2/2 + F (y/x)

)
,

xux + yuy = u, (u = xF (y/x)) ,
xux + yuy + zuz = 0, (u = F (y/x, z/x)) ,
gyux − gxuy = 0, g(x, y) given, (u = F (g(x, y)))

(32)

3) Find the general solution of the following quasi-linear PDEs:

i) ut + c(u)ux = 0, u = F (x− c(u)t),
ii) ut + c(u)ux = 1,
c(u) = u ⇒ u = t+ F (x− ut+ t2/2),
c(u) = u2 ⇒ u = t+ F (x− u2t+ ut2 − t3/3)

(33)

4) Given the two Cauchy problems for the Hopf equation:

ut + uux = 0, u = u(x, t), x ∈ R, t ≥ 0,

i) u(x, 0) = e−x
2
,

ii) u(x, 0) = (x2 + 1)−1,

(34)

i) draw the 1-parameter family of characteristic curves; ii) find the first
characteristic parameter ζb and the first breaking point (xb, tb).
A. i) ζb = 1/

√
2, tb =

√
e/2, xb =

√
2. ii) ζb = 1/

√
3, tb = 8

√
3/9, xb =

√
3.

5) Compression and rarefaction waves.
Consider the Cauchy problem:

ut + uux = 0, u = u(x, t), x ∈ R, t ≥ 0,
u(x, 0) = a2H(−l − x) + a1H(x− l) +H(l2 − x2)

(
a1+a2

2 − a2−a1
2 x

)
,
(35)
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in the two cases

i) a2 > a1 > 0, compression wave,
ii) a1 > a2 > 0 rarefaction wave.

(36)

Solve it explicitely, draw the characteristic curves and show that they de-
scribe respectively a compression and a rarefaction wave. Indicate if there
is wave breaking and, if so, find ζb and (xb, tb).
A. For the compression wave:

u(x, t) =


a2, x < a2t− l,

−a2−a1
2l

x−a2+a1
2

t

1−a2−a1
2l

t
+ a2+a1

2 , −l + a2t < x < l + a1t,

a1, x > l + a1t.

(37)

There is wave breaking:

tb =
2l

a2 − a1
, xb =

a1 + a2

a2 − a1
l, |ζb| < 1 (38)

6) Consider the Cauchy problem

ut + uux = 0,
u(x, 0) = f(x),

(39)

where f describes a single bump, and study analytically the behavior of
the solution near breaking (immediately before, at, and immediately after
breaking).
A. See section 3 of Appunti 1.

7) More on rarefaction waves.
i) Show that the solution of the Cauchy problem

ut + uux = 0, u(x, 0) = a2H(−x) + a1H(x), a2 < a1 (40)

is given by

u =


a2, x < a2t,
x/t, a2t < x < a1t,
a1, x > a1t

(41)

Hint. Observe that this Cauchy problem can be viewd as the l→ 0 limit of
that of the previous problem. But there are other ways of doing it . . .
ii) Show that the solution of the Cauchy problem

ut + c(u)ux = 0, u(x, 0) = a2H(−x) + a1H(x), a2 < a1 (42)
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is given by

u =


a2, x < c(a2)t,
A(x/t), c(a2)t < x < c(a1)t,
a1, x > c(a1)t

(43)

where A(ξ) is the inverse of function c(u).

8) Given the following system of PDEs, establish if they are hyperbolic and,
if so, write them in characteristic form.

i) The wave equation utt − c2uxx = 0.
ii) The Klein - Gordon equation utt − c2uxx + u = 0.
iii) The system

ut + c(u, v)ux = 0,
vt + c(u, v)vx = u

(44)

iv) The system
ut + c(u)ux = 0,
vt + c(u)vx + c′(u)vux = 0

(45)

v) The gas dynamics equations

ρt + uρx + ρux = 0,
ut + uux + px

ρ = 0,

St + uSx = 0,

(46)

where p = p(ρ, S).
R. i)

d
dt(w − cv) = 0, dx

dt = c, ⇒ w − cv = A(x− ct),
d
dt(w + cv) = 0, dx

dt = −c, ⇒ w + cv = B(x+ ct),
v ≡ ux, w ≡ ut

(47)

implying the well-known result u = f(x− ct) + g(x+ ct), with

f ′(·) = − 1

2c
A(·), g′(·) =

1

2c
B(·). (48)

ii)
ϕt − cϕx + u = 0,
ut + cux − ϕ = 0,
ϕ ≡ ut + cux.

(49)

iii) it is already in characteristic form, with the single characteristic dx/dt =
c(u, v) and two different characteristic forms (two different eigenvectors (1, 0)
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and (0, 1)).
iv) The first equation is in characteristic form for the single field u; the
second one cannot be put in characteristic form; therefore the system is not
hyperbolic. Nevertheless it can be solved solving first the first equation,
hyperbolic, on the characteristic dx/dt = c(u), and then solving the second
one on that characteristic (do it!).
v) Rewrite (46) in the form

pt + upx + ρa2ux = 0,
ut + uux + px

ρ = 0,

St + uSx = 0,

(50)

where a2(ρ) = ∂p/∂ρ > 0, obtaining the following eigenvalues and eigenvec-
tors:

c0 = u (gas speed), L0 = (0, 0, 1),
c± = u± a (sound speeds), L± = (1,±aρ, 0).

(51)

Therefore the system in characteristic form reads:

dp
dt ± ρa

du
dt = 0, dx

dt = u± a,

dS
dt ,

dx
dt = u.

(52)

Verify that, in the linear limit in which we study small perturbations of the
constant solution:

ρ = ρ0 + ερ1(x, t) +O(ε2), p = p0 + εp1(x, t) +O(ε2),
u = εu1(x, t) +O(ε2), S = S0 + εS1(x, t) +O(ε2),

(53)

we obtain

p = p0 + ε[f−(x− a0t) + f+(x+ a0t)] +O(ε2),
u = ε

a0ρ0
[f−(x− a0t)− f+(x+ a0t)] +O(ε2),

S = S0 + εg(x) +O(ε2),

(54)

where a0 =
√
∂p(ρ0, S0)/∂ρ, and the functions f± and g are arbitrary.

9) Show that i) the Riemann invariants of the wave equation utt − c2uxx =
0, c > 0 are given by r± = w ∓ cv, where v = ux and w = ut, so that the
PDE is written as the system of ODEs in characteristic form:

dr±
dt

= 0,
dx

dt
= ±c. (55)
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ii) The Riemann invariants of the gas dynamics equations (46) (under the
constant entropy S hypothesis) are given by

r± =

ρ∫
a(ρ′)

ρ′
dρ′ ± u, (56)

where a2(ρ) = p′(ρ) > 0, so that the system (52) decouples as follows:

dr±
dt

= 0,
dx

dt
= u± a(ρ). (57)

Show that, for an adiabatic process (p = κργ),

a2 = κγργ−1,

r± =
2
√
κγ

γ−1 ρ
γ−1
2 ± u = 2a

γ−1 ± u.
(58)
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Figures 2. The evolution of a gaussian according to the Hopf equation
(through the numerical inversion of the analytic solution).
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1.3 Regolarizzazione dissipativa e l’equazione di Burgers. Re-
golarizzazione dispersiva e l’equazione KdV; funzioni el-
littiche

Regolarizzazione dissipativa

1) Regularize the compression wave of problem 5) of section 2.1.2

2) What happens if we look for discontinuous solutions of ut + uux = 0 in
the form u = H(s(t) − x)u−(x, t) + H(x − s(t))u+(x, t), where H(x) is the
Heaviside step function and u±(x, t) are smooth functions?

3) Consider the Cauchy problem

ut + uux = 0,
u(x, 0) = f(x),

(59)

where f(x) describes a single bump, and study the behavior of the regular-
ized (shock ) solution near breaking.
A. See section 4 of Appunti 1.

4) Given the Cauchy problem

ut + c(u)ux = 0, c(u) = Q′(u),
u(x, 0) = f(x),

(60)

where f(x) describes a single bump,
i) construct the shock condition

ṡ =
Q(u2)−Q(u1)

u2 − u1
(61)

and show that it is equivalent of placing the vertical shock to cut equal area
lobi of the three valued solution.
ii) Show that, if c(u) = u, Q(u) = u2/2, the shock equations involving
s(t), η1(t), η2(t) can be reformulated as cutting equal area lobi on the initial
profile:

η2∫
η1

f(η)dη =
1

2
(η1 − η2)(f(η1) + f(η2)) (62)

5) Given the Burgers equation ut + uux = νuxx, ν > 0,
i) Show that, for localized solutions in R, dM/dt = 0 and dE/dt < 0, where
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M is the mass and E is the energy:

M =

∫
R
u(x, t)dx, E =

∫
R
u2(x, t)dx. (63)

ii) find its traveling wave solution satisfying the boundary conditions u(x, t)→
u±, x→ ±∞, where u± are constants, and discuss the shock structure.
iii) Find its similarity solutions.

6) Show that the solution of the Cauchy problem for the Burgers equation
ut + uux = νuxx with initial condition u(x, 0) = f(x) is given by

u(x, t) =

∫
R
x−η
t e−

G(x,η,t)
2ν dη∫

R e
−G(x,η,t)

2ν dη
(64)

where

G(x, η, t) =

η∫
0

f(η′)dη′ +
(x− η)2

2t
(65)

7) Consider the Cauchy problem for the Burgers equation ut + uux = νuxx
with Gaussian initial condition u(x, 0) = f(x) = e−x

2
, and let ηb = 1/

√
2 ∼

0.71, xb =
√

2 ∼ 1.41, tb =
√
e/2 ∼ 1.16 be the breaking parameters of

the Hopf equation ut +uux = 0 corresponding to the above Gaussian initial
condition (see a previous excercise).
7a) Study the function

G(x, η, t) =

η∫
0

f(η′)dη′ +
(x− η)2

2t
(66)

as function of the variable η, with x ∈ R, t > 0 parameters in the following
way. i) Show that, for η → ±∞, G(x, η, t) behaves as a parabola: G ∼ η2/2t.
ii) Show that, for 0 < t < tb, G(x, η, t) possesses just one extremal point,
a global minimum η0. iii) Show that, for t > tb, there is a finite interval
x ∈ (x−, x+) in which G(x, η, t) possesses three extremal points η2 < η0 < η1

such that η1, η2 are local minima and η0 is a local maximum. iv) Show that:
if x ∈ (x−, x+) and is close to x−, the global minimum is η2; if it is close to
x+, the global minimum is η1; there is an intermediate value of x ∈ (x−, x+)
for which η1, η2 give the same value of G: G(x, η1, t) = G(x, η2, t) and are
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then global minima. v) Show that, if x /∈ (x−, x+), then there is only one
extremal point, a global minimum η0. vi) Make plottings of all the above
cases (see Figures 3).
7b) Use the above results to investigate the solution (64) of the Cauchy
problem for the Burgers equation ut + uux = νuxx with Gaussian initial
condition u(x, 0) = f(x) = e−x

2
, when 0 < ν � 1 (small dissipation),

showing that such solution tends, for ν → 0, to the shock solution of the
Hopf equation, for the same initial condition.

Figures 3. Plots of the function G(x, η, t) vaying η, for the Gaussian initial
condition f(η) = e−η

2
, and for the following choices of (x, t): (xb, tb), (xb +

0.440, tb + 1), (xb + 0.547, tb + 1), (xb + 0.700, tb + 1). We remark that,
at (xb, tb), G(x, η, t) has the global minimum at the triple point η = ηb; at
t = tb + 1, varying x in a suitable interval, the global minimum changes: if
x = xb+0.440, the global minimum is for η = η2 < 0 < η1; if x ∼ xb+0.547,
the first η2 and third η1 local minima give rise to approximately the same
value of G = 0.8807 and are global minima; if x = xb + 0.700, the global
minimum is for η = η1.
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Figures 4. Three time steps (t = 0, t = T/2, t = T ) of the evolution of
a gaussian initial condition according to the Burgers equation with small
dissipation (numerical solution).

1.4 Regolarizzazione dispersiva e l’equazione KdV; funzioni
ellittiche

Quadratures and elliptic functions

1) Show that the one dimensional Newton equation ẍ = −dV (x)/dx is

integrated to the quadrature t− t0 =
x∫
0

dy√
2(E−V (y))

, where E = ẋ2/2 +V (x)

is the constant energy.

2) Study the inversion, in the complex plane, of the quadrature

w(z) =

z∫
0

dt√
1− t2

, (67)

that arises in the solution of the harmonic oscillator equation, providing an
alternative definition of the sine function, and infer the basic properties of
sinw from such inversion:
i) sinw is entire in C; ii) sinw has simple zeroes in w = nπ, n ∈ N, iii) sinw
is odd and satisfies the following periodicity properties:

sin(w + 2π) = sinw; sin(w + π) = − sinw. (68)
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3) i) Study the inversion, in the complex plane, of the quadrature

w(z, κ) =

z∫
0

dt√
(1− t2)(1− κ2t2)

, 0 < κ < 1 (69)

defining the elliptic sine function z = sn(w, κ) [15]. Show, in particular, that
i) w(z, κ)) maps the half plane Im z > 0 into the rectangle of the w complex
plane of vertices −K(κ),K(κ),K(κ) + iK ′(κ),−K(κ) + iK ′(κ), where

K(κ) =
1∫
0

dt√
(1−t2)(1−κ2t2)

,

K ′(κ) = K(κ′), κ′2 = 1− κ2.

(70)

ii) using the Schwarz reflection principle [15], show that the elliptic sine
function can be analytically extended into the whole complex w plane as a
meromorphic doubly periodic function with periods 4K(κ) and 2iK ′(κ):

sn(w + 4K(κ), κ) = sn(w, κ), sn(w + 2iK ′(κ), κ) = sn(w, κ), (71)

possessing the simple zeroes 2mK(κ)+i2nK ′(κ) and the simple poles 2mK(κ)+
i(2n+ 1)K ′(κ), for m,n ∈ Z. iii) Show the additional properties

sn(w) = sn(2K − w̄)),
sn(w + 2K(κ), κ) = −sn(w, κ), sn(−w, κ) = −sn(w, κ).

(72)

4) Basic properties of elliptic functions Having defined as elliptic func-
tion a doubly periodic complex function f(z) of complex variable z, with
the two independent periods 2ω1, 2ω2 ∈ C:

f(z + 2m1ω1 + 2m2ω2) = f(z), m1,m2 ∈ Z, (73)

let Π00 the fundamental parallelogramme generated by the two periods.
Show that i) if f(z) is entire, then it is constant. ii) The order of its poles
inside Π00 is ≥ 2. iii) The order of its poles inside Π00 is equal to the number
ν of the zeroes (counted with their moltiplicity) of (f(z)−A), with A ∈ C,
inside Π00. Verify these properties for sn(w).

5) Other elliptic functions.
The definition

x = sn(u, κ) = sinϕ(u, κ) (74)
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suggests the introduction of other elliptic functions:

cn(u, κ) ≡ cosϕ(u, κ),

dn(u, κ) ≡
√

1− κ2 sin2 ϕ(u, κ).
(75)

Show that
sn2u+ cn2u = 1, dn2u+ κ2sn2u = 1 (76)

and that

dϕ(u)
du =

(
du
dϕ

)−1
=
√

1− κ2 sin2 ϕ(u) = dn(u),
dsn(u)
du = d sinϕ(u)

du = cosϕ(u)dϕ(u)
du = cn(u)dn(u),

dcn(u)
du = −sn(u)dn(u),

ddn(u)
du = −κ2sn(u)dn(u).

(77)

6) Elliptic integral of second type
Introduced the elliptic integral of second type:

E(ϕ, κ) =

ϕ∫
0

√
1− κ2 sin2 ϕdϕ =

x∫
0

√
1− κ2t2

1− t2
dt (78)

where the second integral follows from the change of variables x = sinϕ,
and the complete elliptic integral of second type:

E(κ) ≡ E(π/2, κ) =

π/2∫
0

√
1− κ2 sin2 ϕdϕ =

1∫
0

√
1− κ2t2

1− t2
dt, (79)

i) show that

E(ϕ, κ) =

u∫
0

dn2(u)du (80)

ii) show that sn2 and dn2 are periodic of period 2K(κ), and show that their
average over that period are:

dn2 =
E(κ)

K(κ)
, sn2 =

1

κ2

K(κ)− E(κ)

K(κ)
. (81)

7) Show that

K(κ)→∞, E(κ)→ 1, as κ→ 1,
K(κ) = π

2 + π
8κ

2 +O(κ4), E(κ) = π
2 −

π
8κ

2 +O(κ4), κ << 1.
(82)
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8) Rectification of the ellipse.
Given the ellipse

x2

a2
+
y2

b2
= 1, a > b > 0, (83)

show that the length of the ellipse arc having as boundary points P (0) and
P (ϕ) is

s = aE(ϕ, κ2), κ ≡
√
a2 − b2
a

, (84)

and infer that the ellipse length is 4aE(κ).

9) The simple pendulum.
i) Show that the general solution of the simple pendulum equation θ̈ +
g
L sin θ = 0 is expressed in terms of the elliptic sine function in the following
way:

θ(t) = 2 sin−1 (κsn (ω(t− t0), κ)) , ω =

√
g

L
, (85)

and the period of oscillations is

T =
4K(κ)

ω
(86)

where sn(z, κ) is the Jacobi elliptic sine function, κ =

√
1+E/ω2

2 , and E =

θ̇2

2 − ω
2 cos θ is the constant energy of the system.

ii) Show that, if θ̄ is the inversion angle, then:

cos θ̄ = − E
ω2 , κ2 = sin2 θ̄

2 ,

θ(t) ∼ θ̄ − ω2κ
√

1− κ2(t− T
4 )2, t ∼ T

4 .
(87)

iii) Show that, in the case of small oscillations |θ̄| << 1, one has κ << 1,
and

ω(t− t0) ∼
x∫
0

dt√
1−t2 = sin−1 x ⇒ sn(ω(t− t0)) ∼ sin(ω(t− t0)),

K(κ) ∼
1∫
0

dt√
1−t2 = π/2,

T (κ) ∼ 2π
ω ,

θ ∼ 2 sin−1 (κ sin(ω(t− t0))) ∼ 2κ sin(ω(t− t0)) = θ̄ sin(ω(t− t0)),
κ ∼ θ̄/2.

(88)
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10) Elliptic solution of KdV
Construct the traveling wave solution

u = U(Θ), Θ := x− ct− x0, (89)

of the Korteweg - de Vries equation ut + uux + ε2uxxx = 0, through the
quadrature

1√
3

ζ

ε
=

U∫
γ

dU√
P (U)

, (90)

where P (U) = −(U − α)(U − β)(U − γ), α, β, γ are three real arbitrary
constant roots of P (U), with α ≤ β ≤ γ, and

c =
α+ β + γ

3
, (91)

and show that the solution can be written in terms of the elliptic sine as:

U = γ − (γ − β)sn2

(√
γ−α
12

ζ
ε , κ

)
,

κ =
√

γ−β
γ−α .

(92)

11) Show that, if β → α (the case of two coinciding roots), then κ→ 1, and

sn(u, κ)→ tanhu. (93)

Consequently, the travelling wave solution of KdV reduces to

U = γ − (γ − α) tanh2

(√
γ − α

12

ζ

ε

)
= α+

γ − α

cosh2

(√
γ−α
12

ζ
ε

) (94)

If, in addition, α = 0, then the travelling wave solution reduces to the
so-called 1-soliton solution of KdV

U =
3c

cosh2
(√

c
2
x−ct−x0

ε

) , (95)

an exponentially localized travelling wave whose velocity is proportional to
the amplitude and inversely proportional to the

√
width.
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Regolarizzazione dispersiva

In analogy with what done for the Burgers equation, in the O(ε) region
near the first breaking, the solution will be described by the traveling wave
solution given in terms of elliptic functions found in the previous problem,
where the constants α, β, γ are replaced by functions α(x, t), β(x, t), γ(x, t)
having O(1) variations in space-time (slow variations with respect to the
fast O(ε−1) oscillations of the elliptic functions):

u ∼ U(Θ;α(x, t), β(x, t), γ(x, t)) = U(Θ;x, t),
Θ = 1

ε (x− c(x, t)t− x0),

c(x, t) = α(x,t)+β(x,t)+γ(x,t)
3 .

(96)

To find α(x, t), β(x, t), γ(x, t) one uses the following Witham method [20].
As we know, KdV has ∞-many conservation laws; verify that the first

three are:

ut +
(
u2

2 + ε2uxx

)
x

= 0, conservation of mass,(
u2

2

)
t
+
(
u3

3 + ε2uuxx − ε2 u
2
x
2

)
x

= 0, conservation of energy,(
u3

3 − ε
2u2
x

)
t
+
(
u4

4 − 2ε4uxuxxx + ε4u2
xx + ε2u2uxx − 2ε2uu2

x

)
x

= 0,

conservation of momentum
(97)

Now we observe that

∂x → Dx := ε−1∂Θ + ∂x, ∂t → Dt := −c(x, t)ε−1∂Θ + ∂t, (98)

and that the fast oscillations can be treated doing averages with respect to
the fast variable Θ over the period L

F (x, t) :=
1

L

L∫
0

F (Θ;x, t)dΘ (99)

(here F is the average of F , not its complex conjugate!). For instance:

Dx(F (u)) =
1

L

L∫
0

(
ε−1(F (u))Θ + (F (u))x

)
dΘ = ∂x

1

L

L∫
0

F (u)dΘ = ∂xF (u),

(100)
since (F (u))Θ = 0 by periodicity.
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Applying this averaging procedure to the three conservation laws, verify
that one obtains the following three PDEs with respect to the variables x, t
only (the fast variable Θ has been averaged away):

ut +
(
u2

2

)
x

= 0,(
u2

2

)
t
+
(
u3

3 −
3
2u

2
Θ

)
x

= 0,(
u3

3 − u
2
Θ

)
t
+
(
u4

4 + 3u2
ΘΘ − 4uu2

Θ

)
x

= 0.

(101)

It is a first order hyperbolic system of three equations. While an hyperbolic
system of two equations admits always two Riemann invariants, only in ex-
ceptional cases, like this one, it is possible to find three Riemann invariants:

r1 =
α+ β

2
, r2 =

α+ γ

2
, r3 =

β + γ

2
, (102)

with

α = r1 + r2 − r3, β = r1 − r2 + r3, γ = −r1 + r2 + r3, (103)

satisfying the celebrated Witham equations:

rit + vi(~r)rix = 0, i = 1, 2, 3,

v1(~r) = r1+r2+r3
3 − 2

3(r2 − r1) K(κ2)
K(κ2)−E(κ2)

,

v2(~r) = r1+r2+r3
3 − 2

3(r2 − r1) (1−κ2)K(κ2)
E(κ2)−(1−κ2)K(κ2)

,

v3(~r) = r1+r2+r3
3 − 2

3(r3 − r1) (1−κ2)K(κ2)
E(κ2)

,

κ2 = γ−β
γ−α = r2−r1

r3−r1 .

(104)

We want to use these results to solve the Cauchy problem

ut + uux + ε2uxxx = 0,
u(x, 0) = H(−x)

(105)

corresponding to

r1(x, 0) = 0, r2(x, 0) = H(x), r3(x, 0) = 1. (106)

Therefore dri(x, 0)/dx ≥ 0, ∀x, and we have rarefaction waves for the Rie-
mann invariants, with regular behavior. In addition: r1(x, 0) ≤ r2(x, 0) ≤
r3(x, 0), and

u(x, 0) = r1(x, 0)+r2(x, 0)−r3(x, 0)+2(r3(x, 0)−r1(x, 0))
E(κ2(~r))

K(κ2(~r))
|t=0 = H(−x).

(107)
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Verify that the solutions of the above Witham equations are:

r1(x, t) = 0, r2(x, t) = v−1
2 (x/t), r3(x, t) = 1, (108)

where v−1
2 (·) is the function inverse of v2.

Therefore the dispersive shock is described by

u(x, t) ∼ 1 + r2(x/t)−2r2(x/t)sn2

(√
1√
6

1

ε

(
x− 1 + r2(x/t)

3
t

)
, r2(x/t)

)
,

(109)
a slowly modulated train of oscillations developing at approximately the
breaking time, in a region opening up with a positive velocity 2/3 for the
front, and with a negative velocity −1 for the back.

2 La propagazione ondosa in Natura, il metodo
multiscala e le equazioni modello [4, 8, 1, 3, 17]

1) Consider the two anharmonic oscillators

i) q̈ + q − ε
6q

3 = 0, Hamiltonian cubic pendulum, 0 < ε << 1,
ii) q̈ + q + εq̇3 = 0, with nonlinear friction

(110)

with the same initial conditions

q(0) = 1, q̇(0) = 0. (111)

Use the multiscale method to show that

i) q(t) = cos
(
t− 1

16εt
)

+O(ε),

ii) q(t) =
(
1 + 3

4εt
)−1/2

cos t+O(ε).
(112)

2) Use the multiscale method to construct the solution

q(t) =
a0e

εt/2√
1 +

(
a0
2

)2
(eεt − 1)

cos(t+ φ0) +O(ε) (113)

of the Van Der Pol oscillator

q̈ + q − ε(1− q2)q̇ = 0, (114)
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and show that
q(t)→ 2 cos(t+ φ0) +O(ε), t→∞, (115)

i.e., the solution tends to a limiting cycle (at O(ε): the circle of radius 2).

3) Derive the Hopf equation ut + uux = 0 from the Riemann equation
ut+c(u)ux = 0 using multiscale expansions, in the weakly nonlinear regime.

4) Derive the Burgers equation ut + uux = νuxx from the following class
ut+c(u)ux = (D(u)ux)x, D(u) > 0 of PDEs, in the weakly nonlinear regime,
using multiscale expansions.

5) Derive the KdV equation ut + uux + uxxx = 0 from the following class
ut + c(u)ux + K1(u)[K2(u)(K3(u)ux)x]x = 0 of nonlinear dispersive PDEs,
using multiscale expansions.

6) Derive the nonlinear Schrödinger equation from the Sine Gordon equation
utt−c2uxx+µ2 sinu = 0 (or, more in general, from a large class of nonlinear
dispersive PDEs), using multiscale expansions.

7) Derive the dKP(3,1) equation (ut + uux)x + uyy + uzz = 0 from the
equations of Acoustics, under the hypothesis of i) weak nonlinearity and ii)
quasi one-dimensionality.

8) i) Derive the equations of surface water waves from the Euler equations,
linearize them under a small field hypothesis, and show their dispersive
nature, with the dispersion relation

ω2(k) = gk tanh(h k), (116)

where g is the acceleration of gravity and h is the depth of the fluid.

9) i) Derive the KdV equation (see [1, 3]) in the context of surface water
waves in (1 + 1) dimensions, under the hypothesis of ia) small amplitudes
and iib) shallow water (kh � 1, where k is the wave number and h is the
depth of the fluid). ii) Derive the KP equation (see [2, 3]) in the context of
surface water waves in (2+1) dimensions, under the hypothesis of iia) small
amplitudes, iib) shallow water, and iic) quasi one-dimensionality. Show that,
neglecting dispersion, one obtains the dKP(2,1) equation.
iii) Derive (see [3]) the NLS equation in the context of surface water waves
in (1+1) dimensions, under the hypothesis of iiia) small amplitude (a << λ)
and iiib) quasi monocromatic waves in sufficiently deep water (kh� 1). iv)
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Derive its multidimensional generalization in the context of surface water
waves in (2 + 1) dimensions.

10) Derive (see [21]) the NLS equation in the framework of Langmuir waves
in a plasma, described by the system of equations:

nt + (nv)x = 0, vt + vvx = φx − nx/n, φxx = n− 1,

with boundary onditions n→ 1, v → 0, φ→ 0 as |x| → ∞, where n is the
electron density, v is the electron velocity and φ is the electrostatic poten-
tial in dimensionless variables, expanding the fields around the equilibrium
solution:

n = 1 + εn1 + ε2n2 +O(ε3), v = εv1 +O(ε2), φ = εφ1 +O(ε2).

11) Derive (see [8]) the NLS equation in nonlinear optics, for a homogeneous
and isotropic dielectric.

3 La teoria dei solitoni

1) Analyticity projectors. Show that the operators

P±f(λ) := ± 1

2πi

∫
R

f(λ′)

λ′ − (λ± iε)
dλ. (117)

are analyticity projectors on the real line; i.e., they map a Holder function
f(λ), λ ∈ R decaying at ∞ sufficiently fast into functions analytic in the
upper and lower halves of the complex λ plane respectively. ii) Show, in
particular, that

(P+)2 = P+, (P−)2 = P−, P+P− = P−P+ = 0, P+ + P− = 1. (118)

2) Given a Holder function f(λ) for λ ∈ R decaying at ∞ sufficiently fast,
a polynomial P (λ), a set of complex numbers {k+

j , R
+
j , j = 1, . . . , N+,

k−j , R
−
j , j = 1, . . . , N−}, where Im k+

j > 0 and Im k−j < 0, show that the
unique solution of the Riemann problem

ψ+(λ)− ψ−(λ) = f(λ), λ ∈ R (119)

where ψ+(λ) is analytic in the upper half of the complex λ plane, except
for the simple poles k+

j ’s with residues R+
j ’s, ψ−(λ) is analytic in the lower
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half of the complex λ plane, except for the simple poles k−j ’s with residues

R−j ’s, and ψ±(λ)→ P (λ), |λ| >> 1, is

ψ±(λ) = P (λ) +
N+∑
j=1

R+
j

λ− k+
j

+
N−∑
j=1

R−j

λ− k−j
± P±f(λ), (120)

where P± are the analyticity projectors defined in (117).

3) Let u(x) = −Aδ(x − x0), A ∈ R, be the potential of the Schrödinger
equation [−∂2

x + u(x)]ψ = k2ψ. Evaluate explicitly: i) the eigenfunctions
of the continuous spectrum and the coefficients a(k), b(k), R(k), T (k); ii)
the discrete spectrum pj , the corresponding eigenfunctions and the norming
constants bj . Show that the existence of discrete spectrum depends on the
sign of A.

4) Assume u(x) = O(ε), ε << 1, and construct the first two terms of the ε
- expansion of the eigenfunctions and of the spectral data.

5) Scattering problem. Study the scattering problem described by the Schrödinger
equation

−ψ′′(x, k) + u(x)ψ(x, k) = k2ψ(x, k), x ∈ R, k > 0,

where ψ(x, k), the eigenfunction of the continuous spectrum of the Schrödinger
operator −d2/dx2 + V (x), represents the wave function of a particle beam
scattered by the localized potential u(x) e E = k2 > 0 is the energy of the
beam (the continuous spectrum σc = {E > 0}), with the following boundary
conditions:

ψ(x, k) ∼ R(k)e−ikx + eikx, x ∼ −∞; ψ(x, k) ∼ T (k)eikx, x ∼ ∞

describing an incoming beam of particles of wave number k and intensity 1,
partially reflected and transmitted through the potential (R(k) e T (k) are
respectively the reflection and transmission coefficients).
i) Observe that the function φ(x, k) = ψ(x, k)/T (k) satisfies a simpler scat-
tering problem:

φ′′(x, k) + k2φ(x, k) = u(x)φ(x, k), x ∈ R, , k > 0

φ(x, k) ∼ R(k)

T (k)
e−ikx +

eikx

T (k)
, x ∼ −∞; φ(x, k) ∼ eikx, x ∼ ∞
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and use the advanced Green function of the operator d2/dx2 + k2 to rewrite
such a problem as a Volterra integral equation [5], obtaining:

φ(x, k) = eikx −
∞∫
x

dy
sin k(x− y)

k
u(y)φ(y, k)

and the following integral representations for the reflection and transmission
coefficients:

1

T (k)
= 1−

∫
R
dk
e−iky

2ik
u(y)φ(y, k),

R(k)

T (k)
=

∫
R
dk
eiky

2ik
u(y)φ(y, k).

Such an integral equation, equivalent to the Schrödinger differential equation
+ boundary conditions, is the most convenient formulation of the problem
to extract informations.
ii) Use the method of successive approximations to study the properties of
φ in the following way.
a) Rerwrite the integral equation for the unknown f(x, k) = φ(x, k)e−ikx,
such that f ∼ 1, x→∞:

f(x, k) = 1 +

∞∫
x

e2ik(y−x) − 1

2ik
u(y)f(y, k)dy

and look for the solution as a Neumann series:

f(x, k) =

∞∑
i=0

hi(x, k), h0 = 1, (121)

obtaining the recursion relation:

hj+1(x, k) =

∞∫
x

e2ik(y−x) − 1

2ik
u(y)hj(y, k)dy, j ≥ 0. (122)

b) From the inequality: |e2ik(y−x) − 1|/|2ik| ≤ 1/|k|, valid for Im k ≥ 0,
k 6= 0, show that

|hj+1(x, k)| ≤ 1
|k|

∞∫
x
|u(y)||hj(y, k)|dy, (123)

and then that:

|hn(x, k)| ≤ 1
n!

(
A(x)
|k|

)n
≤ 1

n!

(
A(−∞)
|k|

)n
,

A(x) :=
∞∫
x
|V (y)|dy.

(124)
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Therefore the Neumann series representing the solution is absolutely and
uniformely convergent for Im k ≥ 0, k 6= 0, if u(x) ∈ L1(R). Under these
conditions, the solution exists unique, and it is analytic in the upper half
of the complex k plane. Analogously one can prove that 1/T (k) is analytic
in the upper half of the complex k plane. Under more stringent conditions
on u, one could show, in a similar manner, that the eigenfunction is also
continuous on the real k axes, where the physics takes place.
c) Let kj , j = 1, .., N be the zeroes of the function 1/T (k) in the upper half of
the complex k plane (the poles of the transmission coefficient). Then, since
λj = Ej = k2

j ∈ R, it follows that a) kj is purely imaginary: kj = ipj , pj >
0, j = 1, .., N , b) the functions φ(x, kj), j = 1, .., N are exponentially
localized:

φj(x) := φ(x, kj) = O(e−pj |x|), |x| → ∞, j = 1, ..N

and then they are eigenfunctions of the Schrödinger operator in L2(R):

−φ′′j (x) + u(x)φj(x) = −p2
jφj(x), x ∈ R

corresponding to negative eigenvalues λj = Ej = −p2
j < 0 of the energy

(the discrete spectrum: σp = {−p2
j}N1 ). Summarizing: σ = σp ∪ σc =

{−p2
j}N1 ∪ R+.

d) Show that the set of λj = −p2
j , j = 1, .., N is bounded from below.

Hint. Take the scalar product of the eigenfunction φj , normalized to 1, with
the Schrödinger equation, obtaining:

λj − (φj , uφj) = (φ′j , φ
′
j) ≥ 0 ⇒ |λj | ≤ −(φj , V φj) ≤ |(φj , uφj)| ≤ ||u||∞.

e) Show that, if u(x) = u0δ(x−x0), the integral equation admits the solution

φ(x, k) = eikx − u0H(x0 − x)
sin k(x− x0)

k
eikx0 .

Then:

φ(x, k) =
2ik − u0

2ik
eikx +

u0e
2ikx0

2ik
e−ikx, x < x0

T (k) =
2ik

2ik − u0
, R(k) =

u0e
2ikx0

2ik − u0
.

Found φ(x, k), at last reconstruct ψ(x, k) = 2ik
2ik−u0φ(x, k).

f) Verify that the solution we found for k ∈ R, if extended outside the real k
axis, diverges always at + or - infinity, unless k = −iu0/2 ∈ iR+. Therefore,
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if the potential is positive (u0 > 0), no eigenfunctions exist in L2(R); if,
instead, the potential is negative, then there exists one and only one L2(R)
eigenfunction ψ1(x) := φ(x, i|u0|/2) ∈ L2(R):

ψ1(x) = H(x− x0)e−
|u0|
2
x +H(x0 − x)e

|u0|
2
x

corresponding to the negative energy E1 = k2
1 = −u2

0/4, and describing a
bound state (a localized quantum particle): σp = {E1}.
g) If u(x) = εv(x), ε << 1, show that:

φ(x, k) = eikx − ε
∞∫
x

dy
sin k(x− y)

k
v(y)eiky +O(ε2),

T (k) = 1 +
ε

2ik

∫
R
dxv(x) +O(ε2), R(k) =

ε

2ik

∫
R
dxv(x)e−2ikx +O(ε2)

6) Using the above strategy, study the scattering problem

φ′′(x, k) + k2φ(x, k) = u(x)φ(x, k), x ∈ R, φ(x, k) ∼ e−ikx, x ∼ −∞

showing that, in this case, it is convenient to use the retarded Green function
of the operator d2/dx2 + k2.

7) Let ϕ(x, k) and ψ(x, k) be the Jost eigenfunctions of the Schrödinger
operator satisfying the boundary conditions:

ϕ(x, k) ∼ e−ikx, x→ −∞, ψ(x, k) ∼ e−ikx, x→∞ (125)

i) Write the integral equations satisfied by them; ii) show that ϕ(x, k)eikx

and ψ(x, k)eikx are analytic respectively in the upper and lower halves of
the k plane; iii) show that

−2i
d

dx
[k(ψ(x, k)eikx − 1)]→ u(x), |k| � 1. (126)

8) Let k0 be a zero of a(k) = 1/T (k), where T (k) is the transmission
coefficient of the Schrödinger equation. i) Show that k0 belongs to the
discrete spectrum (therefore k0 = ip, p > 0) and, correspondingly, that
ϕ(x, k0) ∈ L2(R), with the asymptotics

ϕ(x, k0) ∼ epx, x ∼ −∞, ϕ(x, k0) ∼ be−px, x ∼ ∞ (127)
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where b ∈ R.
ii) Show that the zeroes k0 = ip of a(k) are simple, and that iba′(ip) > 0.
A. For i), use the Wronskian relation W (ϕ, ψ̄) = 2ika(k) to infer that
ϕ(x, k0) = bψ(x, k0) = bψ(x,−k0).

9) Inverse Problem. Using the analyticity properties of ϕ(x, k), ψ(x, k), a(k),
together with their asymptotics for large k, i) rewrite the scattering equation

ϕ(x, k) = a(k)ψ(x, k) + b(k)ψ(x,−k), k ∈ R (128)

for the Schrödinger operator as a linear Riemann - Hilbert problem on the
real k axis, for a given set of scattering data. ii) Express the solution of such
a linear RH problem in terms of integral equations for the eigenfunctions,
and iii) reconstruct the potential u(x) in terms of the scattering data.

10) t - evolution of the scattering data. Obtain the t evolution of the scat-
tering data if u evolves according to KdV.

11) Consider the Cauchy problem on the line for the KdV equation ut +
uxxx − 6uux = 0, with the initial condition u(x, 0) = −b exp(−x2). Show
(numerically) that, i) if b = 0.1, the dynamics is described by a pure non-
linear dispersive waves (travelling with negative group velocity); if b = 1,
by a nonlinear dispersive waves (traveling with negative group velocity) +
one soliton, travelling with positive speed; if b = 4, by a nonlinear disper-
sive waves (traveling with negative group velocity) + two solitons, traveling
with positive speeds (see the figures below). Interpret these numerical ex-
periments in the light of the IST for KdV.
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Figure 1 for b = 0.1: the area of the well is not large enough to support
bound states ⇒ the solution evolves into nonlinear dispersive waves; Figure
2 for b = 1: the area of the well is large enough to support one bound
state⇒ the solution evolves into a one soliton + nonlinear dispersive waves;
Figure 3 for b = 4: the area of the well is large enough to support two bound
states⇒ the solution evolves into two solitons + nonlinear dispersive waves.

11) Construct the 2-soliton solution of KdV and study the interaction of
the two solitons.

4 La teoria delle onde anomale in natura

Il materiale di questo capitolo è raccolto negli appunti sul sito del docente
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