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1 Introduction

In this course we present analytic techniques to investigate important nonlin-
ear aspects of natural phenomena. Most of the model equations introduced
and studied in the first three years of physics courses are linear, like the
harmonic oscillator, describing the small oscillations around a stable equi-
librium position, the wave equation describing the propagation of a physical
signal in a medium under the hypothesis of small (elastic) deformations of
the materials, or the propagation of an electromagnetic wave in the vacuum,
the heat (diffusion) equation, describing heat transfer phenomena, but also
the random walk in probability theory.

There is a practical motivation for the success of linear equations. The
terrestrial environment is quite exceptional in the universe: its temperature
is very low, and this allows for the coexistence of solid, liquid and gaseous
systems, due to the fact that the energetic content of the degrees of freedom
of the constituents of matter is very low with respect to the binding energies
of these constituents. As a comparison, the stellar environment consists of
ionized matter, and the energies of the degrees of freedom of the atomic con-
stituents is extremely high. Therefore the matter in terrestrial environment
is almost always near stable equilibrium states, and the solicitations exercised
through ordinary means are just perturbations, and the restoring forces are
elastic, i.e., linear. In addition, there are important physical theories that are
intrinsecally linear, like the Maxwell theory of the electromagnetic field in a
vacuum, or the Schrödinger wave mechanics. Therefore the study of linear
problems plays a central role in the development of our knowledge of nature.

However there are many phenomena, even in terrestrial environment, that
cannot be explained through linear theories. The equations of fluid dynamics
are systems of nonlinear partial differential equations (PDEs), and phenom-
ena like the turbulence, wave breaking, and shock waves cannot be explained
through linear equations, and problems like the meteorological predictions
cannot be solved through linear theories. Electromagnetism in the matter is
a nonlinear theory for intense fields, due to polarization and magnetization
effcts. Also the Einstein theory of gravitation is nonlinear, and the effects of
intense gravitational fields can be understood only using the full nonlinear
theory.

It turns out that many of these nonlinear phenomena in nature can be
understood perturbatively considering the first nonlinear corrections to the
linearized theories, and the aim of this course is twofold.
i) On one hand we introduce, through the multiscale perturbation method,
several nonlinear model equations of Mathematical Physics generalizing to
a nonlinear context the classical linear equations of Mathematical Physics
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known since a long time. We derive these equations in a small field regime
(but not so small to be allowed to completely neglect nonlinear corrections),
sometimes in the presence of a weak dispersion, or diffusion, or dissipation,
then capturing the first nonlinear corrections to the linearized theory.
ii) On the other hand, it turns out that the constructed nonlinear models are
not only physically relevant, but they are also special from a mathematical
point of view, since they can be integrated through particular mathematical
techniques. Therefore the second goal of this course is to introduce these
techniques, allowing one to describe analytically the nonlinear dynamics of
generic and physically relevant initial data. The fact that physically relevant
model PDEs are also special from a mathematical point of view, so special
to be often integrable, is not a coincidence, as we shall see later on.

The nonlinear model equations constructed from physics and solved in
this course are the following. The Riemann equation

ut + c(u)ux = 0, x, t ∈ R, u(x, t) ∈ R, (1)

quasi-linear hyperbolic generalization of the unidirectional linear wave equa-
tion ut + cux = 0, that can be solved through the method of characteristics.

The Burgers equation

ut + uux = νuxx, ν > 0, x, t ∈ R, u(x, t) ∈ R, (2)

nonlinear generalization of the heat (diffusion) equation ut = νuxx, ν > 0,
that can be integrated using a suitable nonlinear contact transformation of
the dependent variable, the Hopf-Cole transformation.

The Korteweg - de Vries (KdV) equation

ut + uux + uxxx = 0, x, t ∈ R, u(x, t) ∈ R, (3)

nonlinear generalization of the linear dispersive PDE ut + uxxx = 0, describ-
ing weakly nonlinear and weakly dispersive wave phenomena, that can be
integrated using the inverse scattering (spectral) transform (IST) method or
the finite gap method, depending respectively on whether the involved fields
are localized or periodic.

The nonlinear Schrödinger (NLS) equations

iψt + ψxx + 2η|ψ|2ψ = 0, η = ±1, x, t ∈ R, ψ(x, t) ∈ C, (4)

nonlinear analogues of the linear Schrödinger equation for a free particle:
iψt+ψxx = 0, describing the propagation of small amplitude quasi monochro-
matic waves in a nonlinear dispersive medium, that can be solved through
the same techniques used for the KdV equation.
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The course is organized as follows.
In §2 we summarize the basic properties of linear dispersive PDEs, and the
asymptotic techniques used to investigate the longtime dispersion of a local-
ized wave packet.
In §3 we study through the method of characteristics quasi-linear hyperbolic
waves, how they break in space-time, giving rise to the so-called gradient
catastrophe, and how they subsequently evolve into multivalued waves.
In §4 we describe how it is possible to avoid wave breaking and multival-
uedness i) introducing the so-called shock waves, discontinuous and single
valued waves manifestation of small dissipative effects; ii) regularizing the
hyperbolic model adding suitable dissipative or dispersive corrections.
In §5 we introduce the multiscale perturbation method for ordinary differ-
ential equations (ODEs) and for PDEs, and we use it to derive the above
nonlinear model equations of Mathematical Physics from large classes of non-
linear PDEs.
In §6 we solve the KdV and NLS equations through the so-called Inverse
Spectral (or Scattering) Transform (IST) method, a nonlinear analogue of
the Fourier transform method, and we show how a generic localized initial
datum evolves into a train of “solitons”, localized solitary waves interacting
nonlinearly in an elastic way.
In §7 we use a direct technique, the Darboux transformation, to construct
exact nontrivial solutions from elementary solutions of soliton PDEs like the
KdV and NLS equations.
In §8 we investigate the mathematical properties and the dynamics of NLS
periodic anomalous (rogue) waves, nonlinear waves of anomalously large am-
plitude with respect to the surrounding waves, appearing apparently from
nowhere and disappearing without leaving any trace.
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2 Linear Dispersive waves [36, 9, 29]

A linear partial differential equation (PDE) with constant coefficients can be
written as

P(∂t, ∂x)u = 0, u = u(x, t), (5)

where u = u(x, t) is the unknown field and P(a, b) is an polynomial function
of a and b; here we limit, for simplicity, our considerations to the case of PDEs
in 1 + 1 dimensions, but the generalization to higher dimensions is obvious.
It is dispersive if it admits a monochromatic plane wave as solution:

u(x, t) = a exp [i(kx− ω(k)t)] (6)

∀k ∈ R and for a certain function ω(k) such that

� ω(k) ∈ R, ∀k ∈ R,

� ω′′(k) ̸= 0 for almost every k ∈ R.

k and ω(k) are called, respectively, the wave number and the dispersion
relation. The first condition implies that there is no dissipation or a source
term; the second condition avoids that ω(k) = ck (in this case, the wave
would travel rigidly with the constant speed c and the equation would be
hyperbolic and not dispersive).

Important examples are

� iut+uxx = 0 the Schrödinger equation for a free particle, with P(∂t, ∂x) =
i∂t + ∂2x and ω(k) = k2;

� ut + uxxx = 0 the linearized Korteweg-de Vries (KdV) equation, with
P(∂t, ∂x) = ∂t + ∂3x and ω(k) = −k3;

� utt − c2uxx + µ2u = 0 the Klein-Gordon equation, with P(∂t, ∂x) =
∂2t − c2∂2x + µ2 and ω2 = c2k2 + µ2.

In general, the PDE P(∂t, ∂x)u = 0 is dispersive if, solving the equation
P(−iω, ik) = 0 with respect to ω, one obtains one or more solutions ω(k)
satisfying the two properties above.

2.1 Fourier Representation

The linearity of the equation implies that, if (6) is solution ∀k, then a linear
combination of monochromatic waves with different k’s is also solution. If
one is interested in localized solutions in space, then one obtains the Fourier
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transform (FT) representation of the solution. More precisely, the solution
of the Cauchy problem for the linear dispersive PDE

P(∂t, ∂x)u = 0, u = u(x, t),
u(x, 0) = u0(x) given ,
u(x, t) → 0 as x→ ±∞

(7)

is (see Fig. 45)

u(x, t) =
∞∫

−∞

dk
2π
û0(k)e

i(kx−ω(k)t),

û0(k) :=
∞∫

−∞
u0(x)e

−ikxdx FT of the initial condition
(8)

Figure 1: The solution scheme of the Fourier method. We go from the
physical space to the Fourier space because there the evolution is simpler,
being given by an ODE.

Remarks
1) We observe that, if f(x) ∈ R, then f̂(k) = f̂(−k); and if f̂(k) can be ana-

lytically prolongued outside the real axis, then f̂(k) = f̂(−k). In addition, if
u(x, t) ∈ R in (8), then ω(k) is an odd function and û0(k) = û0(−k). SHOW
IT!

2) The solution (8) can also be written in the following suggestive form:

u(x, t) =
∫
R
dk
2π
ei(kx−ω(k)t)

∫
R dye

−ikyu0(y)
=
∫
R dyu0(y)

∫
R
dk
2π
ei(k(x−y)−ω(k)t)

=
∫
R S(x− y, t)u0(y)dy

(9)
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(in the second step we used the Fubini theorem), where S(x, t) is the so-called
“fundamental solution” of the PDE

S(x, t) :=

∫
R

dk

2π
ei[kx−ω(k)t], (10)

that particular solution corresponding to a Dirac δ function initial datum:
u(x, 0) = δ(x).

3) If ω(k) = kn, SHOW THAT the fundamental solution is a “similarity
solution” of the PDE:

S(x, t) = 1
n√tf

(
x
n√t

)
, f(ξ) :=

∫
R
ds
2π
ei(sξ−s

n) (11)

(see Appendix 1 for the definition of similarity solution with examples).
The solution (8) is exact but not expressible, in general, in terms of

elementary functions. It is the superposition of infinitely many elementary
monochromatic waves. Each wave travels with its phase velocity

vphase =
ω(k)

k
, (12)

different for different k’s. It follows that an initially localized wave packet
disperses as time goes. As we shall see, it is the group velocity

vgroup = ω′(k) (13)

that plays a relevant role in the dispersion of the wave packet. This can be
easily seen in the quasi-monochromatic approximation in which the Fourier
transform û0(k) is localized around the wave number k0, suggesting the
change of variables

k = k0 + ϵk′, 0 < ϵ≪ 1. (14)

Substituting (14) into (8), and expanding in power series we have

u(x, t) ∼
∫
R
dk̃
2π
û0(k0 + ϵk′)ei[k0+ϵk

′)x−ω(k0+ϵk′)t]

∼ ϵei[k0x−ω(k0)t]
∫
R
dk′

2π
û0(k0 + ϵk′)eik

′[ϵ(x−ω′(k0)t)]

=: ϵA (ϵ (x− ω′(k0)t)) e
i[k0x−ω(k0)t].

(15)

Then the monochromatic crest ei[k0x−ω(k0)t], traveling with the phase velocity
vphase =

ω(k0)
k0

, is modulated by the slowly varying amplitudeA (ϵ (x− ω′(k0)t)),
traveling with the group velocity vgroup = ω′(k0). In the dispersion of a free
quantum particle, described by the Schrödinger equation iut + uxx = 0,
ω(k) = k2, and

vphase = k0 < 2k0 = vgroup. (16)
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It follows that the amplitude travels with twice the speed of a crest (ripple).
The approximation used in this derivation does not capture some relevant
properties of linear dispersive waves. To get them, it is convenient to consider
the longtime behavior of these solutions.

2.2 Longtime behavior and stationary phase approxi-
mation

Often one is interested in the solution (8) for large x and t, and x/t = O(1);
this is consistent, for example, with the quantum mechanical case, where the
times of the experimental measures are much larger than the atomic times.
In this case it is possible to describe analytically such a dispersion. Let’s
rewrite (8) as

u(x, t) =
∞∫

−∞

dk
2π
û0(k)e

iϕ(k,x/t)t,

ϕ
(
k, x

t

)
:= k x

t
− ω(k)

(17)

For large t and x/t = O(1), the exponential oscillates very rapidly and the
integral goes to zero as t tends to ∞, by the Riemann-Lebesque lemma. To
see how it tends to zero, we use the stationary phase method.
We first observe that the main contribution comes from the points in which
the phase ϕ(k, x/t) is stationary with respect to k. Let us suppose that there
exists a unique real stationary point k0(x/t) ∈ R such that

∂ϕ
∂k

(
k, x

t

)∣∣
k0

= ∂ϕ
∂k

(
k0,

x
t

)
= x

t
− ω′(k0) = 0,

⇒ ω′(k0) =
x
t

⇒ k0 = k0
(
x
t

)
.

(18)

In a neighborhood of k0:

û0(k) = û0
(
k0
(
x
t

))
+O(k − k0),

ϕ
(
k, x

t

)
= ϕ

(
k0,

x
t

)
+ 1

2
∂2ϕ
∂k2

(
k0,

x
t

)
(k − k0)

2

+O(k − k0)
3,

(19)
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Therefore

u(x, t) ∼
k0+ϵ∫
k0−ϵ

dk
2π
û0(k)e

iϕ(k,x/t)t

∼ û0(k0)
2π

eiϕ(k0,x/t)t
k0+ϵ∫
k0−ϵ

e
i
2
ϕ′′(k0,x/t)(k−k0)2tdk

∼ û0(k0)

π
√

2|ϕ′′(k0,x/t)|t
eiϕ(k0,x/t)t

ϵ

√
|ϕ′′(k0,x/t)|t

2∫
−ϵ
√

|ϕ′′(k0,x/t)|t
2

eiνξ
2
dξ

∼ û0(k0)

π
√

2|ϕ′′(k0,x/t)|t
eiϕ(k0,x/t)t

∫
R
eiνξ

2
dξ

= û0(k0)√
2π|ϕ′′(k0,x/t)|t

eiϕ(k0,x/t)t+iν
π
4 ,

(20)

where

ν := sign

(
∂2ϕ

∂k2
(k0, x/t)

)
= − sign

(
∂2ω

∂k2
(k0, x/t)

)
. (21)

In the first step we use the fact that the main contribution is in a neigh-
borhood of k0; in the second step we use the relevant terms of the Taylor

expansions; in the third step we change variables: ξ =
√

|ϕ′′(k0,x/t)|t
2

(k − k0);

in the fourth step the finite integral is approximated by the integral over the
real line, due again to the fast oscillation; in the last step we evaluate the
Fresnell integral as: ∫

R

eiνξ
2

dξ =
√
πeiν

π
4 , (22)

expressing this integral in terms of the gaussian integral
∫
R exp(−x

2)dx =√
π, using the Cauchy theorem. We have qualitatively constructed the lead-

ing order term of the asymptotic expansion of the longtime solution. A quan-
titative proof, together with the estimate of the correction, will be made in
(35) and in the Appendix 9.2.4.

Summarizing, for t≫ 1 and x/t = O(1):

u(x, t) ∼ 1√
t
A (k0) e

iΘ(x,t,k0),

Θ(x, t, k0) := k0x− ω (k0) t,

A (k0) :=
û0(k0)√
2π|ω′′(k0)|

exp
[
−i sign(ω′′(k0))

π
4

]
,

k0 = k0
(
x
t

)
.

(23)

Since k0 depends on x/t, the leading order solution (23) represents a non
uniform wave train, and since k0 depends on x and t slowly for t≫ 1:

1
k0

∂k0
∂x

=
k′0
k0

1
t
= 1

k0ω′′(k0)
1
t
≪ 1,

1
k0

∂k0
∂t

= −k′0
k0

x
t2
= − ω′(k0)

k0ω′′(k0)
1
t
≪ 1,

(24)
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it represents a slowly varying (in space-time) wave train. In (24) we
have used the relation ω′(k0) =

x
t
and its consequence k′0ω

′′(k0) = 1, obtained
taking the x derivative of it.

In addition,

∂Θ
∂x

= k0 + k′0
x
t
− ω′(k0)k

′
0 = k0,

∂Θ
∂t

= −k′0 x
2

t2
+ ω′(k0)k

′
0
x
t
− ω(k0) = −ω(k0).

(25)

Therefore
i) we have the same formulas as for the single monochromatic wave a exp (iθ),
where θ = kx−ω(k)t, for which: θx = k, θt = −ω(k). But now wave number
and dispersion relation are not constant;
ii) the Schwarz lemma (Θxt = Θtx) implies that the wave number k0
propagates with the group velocity ω′(k0) according to the Riemann
nonlinear hyperbolic PDE (see §3):

∂k0
∂t

+ ω′(k0)
∂k0
∂x

= 0. (26)

An observer traveling with constant speed v0 = x/t = ω′(k0(x/t)) sees
waves with wave number k0(v0) and angular frequency ω(k0(v0)); therefore
wave number and angular frequency travel with the group velocity
ω′(k0(v0)), but the amplitude of the wave train changes and the crests move
(they separate or get closer). If the phase Θ(x, t) is constant, then

dΘ

dt
= Θt +Θx

dx

dt
= 0 ⇒ dx

dt
= −Θt

Θx

∼ ω(k0(x/t))

k0(x/t)
(27)

Therefore an observer moving with a crest travels with the phase
velocity, and wave number and angular frequency vary (the neighboring
crests separate or get closer).

As we shall see now, the energy of the wave train (or probability to find
the quantum particle, or mass if u is a mass density of something, or power
in optics) travels with the group velocity ω′(k0).

E(t) =
x2∫
x1

|u(x, t)|2dx ∼ 1
2πt

x2∫
x1

|û0(k0(x/t))|2
|ω′′(k0(x/t))| dx

= 1
2π

kM∫
km

|û0(k0)|2dk0
(28)

The change of variables used: x → k0(x/t) at fixed t is given by x =
ω′(k0(x/t))t, with dx = ω′′(k0(x/t))tdk0, and with the end points xj =
ω′(kj)t, j = 1, 2. In addition: km = min{k1, k2}, kM = max{k1, k2}.
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Therefore the energy is constant in the interval (x1, x2), where x1, x2 travel
with the group velocity: xj = ω′(kj)t. Since x2(t)−x1(t) = |ω′(k2)−ω′(k1)|t
grows linearly in t, the energy disperses on an interval growing linearly with
time.

Now we apply these results to two important examples, the Schrödinger
and the linearized KdV equations.

2.3 The Schrödinger equation

For the Schrödinger equation for a free particle

iut + uxx = 0, (29)

we have ω(k) = k2; then

x
t
= ω′(k0) = 2k0, ⇒ k0 =

x
2t
,

ω′′(k) = 2,
(30)

and the group lines are straight lines in the (x, t) plane.

Θ(x, t) = k0(x/t)x− ω(k0(x/t))t = x2/(4t) = Θ0 (31)

and the phase lines are parabolas (see Fig. 2).

Figure 2: The group straight lines k1 and k2 constant, and the parabolic
phase lines Θ1 and Θ2 constant.

Traveling with the group velocity (with constant speed v), one sees the
wave number k0(v) and frequency ω(k0(v)). Since k0 = const = x/(2t) =

14



√
Θ/

√
t = 2Θ/x, increasing x, the phase increases. In addition, at fixed t,

increasing x, k0 increases (the distance between two crests decreases).
If one travels with a crest (Θ is constant): Θ = Θ0 = x2/(4t) = k20t. Increas-
ing time, k0 decreases (neighboring crests separate), and since k0 increases
increasing x, it means that the observer traveling with constant speed over-
comes the crests (see Fig. 3).

Figure 3: The graphs of the analytic formula (23) describing the asymptotics
of the real part of the solution of the linear Schrödinger equation for a gaus-
sian initial condition at t = 10 and at t = 12, to show the following. i) at
fixed t, increasing x the wave-length decreases, since k0 = x/(2t); ii) as t
increases, if one travels with a crest, the distance of the neighboring crests
increases (k0 decreases), and to see the same k0, one should move to the right
(the observer traveling with constant speed overcomes the crests).

15



At last:

u(x, t) ∼
û0
(
x
2t

)
√
4πt

e
i
(

x2

4t
−π

4

)
, t≫ 1,

x

t
= O(1). (32)

We remark that the fundamental similarity solution of (29)

S(x, t) =

∫
R

dk

2π
ei(kx−k

2t) =
e
i
(

x2

4t
−π

4

)
√
4πt

(33)

(CALCULATE THIS INTEGRAL COMPLETING THE SQUARE AND
REDUCING IT TO THE FRESNELL INTEGRAL) is the main ingredient
of the longtime solution:

u(x, t) ∼ U(x, t) := A
(
x
2t

)
S(x, t), t≫ 1, x/t = O(1),

A
(
x
2t

)
:= û0

(
x
2t

)
,

(34)

where A(·) is then an arbitrary localized function (the Fourier transform of
an arbitrary localized initial datum).

One can show that the correction to the leading order formula (34) reads:

u(x, t) ∼ S(x, t)
[
A
(
x
2t

)
+ 1

t
B
(
x
2t

)
+O(t−2)

]
,

B(ξ) = − i
4
A′′(ξ), t≫ 1, x/t = O(1).

(35)

Indeed, observing that the leading order solution (34) solves the PDE up to
O(t−2) corrections:

iUt + Uxx = A������
(iSt + Sxx)

HHH
HH

−i x
2t
A′S

t
+

Z
Z
ZZ

1

t
A′Sx + A′′ S

(2t)2
= O(t−2), (36)

it follows that (35a) is the correct ansatz; substituting it in the PDE, one
obtains (35b). VERIFY IT!

16
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Figure 4: Three snapshots of the numerical evolution, according to NLS, of
the real part of u, for a gaussian initial condition (in blue). COMPARE IT
with the analytic plots of Fig. 3

2.4 The linearized KdV equation

The fundamental (similarity) solution of the linearized KdV equation

ut + uxxx = 0, u(x, t) ∈ R (37)

is

S(x, t) =
∫
R

dk
2π
ei(kx+k

3t) = 1
(3t)1/3

∫
R

ds
2π
ei(ξs+

s3

3
)

=: 1
(3t)1/3

Ai (ξ) , ξ = x
(3t)1/3

(38)

(in the second step we used the change of variables k → s, s = (3t)1/3k).
SHOW that the Airy function Ai(ξ) defined in (38) solves the ODE

Aiξξ(ξ) = ξAi(ξ) (39)

and then plays an important role in Quantum Mechanic, describing the wave
function of the stationary Schrödinger equation in the small region around
the point in which the potential changes its sign.

Now we look for the longtime behavior of the solution of the Cauchy
problem for the linearized KdV equation

ut + uxxx = 0, u(x, t) ∈ R,
u(x, 0) = u0(x), u(x, t) → 0, x→ ±∞,

(40)

17



whose solution is

u(x, t) =

∫
R

dk

2π
û0(k)e

i(kx+k3t). (41)

Now ϕ(k, x/t) = kx/t + k3, ϕ′(k0) = x/t + 3k20 = 0 and there are two
stationary points

k±0 = ±
(
− x

3t

)1/2
. (42)

If x/t < 0 (the observer travels with negative speed), then k±0 = ±
√∣∣ x

3t

∣∣ ∈ R
and we can use, as before, the stationary phase method with two stationary
points:

ϕ(k±0 , x/t) = ∓
∣∣ x
3t

∣∣3/2 ,
ϕ′′(k±0 , x/t) = 6k±0 = ±2

∣∣3x
t

∣∣1/2 ⇒

u(x, t) ∼ 1√
4π| 3xt |

1/2
t

[
û0

(√∣∣ x
3t

∣∣) e−i(2| x
3t |

3/2
t−π

4

)

+û0

(
−
√∣∣ x

3t

∣∣) ei(2| x
3t |

3/2
t−π

4

)]
, t≫ 1, x/t = O(1) < 0.

(43)

Since u ∈ R and ω(k) is odd, then û0(k) = û0(−k) for k ∈ R, and the
asymptotics can be rewritten in the simpler form

u(x, t) ∼

∣∣∣∣∣û0
(√

| x
3t |

1/2

)∣∣∣∣∣
√
πt| 3xt |

1/4 cosΘ(x, t), t≫ 1, x/t = O(1) < 0,

Θ(x, t) := 2
∣∣ x
3t

∣∣3/2t− arg

(
û0

(√∣∣ x
3t

∣∣1/2))− π
4
.

(44)

If x/t > 0 (the observer travels with positive speed), then k±0 = ±i
√∣∣ x

3t

∣∣ ∈
iR, the stationary phase method cannot be used anymore and must be re-
placed by the “Steepest descent method”, or “saddle point method”, illus-
trated in Appendix 2.

We have

u(x, t) =

∫
R

dk

2π
û0(k)e

i(kx+k3t) =

∫
R

dk

2π
û0(k)e

f(k,x/t)t, (45)

with

f(k, x/t) = i(kx/t+ k3), f ′(k, x/t) = i(x/t+ 3k2) = 0 ⇒ k±0 = ±i
√∣∣ x

3t

∣∣,
f ′′(k±0 , x/t) = 6ik±0 = ∓6

√∣∣ x
3t

∣∣, ef(k
±
0 ,x/t)t = e∓2| x

3t |
3/2

t.

(46)
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Since now k = kR + ikI ∈ C, kR =Re k, kI =Im k,

f(k, x/t) = u(kR, kI) + iv(kR, kI),
fR = u(kR, kI) = k3I − 3k2RkI − kI

x
t
,

fI = v(kR, kI) = kR
x
t
+ k3R − 3kRk

2
I ,

v(k±0 ) = 0, u(k±0 ) = ∓2
∣∣ x
3t

∣∣3/2 .
(47)

Then the curves of steepest variation, defined by

v(kR, kI)− v(k±0 ) = v(kR, kI)
= kR(k

2
R − 3k2I +

x
t
) = 0,

(48)

are the imaginary axis kR = 0 and the hyperbola k2R − 3k2I +
x
t
= 0 of the

complex k plane. The conditions of steepest descent

u(kR, kI)− u(k±0 ) = k3I − 3k2RkI − kI
x
t
± 2

∣∣ x
3t

∣∣3/2 < 0 (49)

select the upper branch of the hyperbola passing through k+0 (on which φ0 =
arg(f ′′(k+0 )) = π and θ0 = 0), and the semi straight line kR = 0, kI <
(x/3t)1/2 passing through k−0 (on which φ0 = 0 and θ0 = π/2) (VERIFY IT).

In addition, for |k| ≫ 1, then f(k) ∼ ik3 = i|k|3(cos(3φ) + i sin(3φ)) =
|k|3(i cos(3φ) − sin(3φ)), where k = |k|eiφ. It follows that the integrand
goes to 0 exponentially at ∞ when sin(3φ) > 0; i.e., when 0 < φ < π/3,
2π/3 < φ < π, and 4π/3 < φ < 5π/3 (see Fig. 5).

Figure 5: The two steepest descent contours passing through k+0 and k−0 are
in green. In the gray regions the exponential converges to zero at ∞
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Therefore the only steepest descent contour that can be connected to
the initial integration contour (−∞,∞) through two arcs at ∞ is the upper
branch of the parabola passing through k+0 , and the direction at k+0 is θ0 = 0.
More precisely, the integral over the real line is equal to the integral over the
contour γ̃ consisting of the union of the infinite arc (−∞,∞ exp(5iπ/6)) the
upper branch of the hyperbola γ, from ∞ exp(5iπ/6) to ∞ exp(iπ/6), and
the infinite arc (∞ exp(iπ/6),∞), by the Cauchy theorem, having assumed
that û0(k) be analytic inside the closed contour R∪ γ̃. In addition, since the
integrals over the infinite arcs are zero, we obtain, using formula (1269) in
Appendix 2,

u(x, t) =
∫
R

dk
2π
û0(k)e

i(kx+k3t) =
∫
γ

dk
2π
û0(k)e

i(kx+k3t)

=
û0
(
i
√
| x
3t |
)

2
√
πt| 3xt |

1/4 e
−2| x

3t |
3/2

t
(
1 +O

(
1
t

))
,

t≫ 1, x/t = O(1) > 0.

(50)

We observe that the RHS of (50) is real, as it has to be, since û0(k) = û0(−k).
From (44) and (50) we conclude that a localized initial condition evolves

into a slowly varying wave train moving left.
We remark that both asymptotics (44) and (50) diverge for x/t ∼ 0. It

means that, for x/t ∼ 0, there must exist another asymptotic region in which
the solution is regular and matches well with the left and right asymptotic
regions. To construct the asymptotics in this intermediate region, we observe
that

u(x, t) = 1
2π

∫
R û0(k)e

i(kx+k3t)dk

= 1
2π(3t)1/3

∫
R û0

(
s

(3t)1/3

)
ei(sξ+s

3/3)ds,

ξ := x
(3t)1/3

.

(51)

If t ≫ 1 and x(3t)−1/3 = O(1) (x/t ∼ 0), the argument of û0 is small inside
the second integral : û0(k) = û0(0) + û′0(0) k +O(k2), and

u(x, t) ∼ û0(0)

2π(3t)1/3

∫
R e

i(s x

(3t)1/3
+s3/3)

ds+
û′0(0)

2π(3t)2/3

∫
R se

i(s x

(3t)1/3
+s3/3)

ds

= û0(0)

(3t)1/3
Ai
(

x
(3t)1/3

)
− iû′0(0)

(3t)2/3
Ai′
(

x
(3t)1/3

)
, t≫ 1, x

(3t)1/3
= O(1).

(52)

It is possible to show that the asymptotics (52) match perfectly with the
leading order terms (44) and (50) of the left and right regions, using the
asymptotics of the Airy function (see Appendix 2):

Ai(ξ) ∼

 e−
2
3 ξ3/2

2
√
πξ1/4

, ξ ≫ 1
cos( 2

3
ξ3/2−π/4)

√
π|ξ|1/4 , ξ ≪ −1.

(53)
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Figure 6: Three snapshots of the numerical evolution, according to the lin-
earized KdV, of a gaussian initial condition show that the non uniform wave
train propagates to the left, as shown analytically.

2.5 Exercises

1) Given the Cauchy problem

ut + iω(−i∂x)u = 0, u(x, 0) given, x ∈ R, t ≥ 0, (54)

where ω(k) is a polynomial function of k, so that, f.i., if ω(k) = k2, then ω(−i∂x) = (−i∂x)2 = −∂2x,
1. show that the Fourier integral representation of its solution is

u(x, t) =
1

2π

∫
R
û0(k)e

i(kx−ω(k)t)dk, (55)

where û0(k) is the Fourier transform of the initial condition u(x, 0):

û0(k) =

∫
R
e−ikyu(y, 0)dy. (56)

2. Show that (55) can be written as a convolution integral, in the suggestive form:

u(x, t) =

∫
R
S(x− y, t)u(y, 0)dy, (57)

where S(x, t) is the “fundamental” solution of the PDE, defined as:

S(x, t) =
1

2π

∫
R
ei(kx−ω(k)t)dk. (58)

3. If ω(k) = kn, then S(x, t) is the following similarity solution of the PDE:

S(x, t) = 1
t1/n

f
(

x
t1/n

)
,

f(ξ) = 1
2π

∫
R e

i(kξ−kn)dk.
(59)
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4. Show that, if u ∈ R, then:

û0(k) = û0(−k), k ∈ R

u(x, t) = 1
π
Re

∞∫
0

û0(k)ei(kx−ω(k)t)dk
(60)

If, in addition, û0(k) can be prolongued outside the real axis, then

û0(k) = û0(−k̄). (61)

(for the second of (60) we have also assumed that ω(k) is odd: ω(−k) = −ω(k))

2) Given the following linear PDEs:

i) iut + uxx = 0, free particle Schrödinger equation,
ii) ut + uxxx = 0, linearized KdV equation,
iii) utt − uxx + u = 0, Klein - Gordon equation,

(62)

1. Construct the fundamental similarity solution (1232) (only for i) and ii)).
2. Study the longtime behavior, for t >> 1, x/t = O(1), of the solutions of their Cauchy problem using
the stationary phase, Laplace, or saddle point methods, depending on the situation, and estimate the
error.
3. Study of the relevance of the exact similarity solution in the longtime behavior (only for i) and ii)).
Solution:
i) Free particle Schrödinger equation:

S(x, t) = 1
2
√
πt
ei(

x2

4t
−π

4
),

u(x, t) = S(x, t)
(
A(ξ) + 1

t
B(ξ) +O(t−2)C(ξ)

)
, ξ = x

2t
= O(1), t >> 1

A(ξ) = û0(ξ), B(ξ) = − i
4
Aξξ

(63)

ii) Linear KdV. For x/t > 0, the lines of constant v(k) are the imaginary axis and the hyperbola kR
2 −

3kI
2 +x/t = 0. The steepest descent contour passing through the critical point i

√
x
3t

is the upper branch

of the hyperbola, while the steepest descent contour passing through the critical point −i
√

x
3t

is the

imaginary axis. The asymptotics is obtained replacing the integration real line by the steepest descent

contour passing through i
√

x
3t
.

S(x, t) = 1
(3t)1/3

Ai
(

x
(3t)1/3

)
,

u(x, t) ∼ û0(|x/3t|1/2)√
4π|3x/t|1/2t

e−i2|x/3t|3/2t+iπ/4 + c.c., x
3t

= O(1) < 0, t >> 1,

u(x, t) ∼ û0(i|x/3t|1/2)√
12π|3x/t|1/2t

e−2|x/3t|3/2t, x
3t

= O(1) > 0, t >> 1,

u(x, t) ∼ û0(0)

2π(3t)1/3
Ai
(

x
(3t)1/3

)
− iû′

0(0)

2π(3t)2/3
Ai′
(

x
(3t)1/3

)
, x

(3t)1/3
= O(1), t >> 1,

u(x, t) ∼ û0(0)
2π

S(x, t), x
(3t)1/3

= O(1), t >> 1,

(64)

where Ai(ξ) is the Airy function

Ai(ξ) =
1

2π

∫
R
ei(kξ+k3/3)dk, (65)

solution of the ODE: f ′′(ξ)− ξf(ξ) = 0.
iii) Klein-Gordon equation. The dispersion relation is two-valued (since the PDE is second order in t):

ω±(k) = ±
√
k2 + 1; (66)

therefore the phase velocity is greater than the light speed 1, while the group velocity is less than 1:

ω

k
=

√
k2 + 1

k
> 1,

dω

dk
=

k
√
k2 + 1

< 1 (67)
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The Fourier representation of the real solution reads:

u(x, t) =
1

2π

∫
R
B(k)ei(kx+

√
k2+1t)dk +

1

2π

∫
R
B(−k)ei(kx−

√
k2+1t)dk, (68)

where

B(k) =
1

2

(
û0(k)− i

û′0(k)√
k2 + 1

)
, (69)

where û0(k) and û′0(k) are the Fourier transforms of respectively u(x, 0) and ut(x, 0). For |x/t| < 1 (inside
the light cone) and t >> 1 (see Fig. 7):

u ∼
1

√
2πt

(
1−

(x
t

)2)−3/4

B

(
−

x
√
t2 − x2

)
ei
√

t2−x2+iπ/4 + c.c. (70)
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Figure 7: Three time steps (t = 0, t = T/2, t = T ) of the numerical evolution
of a gaussian initial condition according to the wave equation equation utt−
c2uxx = 0 (the figure above) and the Klein-Gordon equation (the figure
below).

3) Study the longtime behavior, for t >> 1, x/t = O(1), of the Fourier integral

u(x, t) =
1

2π

∫
R
û0(k)e

i(kx−ω(k)t)dk (71)
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under the hypothesis that there exists a unique stationary phase point k0(x/t) ∈ R, and that ω′′(k0) =
0, ω′′′(k0) ̸= 0.

4) Given the linear PDE P(∂t,∇x⃗)u(x⃗, t) = 0, x⃗ ∈ Rn, t ∈ R in (n + 1) dimensions, with u ∈ L1(Rn) ∩
L2(Rn),
i) show that the solution of its Cauchy problem:

P(∂t,∇x⃗)u(x⃗, t) = 0, u(x⃗, 0) = u0(x⃗) ∈ L1(Rn) ∩ L2(Rn) (72)

is given by the Fourier integral:

u(x⃗, t) =
∫
Rn û0(k⃗)e

i(k⃗·x⃗−ω(k⃗)t) dk⃗
(2π)n

û0(k⃗) =
∫
Rn u0(x⃗)e

−ik⃗·x⃗dx⃗
(73)

where ω(k⃗) is obtained solving the equation P(−iω, ik⃗) = 0 wrt ω.

ii) Show that, under the hypothesis that the vector equation for k⃗

x⃗

t
= ∇

k⃗
ω(k⃗) (74)

admits a unique real solution k⃗0 = k⃗0(x⃗/t) ∈ Rn, the extension of the stationary phase method for multiple
integrals gives the following longtime behavior:

u ∼
(

1
2πt

)n/2
(
det
(

∂2ω(k⃗0)
∂ki∂kj

))−1/2
û0(k⃗0)e

i(k⃗0·x⃗−ω(k⃗0)t+mπ
4
),

m ≡ −
n∑

j=1
sign(λj)

(75)

where λj , j = 1, .., n are the (real) eigenvalues of the symmetric matrix
(

∂2ω(k⃗)
∂ki∂kj

) ∣∣∣
k⃗0

.

5) Let Γ(z) be the Euler Γ function:

Γ(z) =

∞∫
0

e−ttz−1dt, Re z > 0. (76)

i) Show, integrating by parts, that it is the generalization of the factorial:

Γ(n+ 1) = n!, n ∈ N. (77)

ii) Use the Laplace method to construct the Stirling formula:

n! = nne−n
√
2πn

(
1 +O(n−1)

)
, n >> 1. (78)

6) Use the Laplace method to show that, if f(t) has a max of order n− 1 in t0 ∈ (a, b):

f(t) = f(t0) +
f (n)(t0)

n!
(t− t0)

n +O(t− t0)
n+1, f (n)(t0) < 0, n even, (79)

then
b∫

a

g(t)epf(t)dt ∼
2 Γ(1/n)

n
n

√
n!

p|f (n)(t0)|
g(t0)e

pf(t0), (80)

having also used the formula ∫
R
e−snds =

2 Γ(1/n)

n
. (81)
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7) Obtain the following asymptotics for the Bessel and modifies Bessel functions:

In(x) =
1
π

π∫
0

cos(nt)ex cos tdt ∼ 1√
2πx

ex, x≫ 1,

Kν(x) =
∞∫
0

cosh(νt)e−x cosh tdt ∼
√

π
2x
e−x, x≫ 1.

(82)

8) Given the Airy function Ai(x), defined by

Ai(x) =
1

2π

∫
R
ei(kx−k3)dk, x ∈ R, (83)

i) use the saddle point method to show that

Ai(x) = e
− 2

3
x3/2

2
√
πx1/4 (1 +O(x−3/2)), x≫ 1,

Ai(x) = 1
π|x|1/4

cos
(
2
3
|x|3/2 − π

4

)
(1 +O(x−3/2)), x≪ −1.

(84)

ii) Use the above asymptotics to show that the longtime behavior of the solutions of the Cauchy problem
for the linearized KdV equation in the region |x|/t1/3 = O(1), t ≫ 1, matches well with the asymptotics
in the left and right regions |x|/t = O(1), t≫ 1, x < 0 and x > 0.

9) Given the integral

f(x, t) =

b∫
a

g(k)ei(kx−k2t)dk, t≫ 1, x/t = O(1), (85)

where we integrate over a contour C from a to b, inside a domain D of analyticity of f and g, i) show that
the saddle point is x/2t and the steepest descent contour is given by the straight line passing through
x/2t and parallel to the line bisecting the second and fourth quadrants. ii) Show that, if a < x/2t and
b > x/2t, including the cases a = −∞ and b = ∞, the asymptotics of f(x, t) are given by the saddle point
formula

f(x, t) =
1

√
4πt

g
( x
2t

)
ei

x2

4t
−iπ

4 (1 +O(1/t)), t≫ 1, x/t = O(1). (86)

iii) Show that, if a < x/2t and b ∈ C, with 0 < arg b < π/2, the leading asymptotics is given, instead, by
the integration by parts formula at the end point b:

f(x, t) =
g(b)ei(bx/t−b2)t

2πi(x/t− 2b)t
(1 +O(1/t)), t≫ 1, x/t = O(1). (87)
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3 Hyperbolic Waves [36, 12, 23]

This chapter is dedicated to nonlinear hyperbolic PDEs. The prototype
example is the Riemann equation

ut + c(u)ux = 0, u = u(x, t) ∈ R, (88)

where c(·) is a smooth function of its argument playing the role of a field
dependent velocity.

If c = c0 does not depend on u, the equation reduces to the linear first
order wave equation ut + c0ux = 0 (also called the “advection equation”)
describing a rigid propagation of the initial profile with constant speed c0:

u(x, t) = f(x− c0t). (89)

The simplest and most relevant example of nonlinear equation in the class
(88) is the so-called Hopf equation

ut + uux = 0, u = u(x, t) ∈ R, (90)

corresponding to a speed c(u) depending linearly on the field u.
We have already seen that equation (88) is satisfied by the wave number

of the slowly varying wave train describing the longtime behavior of a linear
dispersive wave (equation (26)).

Equation (88) has also the following physical interpretation. Let ρ(x, t)
be the density of some physical quantity (mass, charge, . . . ) and q = ρv
the corresponding flux per unit of time; then the conservation law in integral
form reads

d

dt

x2∫
x1

ρ(x, t)dx = q(x1, t)− q(x2, t) (91)

Taking the limit x2 → x1, and assuming that density and flux be smooth
functions, one obtains the continuity equation (SHOW IT)

ρt + qx = 0. (92)

In addition, if the flux is a smooth function of ρ: q = Q(ρ), then ρ satisfies
(88) with

c(ρ) = Q′(ρ). (93)
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3.1 The Method of Characteristics

The integration of equation (88) is obtained via the method of characteris-
tics, through which the integration is reduced to the solution of an algebro-
transcendental equation.

Suppose for a moment that we know the solution u(x, t) of the Riemann
equation ut + c(u)ux = 0; then we introduce the ODE

dx

dt
= c(u(x, t)) (94)

defining a one-parameter family of curves x = x(t, η) in the (x, t) plane,
called “characteristic curves”. The parameter is, for instance, the integration
constant, or it can be identified with the intersection of the characteristic
curve with the x-axis:

x = η if t = 0. (95)

On each characteristic curve, u does not vary, since

du

dt
=
∂u

∂t
+
∂u

∂x

dx

dt
=
∂u

∂t
+
∂u

∂x
c(u) = 0. (96)

Therefore the PDE (88) is equivalent to the system of two ODEs

dx

dt
= c(u),

du

dt
= 0 (97)

(a great simplification). In addition, since u is constant on the characteristic
curve parametrized by η, it will be an arbitrary function of η: u = A(η). The
first equation becomes dx

dt
= c(A(η)) = const, implying that

x = c(A(η))t+ η, u(x, t) = A(η). (98)

This system of two algebro-transcendental equations defines the general so-
lution of (88) (general because it depends on the arbitrary function A(η)).

If, for instance, we are interested in the solution of the Cauchy problem

ut + c(u)ux = 0, u = u(x, t) ∈ R,
u(x, 0) = u0(x),

(99)

we remark from the first equation in (98) that, at t = 0, x = η, implying that
u(x, 0) = u0(x) = A(x). Then the solution of (99) is given by the system

x = c(u0(η))t+ η, u(x, t) = u0(η), (100)

that can be solved implicitly in the following way.
1) One solves the first equation in (100) with respect to η, obtaining η =
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η(x, t).
2) Replacing η = η(x, t) in the second equation, one obtains the wanted
solution

u(x, t) = u0(η(x, t)) = u0(x− c(u)t). (101)

Comparing the second formula in (101) with (89) we infer that the initial
condition propagates with a velocity c(u) depending on the field u. If, for
simplicity, c(u) = u, and if the initial condition u0(x) is a localized positive
bump, the max of the profile travels faster than the other parts of the profile,
then the profile deforms and, at a certain time, called the breaking time
tb and in certain point xb the profile becomes vertical. We obtain the so-
called “gradient catastrophe” at finite time. For t > tb the solution becomes
multivalued (three-valued in Fig. 8) in a segment (x1(t), x2(t)) (with x1(tb) =
x2(tb) = xb) growing with time:
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Figure 8: Four snapshots of the evolution of a localized initial condition
for c(u) = u, obtained through the numerical inversion of the algebro-
transcendental solution. 1st shot: the initial condition of gaussian type;
2nd picture: the deformation of the profile for t < tb; 3rd picture: the gradi-
ent catastrophe at t = tb; 4th picture: the three-valued profile for t > tb.

A geometric description of the process comes from the study of the slopes
of the one-parameter family of characteristics. Each portion of the initial pro-
file u0(η) travels on the characteristic straight line of parameter η. Different
portions travel on different characteristics having different slopes c(u0(η)),
and one expects that different characteristics may intersect in space-time. In
a point of intersection (x, t) the solution u has more values, the values carried
by the intersecting characteristics (see Fig. 9):
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Figure 9: The (handmade) figure shows the characteristics generated by a
generic localized bump initial condition for c(u) = u (the characteristics are
vertical lines far away from the bump, and they have a maximal slope where
the bump has its maximum). For t ≥ tb the characteristics start intersecting.
COMPARE this figure with Fig. 8

How to find the breaking time tb, the time at which the first gradient
catastrophe takes place? There are many ways.
1) Two characteristics intersect. Suppose the characteristics η and η + δη
intersect in the space-time point (x, t):

x = η + F (η)t,
x = η + δη + F (η + δη)t ∼ η + F (η)t
+δη(1 + F ′(η)t),

(102)

where
F (η) := c(u0(η)), (103)

implying the condition

1 + F ′(η)t = 0, ⇒ t = − 1

F ′(η)
. (104)

Since t > 0, then η must be such that

F ′(η) < 0. (105)
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2) The slope must be ∞. Taking the partial derivative with respect to x and
t of equations (100):

ut = u′0(η)ηt, 0 = F (η) + F ′(η)tηt + ηt
= F (η) + ηt(1 + F ′(η)t) ⇒
ηt = − F (η)

1+F ′(η)t
⇒ ut = −F (η)u′0(η)

1+F ′(η)t
.

(106)

ux = u′0(η)ηx, 1 = F ′(η)tηx + ηx
= ηx(1 + F ′(η)t) ⇒
ηx =

1
1+F ′(η)t

⇒ ux =
u′0(η)

1+F ′(η)t
.

(107)

Therefore ut and ux are infinity when (104) holds.
3) Impossibility to solve the first of equ.s (100) with respect to η. From the
Dini condition, it is not possible to solve the first of equations (100) when its
partial derivative with respect to η is zero, and one obtains again (104).

Since tb is the first time at which one has multivaluedness, then −F ′(η)
must take its maximum value at η = ηb. It follows that the corresponding
characteristic parameter ηb is defined by the equations

F ′(ηb) < 0, F ′′(ηb) = 0, F ′′′(ηb) > 0. (108)

Known ηb, then

tb = − 1

F ′(ηb)
, xb = ηb + F (ηb)tb. (109)

If, for instance, c(u) = u (F (η) = u0(η)) and u0(x) = exp(−x2), VERIFY
THAT

ηb = 1/
√
2, tb =

√
e

2
, xb =

√
2. (110)

In general, the system of algebro-transcendental equations (100) cannot
be solved in terms of elementary functions. In §3.2 we shall discuss two rel-
evant cases that can be treated via elementary functions. In §3.3 we will see
that, using a regular perturbation theory, it is possible to describe the break-
ing features of the solution near breaking in terms of elementary functions.

3.2 Compression and Rarefaction Waves

Consider the following Cauchy problem for compression and rarefaction waves
of the Hopf equation:

ut + uux = 0, (111)

u0(x) =


a1, x < −l,
a2−a1

2l
x+ a1+a2

2
, −l < x < l,

a2, x > l;
(112)
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a rarefaction wave if a1 < a2; a compression wave if a1 > a2 (see Fig. 10).

Figure 10: The first figure shows a rarefaction wave and the non intersecting
characteristic curves; no breaking in this case. The second picture shows
three snapshots of the evolution of a compression wave, before, at, and after
tb, and the third picture the corresponding intersecting characteristic curves.

We recall that the solution is:

x = u0(η)t+ η, u = u0(η) (113)

For η < −l, u0(η) = a1; then x = a1t+ η, ⇒ η = x− a1t < −l, and u = a1.
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Therefore
u(x, t) = a1, x < a1t− l. (114)

For |η| < l, u0(η) =
a2−a1

2l
η + a1+a2

2
; then

x = [a2−a1
2l

η + a1+a2
2

]t+ η, ⇒ η =
x−a1+a2

2
t

1+
a2−a1

2l
t

⇒ −l < x−a1+a2
2

t

1+
a2−a1

2l
t
< l, ⇒ x < a2t+ l, x > a1t− l.

(115)

Therefore

u = u0(η) =
a2−a1

2l

x−a1+a2
2

t

1+
a2−a1

2l
t
+ a1+a2

2
, a1t− l < x < a2t+ l (116)

If η > l, u0(η) = a2; then x = a2t + η ⇒ η = x − a2t > l ⇒ x > a2t + l;
therefore

u = a2, x > a2t+ l. (117)

Summarizing, the solution is

u(x, t) =


a1, x < a1t− l
a2−a1

2l

x−a1+a2
2

t

1+
a2−a1

2l
t
+ a1+a2

2
, a1t− l < x < a2t+ l,

a2, x > a2t+ l.

(118)

For |η| < l then

tb = − 1

u′0(η)
=

2l

a1 − a2
. (119)

In the rarefaction case tb < 0; then there is no breaking and the wave is more
and more rarefacted as time goes. In the compression case tb > 0, then there
is breaking, with

|ηb| < l, tb =
2l

a1−a2 > 0,

xb =
(
a2−a1

2l
ηb +

a1+a2
2

)
2l

a1−a2 + ηb =
a1+a2
a1−a2 l > l.

(120)

In the limit l → 0, the initial condition is discontinuous, the compression
wave breaks immediately (tb = 0), but the the rarefaction wave case becomes
continuous for t > 0 and is described by (VERIFY IT):

u(x, t) =


a1, x < a1t
x
t
, a1t < x < a2t,
a2, x > a2t.

(121)
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3.3 Study of the solution near breaking

Consider the evolution of a localized one-dimensional wave according to the
Hopf equation

ut + uux = 0,
u(x, 0) = u0(x) =: F (x), x ∈ R. (122)

We have seen that such evolution is described by the implicit equations

u = F (ξ), ξ = x− F (ξ)t, (123)

in which one solves the second equation with respect to ξ, obtaining ξ =
ξ(x, t), and substitute it into the first, to get the solution u = F (ξ(x, t)).
The 1-dimensional (movable) Singularity Manifold is:

S(ξ, t) = 1 + Fξ(ξ)t = 0 ⇒ t = − 1

Fξ(ξ)
. (124)

Since

ux =
Fξ

1 + tFξ
, (125)

the wave breaks on the singularity manifold.
We are interested in the first time tb in which the breaking of the solution

occurs, corresponding to the characteristic values ξb such that

tb = t(ξb) = global min{t(ξ)} > 0 ⇒
Fξ(ξb) < 0, Fξξ(ξb) = 0, Fξξξ(ξb) > 0,

(126)

ξb is an inflection point of the initial profile.
At tb, the wave breaks in the point xb of the x-axis defined by

xb = F (ξb)tb + ξb. (127)

To study the solution (123) near breaking we introduce the variables:

x = xb + x′, t = tb + t′, ξ = ξb + ξ′,
|x′|, |t′|, |ξ′| ≪ 1.

(128)

Subtracing the equations ξ = x− F (ξ)t and ξb = xb − F (ξb)tb, expanding in
terms of the small parameters x′, t′, ξ′, and using tb = −1/Fξ(ξb), Fξξ(ξb) = 0,
we obtain, to leading order, the following cubic equation for ξ′:

ξ′
3
+ b(t′)ξ′ − γX(x′, t′) ∼ 0, (129)

where
b(t′) =

6Fξ

tbFξξξ
t′, X(x′, t′) = x′ − Ft′, γ = 6

tbFξξξ
(130)
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and from now on, unless specified, F and its derivatives are evaluated at ξb.
The cubic corresponds to the maximal balance

|X| = O(|t′|3/2), |ξ′| = O(|t′|1/2). (131)

The three roots of this cubic are given explicitly by the well-known Cardano
(Tartaglia, Ferro) formulas:

ξ′0 (x
′, y′, t′) = (S+)

1
3 + (S−)

1
3 ,

ξ′± (x′, y′, t′) = 1
2

(
(S+)

1
3 + (S−)

1
3

)
±

√
3
2
i
(
(S+)

1
3 − (S−)

1
3

)
,

(132)

where

S± = R±
√
∆, ∆ = R2 +Q3,

Q(t′) = b(t′)
3

= − 2
t2bFξξξ

t′, R(x′, t′) = γ
2
X(x′, t′) = γ

2
(x′ − Ft′).

(133)

Expanding the SM equation one gets the parabola (see Fig. 11):

0 = S(ξ, t) ∼ Fξ(ξb)t
′ +

Fξξξ(ξb)

2
tbξ

′2 =
tbFξξξ
2

(ξ′
2
+Q). (134)

t

t b

ξ ξ
b

The singularity manifold

ξ
+

ξ (t)(t)
−

Figure 11: The singularity manifold near breaking.

Before breaking
If t < tb (t

′ < 0), then b(t′), Q(t′), ∆ and S are strictly positive, and only the
root ξ′0 is real; correspondingly, the real solution of (122) is single valued:

u ∼ F (ξb + ξ′0(x
′, t′)) (135)
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and the negative slope ux of the profile, finite ∀x, reaches its minimum at
the inflection point xf (t

′):

xf (t
′) = xb + F (ξb)t

′ ⇒ X = x− xf (t
′)). (136)

Since, at x = xf (t
′), X = 0, then ξ′0 = 0 and

u(xf (t), t) = F (ξb), ux(xf (t), t) ∼ 1
t−tb

, uxx(xf (t), t) = 0. (137)

Indeed we have the formulas

ξx =
1
S ∼ 1

Fξt′+
Fξξξ

2
tbξ′
, ξxx = −Fξξ(ξ)ξ3xt, ux = F ′(ξ)ξx ∼ 1

t′+
Fξξξ
2Fξ

tbξ′
,

uxx = Fξξ(ξ)ξ
2
x + F ′(ξ)ξxx = Fξξ(ξ)ξ

3
x ∼

Fξξξ

(Fξt′+
Fξξξ

2
tbξ′)3

ξ′,

(138)
that evaluated at ξ′ = ξ′0 = 0, give (137).

To analyse the solution in a smaller region around the inflection point,
we choose

|X| = |x− xf (t
′)| = O(|t′|p+

1
2 ), p > 1, (139)

Then ξ′3 << bξ′ ∼ −γX and the solution becomes more explicit:

ξ′0 ∼
γX

b
=
x′ − Ft′

Fξt′
(140)

reducing to the exact similarity solution of the Hopf equation:

u ∼ F (ξb + ξ′0) ∼ F + Fξξ
′
0 ∼

x− xb
t− tb

, (141)

describing the tangent to the profile at the inflection point (see Fig. 12), with

ux ∼ (t− tb)
−1. (142)

t < t b

x
f
(t) xb

Figure 12: The profile immediately before breaking.
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At breaking
In the limit t ↑ tb,
i) the inflection point reaches the breaking point: xf (t) → xb, and the tangent
to the inflection point becomes the vertical line x = xb.
ii) the cubic becomes ξ′3 ∼ γX(x′, t′) = 0 whose solution reads:

ξ′ = 3
√
γ(x− xb), (143)

and, correspondingly,

u ∼ F
(
ξb +

3
√
γ(x− xb)

)
, ux ∼

3
√
γ

3

Fξ
(x− xb)2/3

, (144)

describing the typical vertical inflection at t = tb, in the neighborhood of xb
(see Fig. 13):

xb

t = t b

x
f (t)

Figure 13: The profile at breaking.

After breaking

For t > tb, the line t = const, t > tb intersects the SM in the two points (see
Fig. 11)

ξ±(t)− ξb = ±
√

2|Fξ|
tbFξξξ

(t− tb) = ±
√
|Q(t′)|. (145)

and, correspondingly, S ≤ 0 for ξ−(t) ≤ ξ′ ≤ ξ+(t). In addition Q(t′) < 0 and
the discriminant ∆ can be positive or negative, depending on the space-time
regions we consider. When ∆ < 0 the cubic has three real roots and we have
multivaluedness:

∆ = R2 +Q3 =
γ2

4
(x′ − Ft′)2 − 8

t6bF
3
ξξξ

t′
3 ≤ 0. (146)

It follows that the multivaluedness region is given by

∆ ≤ 0 ⇔ x−(t) ≤ x ≤ x+(t),

x±(t′) = xb + F (ξb)(t− tb)± 2
√
2

3t2b

√
Fξξξ

(t− tb)
3/2. (147)
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We conclude that, for t > tb, the solution is three-valued for x ∈ [x−(t′), x+(t′)]:

u0(x, t) = F (ξb + ξ′0(x
′, t′)), u±(x, t) = F (ξb + ξ′±(x

′, t′)). (148)

and single valued outside. At the end points x±(t′) of the interval ∆ = 0,
and two of the three solutions coincide (see Fig. 14).

xf
x

b (t)x (t)− x (t)+

t>t b

Figure 14: The profile immediately after breaking, and the interval
[x−(t′), x+(t′)] in which the solution is three valued (∆ ≤ 0).

The movable singularity manifold presents several universal features. Cor-
respondingly, also the solution of the Cauchy problem for the Hopf equation
presents universality features near the singularity manifold.

3.4 Geometric Meaning of the scalar hyperbolic PDE
in arbitrary dimensions

Now we consider a scalar quasi-linear PDE in M ≥ 2 dimensions

M∑
j=1

Pj(x, u)uxj = Q(x, u), x = (x1, . . . , xM), (149)

or, in vector form:
P⃗ (x, u) · ▽xu = Q(x, u). (150)
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If
φ(x, u) = c = const (151)

defines implicitly a solution of (149), and if ∂φ/∂u ̸= 0, then we can in
principle solve (151) with respect to u, obtaining

u = u(x, c). (152)

This solution defines the M -dimensional “integral hypersurface S of (149) in
the space (x, u) = RM+1.

Since

Dxiφ =
∂φ

∂xi
+
∂φ

∂u
uxi = 0, i = 1, . . . ,M, (153)

in vector form:

▽xφ+
∂φ

∂u
▽x u = 0, (154)

we have that ▽xφ ∥ ▽xu.

If V = (P⃗ , Q), then equation (150) (with (154)) becomes

V · ▽(x,u)φ = 0. (155)

Since ▽(x,u)φ is normal to S, it follows that V is tangent to the integral
hypersurface S at the point r = (x, u) ∈ S, defining a direction on S. Moving
along that direction, one constructs a “characteristic curve”, always tangent
to V (see Fig. 15).

Figure 15: The geometric meaning of the hyperbolic PDE

If s is the arc length parameter of the characteristic curve, then dr/ds is

tangent to S and parallel to V = (P⃗ , Q); then dr/ds ∥ V . Therefore

dxj
ds

= 1
µ
Pj, j = 1, . . . ,M,

du
ds

= 1
µ
Q,

(156)
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Therefore the PDE (149) is equivalent to the following system of M inde-
pendent ODEs

dxj
Pj(x, u)

=
du

Q(x, u)

(
=
ds

µ

)
, j = 1, . . . ,M, (157)

in the philosophy of the characteristics method. It is easy to verify that these
equations reduce to the characteristic equations (97) if M = 2.

Examples. Find the general solution of the following equations.
1. xux + yuy = u.

Equations (157) become
dx

x
=
dy

y
=
du

u
, (158)

implying {
ln y = lnx+ c
lnu = lnx+ d

⇒
{
y = c1x
u = c2x

(159)

One can write c2 = f(c1), where f(·) is an arbitrary function; then

u = x f
(y
x

)
= y g

(y
x

)
(160)

is the general solution (with f(ξ) = ξg(ξ)).

2. ut + uux = 1.
Equations (157) become

dt =
dx

u
= du ⇒ dx

dt
= u,

du

dt
= 1, (161)

The second equation implies u = t+b, and the first equation becomes dx/dt =
t+ b, implying

x = t2

2
+ bt+ c = t2

2
+ (u− t)t+ c = ut− t2

2
+ c,

u = t+ b = t+ f(c).
(162)

Then

u = t+ f

(
x− ut+

t2

2

)
(163)

is the general solution, where f(·) is an arbitrary function.
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3.5 Hyperbolic System of PDEs

Consider the system of N quasi linear 1st order PDEs:

uit +
N∑
j=1

Cij(u⃗)ujx + hi(u⃗) = 0, i = 1, . . . , N (164)

that can be written in vector form as follows

u⃗t + C(u⃗)u⃗x + h⃗(u⃗) = 0⃗, (165)

u⃗(x, t) =

 u1(x, t)
...
uN(x, t)

, h⃗(u⃗) =
 h1(u⃗)

...
hN(u⃗)

∈ RN . (166)

where C(u⃗) is the N ×N matrix of components Cij(u⃗).
Construct eigenvalues c(u⃗) and left (row) eigenvectors L(u⃗) of the matrix

C(u⃗), and suppose that there are N independent eigenvectors:

L(k)(u⃗)C(u⃗) = ck(u⃗)L
(k)(u⃗), k = 1, . . . , N,

L(k) = (L
(k)
1 , . . . , L

(k)
N ).

(167)

If one takes the (real) scalar product of these left eigenvectors times the
vector equation (165), using (167), one obtains N scalar equations:

L(k)(u⃗) ·
(
u⃗t + C(u⃗)u⃗x + h⃗(u⃗)

)
= L(k)(u⃗) ·

(
u⃗t + ck(u⃗)u⃗x + h⃗(u⃗)

)
= 0, k = 1, . . . , N

(168)

that can be written in the characteristic form:

L(k)(u⃗) ·
(
dku⃗

dt
+ h⃗(u⃗)

)
= 0, k = 1, . . . , N (169)

on the characteristics defined by

dkx

dt
= ck(u⃗), k = 1, . . . , N. (170)

Therefore, for each k, we have a system of two ODEs defined on the charac-
teristic ck(u⃗). In components:

N∑
i=1

L
(k)
i

(
dui
dt

+ hi

)
= 0 on

dkx

dt
= ck(u⃗). (171)
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We are finally ready to give the definition of hyperbolic system of PDEs.
Definition. The system of N quasi linear PDEs (165) is hyperbolic if the
eigenvalue equation (167) has only real eigenvalues (not necessarily distinct)
and N independent left (row) eigenvectors.

Remarks.
1) Since u⃗, h⃗, and matrix C(u⃗) are real, if the eigenvalues are real, then also
the eigenvectors are real.
2) If C(u⃗) is a symmetric matrix, then the system is hyperbolic.
3) The existence of N independent eigenvectors implies that the N informa-
tions associated with the N real fields u′is propagate on the N characteristics
associated with the N real eigenvalues. Some of the eigenvalues may coin-
cide, corresponding to the situation in which some of the informations may
travel on the same characteristic curve.
Example: The equations of the gas dynamics.

ρt + uρx + ρux = 0,
ut + uux +

1
ρ
px = 0,

St + uSx = 0,
p = p(ρ, S), equation of state of the gas,

(172)

where ρ is the density, u is the gas velocity, p is the pressure and S is the
entropy.

It might be convenient to eliminate ρ using the equation of state. From

pt =
∂p
∂ρ
ρt +

∂p
∂S
St, px =

∂p
∂ρ
ρx +

∂p
∂S
Sx, (173)

it follows that

ρt =
1
a2

(
pt − ∂p

∂S
St
)
, ρx =

1
a2

(
px − ∂p

∂S
Sx
)
, (174)

where

a2 =
∂p

∂ρ
> 0. (175)

Substituting (174) in (172), on obtains the new form of gas equation:

pt + upx + ρa2ux = 0,
ut + uux +

1
ρ
px = 0,

St + uSx = 0,

(176)

that can be written in the form (165) with:

u⃗ =

 p
u
S

 , C(u⃗) =

 u ρa2 0
1/ρ u 0
0 0 u

 , h⃗ = 0⃗. (177)
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VERIFY THAT the three eigenvalues of C are

c0 = u, c± = u± a (178)

and the corresponding independent left eigenvectors are

L0 = (0, 0, 1), L± = (1,±aρ, 0). (179)

We conclude that the gas dynamics equations are hyperbolic, and can be
written in the following characteristic form:

dS
dt

= 0 on dx
dt

= u,
dp
dt
± ρadu

dt
= 0 on dx

dt
= u± a

(180)

We infer that the entropy travels on the characteristics generated by the gas
velocity, and that a =

√
∂p/∂ρ > 0 has the meaning of velocity of the sound.

Exercise. (DO IT) Solve the gas dynamics equations near the constant
equilibrium state: ρ = ρ0, p = p0, u = 0, S = S0; namely in the case:

ρ = ρ0 + ϵρ1, p = p0 + ϵp1,
u = ϵu1, S = S0 + ϵS1, 0 < ϵ≪ 1.

(181)

SHOW that (180) becomes

dS1

dt
= 0 on dx

dt
∼ 0,

d(p1±ρ0a0u1)
dt

= 0 on dx
dt

= ±a0,
(182)

where

a0 =

√
∂p

∂ρ
(ρ0, S0) (183)

is the constant sound speed of the linearized theory, implying that

p1 ± ρ0a0u1 = f±(η±) on x = ±a0t+ η±,
S1 = g(x),

(184)

where f±, g are arbitrary functions to be fixed through the initial data. At
last we obtain the general solution:

p− p0 =
ϵ
2
[f+(x− a0t) + f−(x+ a0t)] +O(ϵ2),

u = ϵ
2ρ0a0

[f+(x− a0t)− f−(x+ a0t)] +O(ϵ2),

S = S0 + ϵg(x) +O(ϵ2).
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3.6 Riemann invariants

The obtained characteristic form (169),(170)

L(k)(u⃗) ·
(
dku⃗
dt

+ h⃗(u⃗)
)
= 0, k = 1, . . . , N,

dkx
dt

= ck(u⃗), k = 1, . . . , N.
(185)

of the hyperbolic system is very complicated, since it couples all the fields.
Is it possible to simplify further the equation? In particular, is it possible to
find a change of variables u⃗ → r⃗(u⃗) = (r1(u⃗), . . . , rN(u⃗))

T through which
the dynamics is decoupled in the form

drk
dt

+ f̃k(r⃗) = 0, k = 1, . . . , N,
dx
dt

= ck(u⃗) = c̃k(r⃗)
(186)

If so, we have found the Riemann variables r⃗, the Riemann invariants if
f̃k = 0, k = 1, . . . , N .

Comparing (185) and (186) it follows that the Riemann variables can be
found if the differentials L(k) · du⃗, k = 1, . . . , N are exact, i.e, if there exist
2N functions rk(u⃗), λk(u⃗), k = 1, . . . , N such that:

N∑
i=1

L
(k)
i (u⃗)dui = λkdrk (= λk

N∑
i=1

∂rk(u⃗)

∂ui
dui), (187)

implying the followingN2 equations for the 2N unknowns rk, λk, k = 1, . . . , N

L
(k)
i (u⃗) = λk(u⃗)

∂rk(u⃗)

∂ui
, i, k = 1, . . . , N. (188)

If N = 2, we have 4 linear PDEs for the 4 unknowns rk, λk, k = 1, . . . , 2,
that can be manipulated to the form(

L
(k)
1 (u)

λk

)
u2

=

(
L
(k)
2 (u)

λk

)
u1

, k = 1, 2,

L
(k)
1 (u) ∂rk

∂u2
= L

(k)
2 (u) ∂rk

∂u1
, k = 1, 2,

(189)

and the Riemann variables can always be constructed in principle; if N > 2,
N2 > 2N and we have an overdetermined system of N2 equations for the 2N
unknowns rk, λk, k = 1, . . . , N . The construction of these unknowns is not
possible, in general, unless the L

(k)
i ’s are suitably constrained.

Example: the isentropic gas. Let us consider, as a basic illustrative
example, the case of the gas dynamics equations under the hypothesis of
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constant entropy S = S0 (the isentropic gas). In this case we have only the
two variables p, u and the construction of the Riemann invariants is possible.
We recall that the characteristic form of the equations is

dp
dt
± ρadu

dt
= 0 on dx

dt
= u± a. (190)

It is more convenient to use here the density ρ; since p = p(ρ, S0), then
dp/dt = a2dρ/dt, and equations (190) become

a(ρ)

ρ

dρ

dt
± du

dt
= 0, on

dx

dt
= u± a. (191)

The N2 = 4 equations (188) for the 2N = 4 unknowns r±, λ± read

a(ρ)
ρ

= λ±
∂r±
∂ρ
,

±1 = λ±
∂r±
∂u
,

(192)

defining the Riemann invariants

r± =
∫ ρ a(ρ′)

ρ′
dρ′ ± u, (193)

with λ± = ±1 (VERIFY IT). We conclude that the equations for an isoen-
tropic gas decouple in the form

dr±
dt

= 0 on
dx

dt
= u± a. (194)

If the gas is polytropic:
p = κργ (195)

(in the case of an adiabatic transformation: γ = cp/cv > 1, where cp and cv
are respectively the constant pressure and constant volume specific heats),
then a2 = ∂p/∂ρ = κγργ−1 and (VERIFY IT)

r± =
2
√
κγ

γ − 1
ρ

γ−1
2 ± u =

2

γ − 1
a± u. (196)

3.7 Exercises
1) Show that the following linear PDE for the field ρ(x, t):

ρt + c(x, t)ρx + a(x, t)ρ = b(x, t) (197)

is equivalent to the system of two ODEs:

dρ
dt

+ a(x, t)ρ = b(x, t),
dx
dt

= c(x, t).
(198)
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2) Find the general solution of the following linear PDEs:

ut + t2ux + xu = 0,
(
u = F (x− t3/3)e−(t4/12+t(x−t3/3))

)
,

iγut + yux − xuy = 0, (...) ,
yux − xuy = 0,

(
u = F (x2 + y2)

)
,

yux + xuy = 0,
(
u = F (x2 − y2)

)
,

xux + yuy = 0, (u = F (y/x)) ,
xux − yuy = 0, (u = F (xy)) ,
xux + yuy = x2,

(
u = x2/2 + F (y/x)

)
,

xux + yuy = u, (u = xF (y/x)) ,
xux + yuy + zuz = 0, (u = F (y/x, z/x)) ,
gyux − gxuy = 0, g(x, y) given, (u = F (g(x, y)))

(199)

3) Find the general solution of the following quasi-linear PDEs:

i) ut + c(u)ux = 0, u = F (x− c(u)t),
ii) ut + c(u)ux = 1,
c(u) = u ⇒ u = t+ F (x− ut+ t2/2),
c(u) = u2 ⇒ u = t+ F (x− u2t+ ut2 − t3/3)

(200)

4) Given the two Cauchy problems for the Hopf equation:

ut + uux = 0, u = u(x, t), x ∈ R, t ≥ 0,

i) u(x, 0) = e−x2
,

ii) u(x, 0) = (x2 + 1)−1,

(201)

i) draw the 1-parameter family of characteristic curves; ii) find the first characteristic parameter ηb and
the first breaking point (xb, tb).

A. i) ηb = 1/
√
2, tb =

√
e/2, xb =

√
2. ii) ηb = 1/

√
3, tb = 8

√
3/9, xb =

√
3.

5) Compression and rarefaction waves.
Consider the Cauchy problem:

ut + uux = 0, u = u(x, t), x ∈ R, t ≥ 0,

u(x, 0) = a1H(−l − x) + a2H(x− l) +H(l2 − x2)
(

a1+a2
2

− a1−a2
2

x
)
,

(202)

in the two cases
i) a1 > a2 > 0, compression wave,
ii) a2 > a1 > 0 rarefaction wave.

(203)

Solve it explicitely, draw the characteristic curves and show that they describe respectively a compression
and a rarefaction wave. Indicate if there is wave breaking and, if so, find ηb and (xb, tb).
A. For the compression wave:

u(x, t) =


a1, x < a1t− l,

−a1−a2
2l

x− a2+a1
2

t

1− a1−a2
2l

t
+ a2+a1

2
, −l + a1t < x < l+ a2t,

a2, x > l+ a2t.

(204)

There is wave breaking:

tb =
2l

a1 − a2
, xb =

a1 + a2

a1 − a2
l, |ηb| < 1 (205)

6) Consider the Cauchy problem
ut + uux = 0,
u(x, 0) = f(x),

(206)
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where f describes a single localized bump, and study analytically the behavior of the solution near breaking
(immediately before, at, and immediately after breaking). See section §2.3.

7) More on rarefaction waves.
i) Show that the solution of the Cauchy problem

ut + uux = 0, u(x, 0) = a1H(−x) + a2H(x), a1 < a2 (207)

is given by

u =

 a1, x < a1t,
x/t, a1t < x < a2t,
a2, x > a2t

(208)

Hint. Observe that this Cauchy problem can be viewd as the l → 0 limit of that of the previous problem.
But there are other ways of doing it . . .
ii) Show that the solution of the Cauchy problem

ut + c(u)ux = 0, u(x, 0) = a1H(−x) + a2H(x), a1 < a2 (209)

is given by

u =

 a1, x < c(a1)t,
c−1(x/t), c(a1)t < x < c(a2)t,
a2, x > c(a2)t

(210)

where c−1(ξ) is the inverse of function c(u).

8) Given the following system of PDEs, establish if they are hyperbolic and, if so, write them in charac-
teristic form.

i) The wave equation utt − c2uxx = 0.
ii) The Klein - Gordon equation utt − c2uxx + u = 0.
iii) The system

ut + c(u, v)ux = 0,
vt + c(u, v)vx = u

(211)

iv) The system
ut + c(u)ux = 0,
vt + c(u)vx + c′(u)vux = 0

(212)

v) The gas dynamics equations
ρt + uρx + ρux = 0,
ut + uux + px

ρ
= 0,

St + uSx = 0,

(213)

where p = p(ρ, S).
R. i)

d
dt
(w − cv) = 0, dx

dt
= c, ⇒ w − cv = A(x− ct),

d
dt
(w + cv) = 0, dx

dt
= −c, ⇒ w + cv = B(x+ ct),

v ≡ ux, w ≡ ut

(214)

implying the well-known result u = f(x− ct) + g(x+ ct), with

f ′(·) = −
1

2c
A(·), g′(·) =

1

2c
B(·). (215)

ii)
φt − cφx + u = 0,
ut + cux − φ = 0,
φ ≡ ut + cux.

(216)

iii) it is already in characteristic form, with the single characteristic dx/dt = c(u, v) and two different
characteristic forms (two different eigenvectors (1, 0) and (0, 1)).
iv) The first equation is in characteristic form for the single field u; the second one cannot be put in
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characteristic form; therefore the system is not hyperbolic. Nevertheless it can be solved solving first the
first equation, hyperbolic, on the characteristic dx/dt = c(u), and then solving the second one on that
characteristic (do it!).
v) Rewrite (213) in the form

pt + upx + ρa2ux = 0,
ut + uux + px

ρ
= 0,

St + uSx = 0,

(217)

where a2(ρ) = ∂p/∂ρ > 0, obtaining the following eigenvalues and eigenvectors:

c0 = u (gas speed), L0 = (0, 0, 1),
c± = u± a (sound speeds), L± = (1,±aρ, 0). (218)

Therefore the system in characteristic form reads:

dp
dt

± ρa du
dt

= 0, dx
dt

= u± a,

dS
dt
, dx

dt
= u.

(219)

Verify that, in the linear limit in which we study small perturbations of the constant solution:

ρ = ρ0 + ϵρ1(x, t) +O(ϵ2), p = p0 + ϵp1(x, t) +O(ϵ2),
u = ϵu1(x, t) +O(ϵ2), S = S0 + ϵS1(x, t) +O(ϵ2),

(220)

we obtain
p = p0 + ϵ[f−(x− a0t) + f+(x+ a0t)] +O(ϵ2),
u = ϵ

a0ρ0
[f−(x− a0t)− f+(x+ a0t)] +O(ϵ2),

S = S0 + ϵg(x) +O(ϵ2),

(221)

where a0 =
√
∂p(ρ0, S0)/∂ρ, and the functions f± and g are arbitrary.

9) Show that i) the Riemann invariants of the wave equation utt − c2uxx = 0, c > 0 are given by
r± = w∓cv, where v = ux and w = ut, so that the PDE is written as the system of ODEs in characteristic
form:

dr±

dt
= 0,

dx

dt
= ±c. (222)

ii) The Riemann invariants of the gas dynamics equations (213) (under the constant entropy S hypothesis)
are given by

r± =

ρ∫
a(ρ′)

ρ′
dρ′ ± u, (223)

where a2(ρ) = p′(ρ) > 0, so that the system (219) decouples as follows:

dr±

dt
= 0,

dx

dt
= u± a(ρ). (224)

Show that, for an adiabatic process (p = κργ),

a2 = κγργ−1,

r± =
2
√
κγ

γ−1
ρ

γ−1
2 ± u = 2a

γ−1
± u.

(225)
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4 Regularization of hyperbolic waves [36]

If a wave breaking of the profile with a subsequent multivaluedness is accept-
able when we study the amplitude of a water wave near the shore, it is not
acceptable if one studies other wave phenomena, like the sound propagation.
In this case the field is a density, or a pressure, and it cannot have more than
one value in a space-time point. It means that the model equation we used
is not adequate to describe the phenomenon near breaking. There are two
ways to deal with the problem.
1) Regularization of the solution. One introduces “weak solutions”,
substituting the continuous multivalued solution with a discontinuous BUT
single valued solution (the so-called “shock wave”).
2) Regularization of the model. One improves the model equation, in-
troducing suitable corrective terms. If the model is the Riemann equation,
then the corrective terms are usually uxx, in the presence of dissipation or
diffusion, and uxxx in the presence of dispersion.

4.1 Regularization of the solution and shock waves

We begin with the first way, going back to the physical motivation of the
Riemann equation (88), the conservation law in integral form

d

dt

x2∫
x1

u(x, t)dx = q(x1, t)− q(x2, t) (226)

for the density u and the flux q.
If there is a discontinuity of u at x = S(t) (the shock trajectory in space-

time) then (226) must be rewritten as

q(x1, t)− q(x2, t) =
d
dt

(
S(t)∫
x1

+
x2∫
S(t)

)
u(x, t)dx

= [u(S−, t)− u(S+, t)] Ṡ(t) +

(
S(t)∫
x1

+
x2∫
S(t)

)
ut(x, t)dx,

where u(S−, t) and u(S+, t) are respectively the values of u(x, t) for x ↑ S(t)
and x ↓ S(t). Taking the limits x1 → S− and x2 → S+, we obtain (VERIFY
IT) the Rankine-Hugoniot law, or “shock condition”

Ṡ(t) =
q(S−, t)− q(S+, t)

u(S−, t)− u(S+, t)
(227)
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equivalent to the conservation law in the case of a shock.
Since the multivalued continuous curve, obeying the equation ut+c(u)ux =

0, and the discontinuous curve both satisfy the conservation law, it follows
that the shock front cuts away lobi of equal area of the multivalued
profile.

It is important to remark that, cutting away the two lobi one loses a
part of the information contained in the initial condition. Therefore in this
process the entropy increases and the shock condition describes how (see Fig.
16).

Figure 16: For t > tb the solution is 3-valued in the interval (x1, x2), with
values uj = u0(ηj), j = 1, 2, 3 and ηj, j = 1, 2, 3 are the 3 characteristics
meeting at that time. The shock front S(t) ∈ (x1, x2) cuts away lobi of
equal area. Correspondingly, the characteristic curves meets on the shock
line trajectory but do not intersect anymore.
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The unknowns S(t), ηj(t), j = 1, 2, 3 are constructed, in principle, for
t > tb, through the following equations

S(t) = ηj + F (ηj)t, j = 1, 2, F (η) := c(u0(η)), (228)

Ṡ(t) =
Q(u0(η1))−Q(u0(η2))

u0(η1)− u0(η2)
, (229)

with the initial conditions

S(tb) = xb = F (ηb)tb + ηb, η1(tb) = η2(tb) = ηb, (230)

where
q = Q(u), Q′(u) = c(u). (231)

Equations (228) mean that the characteristics η1(t), η2(t) intersect at t > tb
in the point S(t); equation (229) is just the shock condition (227). For t > tb,
the inversion of (228) with respect to η gives the 3 solutions η1(t, S), η2(t, S), η3(t, S)
satisfying the initial condition ηj(tb, xb) = ηb, j = 1, 2, 3. Substituting
η1(t, S), η2(t, S) into (229), this equation becomes a first order ODE for
S, that can be uniquely solved, in principle, assigning the initial condition
S(tb) = xb.

In the simplest case of the Hopf equation ut + uux = 0,

Q(u) = u2/2 (232)

and the translation in time is proportional to u; it follows that the vertical
discontinuity shock is mapped backward at t = 0 in a segment intersecting
the initial profile in the points η1 < η3 < η2. The property of equal area lobi
is preserved in this backward mapping (see Fig. 17)

Figure 17: The backword mapping for the Hopf equation.
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and can be written more easily on the initial profile. Indeed the area be-
low the initial profile equals the area of the rectangular trapeze of vertices
η1, η2, u2, u1 (see the initial profile in Fig. 17), and reads:

η2∫
η1

u0(η)dη = u0(η2)(η2 − η1) +
(u0(η1)−u0(η2))(η2−η1)

2

= 1
2
(η2 − η1)(u0(η1) + u0(η2)).

(233)

This formula can be obtained also from equations (228)-(230) as follows.
First, equation (229) becomes

Ṡ(t) =
u0(η1)) + u0(η2)

2
. (234)

Then we subtract (228) for j = 1 to the same equation for j = 2, obtaining

t =
η1 − η2

u0(η2)− u0(η1)
; (235)

then we take the t-derivative of (228) for j = 1, 2, we add the obtained
equations and use (235) to get:

Ṡ =
1

2

(
[u′0(η1)η̇1 + u′0(η2)η̇2]

η1 − η2
u0(η2)− u0(η1)

+ (η̇1 + η̇2) + (u0(η2) + u0(η1))

)
.

(236)
Comparing this equation with (234) we end up with

0 = 1
2
[u′0(η1)η̇1 + u′0(η2)η̇2] (η1 − η2) +

1
2
(η̇1 + η̇2) (u0(η2)− u0(η1)

= u′0(η2)η̇2 − u′0(η1)η̇1 − 1
2
d
dt
((u0(η2) + u0(η1)) (η2 − η1))

= d
dt

(
η2∫
η1

u0(η)dη − 1
2
(u0(η2) + u0(η1)) (η2 − η1)

)
.

(237)

It follows that the quantity
η2∫
η1

u0(η)dη− 1
2
(u0(η2) + u0(η1)) (η2 − η1) does not

depend on time, and since it is zero at t = tb (see (230)), it is zero (formula
(233)).

4.1.1 Explicit Example: the compression wave

We deal with the Hopf equation ut+uux = 0 whose initial condition is given
by the compression wave (112), with a1 > a2. Without regularization the
solution breaks as we have seen in §2.2 (see Fig. 18)
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Figure 18: The breaking of a compression wave.

Since Q′(u) = c(u) = u, then Q = u2/2+const, and the shock equations
read, for t > tb:

S(t) = ηj + u0(ηj)t, j = 1, 2,

Ṡ(t) =
(

u20(η1)−u20(η2)
2[u0(η1)−u0(η2)] =

)
1
2
[u0(η1) + u0(η2)],

S(tb) = xb, ηj(tb) = ηb, j = 1, 2.

(238)

As we have seen, the discontinuity of the initial condition implies that all the
characteristics |η| ≤ l meet at the breaking point

(xb, tb) =

(
a1 + a2
a1 − a2

l,
2l

a1 − a2

)
; (239)

then we do not have a unique ηb, and the above condition η1(tb) = η2(tb) = ηb
may not be valid.

Equations (238) become

S(t) = η1 + a1t, j = 1, 2,
S(t) = η2 + a2t, j = 1, 2,

Ṡ(t) = a1+a2
2

,
(240)

and we evaluate the first two equations (240) at t = tb, using S(tb) = xb =
a1+a2
a1−a2 l, obtaining

η1(tb) + η2(tb) = 0, η2(tb)− η1(tb) = 2l ⇒ η2(tb) = l, η1(tb) = −l. (241)

Now we take the difference and the sum of the first two equations:

t = − η1−η2
a1−a2 ,

S(t) = a1+a2
2

t+ η1+η2
2
,

(242)

and the derivative of the second equation (242):

Ṡ =
a1 + a2

2
+
η̇1 + η̇2

2
. (243)
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Comparing (243) and the third of (240) we infer that

η̇1 + η̇2 = 0 ⇒ η1(t) + η2(t) = const, (244)

and evaluating the last equation at t = tb, using (241), we infer that

η1(t) + η2(t) = 0 ⇒ S(t) =
a1 + a2

2
t. (245)

Summarizing we have the following shock evolution

η1(t) = −a1−a2
2

t, η2(t) = −η1(t) = a1−a2
2

t,
S(t) = a1+a2

2
t, t > tb,

(246)

indicating that the multivalued region of the compression wave in Fig.18 is
replaced by a single valued shock traveling with a speed that is the average
of the amplitudes in front and behind the shock (see Fig. 19).

Figure 19: The regularization of a compression wave.
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4.2 Important application: the piston problem

As an application of the gas dynamics equations, that can be written in the
hyperbolic form

dS
dt

= 0, on dx
dt

= u,
dp
dt
± ρadu

dt
= 0, on dx

dt
= u± a,

(247)

we consider the piston problem described in the following Fig. 20

Figure 20: The piston problem

At t = 0 the gas is at rest in a uniform state:

u = 0, ρ = ρ0, S = S0, a2 = a20 =
∂p

∂ρ
(ρ0, S0). (248)

The piston moves in the x direction on the given trajectory

x = X(t) (249)

and the gas follows it accordingly. The gas particle paths are the charac-
teristic curves dx/dt = u, and the piston trajectory is itself a particle path
trajectory, since the gas follows the piston. Therefore the particle trajecto-
ries are similar to that of the piston. It follows that they all originate from
the x axis (see Fig. 21).
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Figure 21: The three characteristics curves in the piston problem.

Since dS/dt = 0 on the particle paths dx/dt = u, all originating from the
x axis, it follows that S = S0 on each path ⇒ S = S0 everywhere in the part
of the (x, t) plane accessible to the gas. Then the flow is isentropic and the
gas equations (247) simplify in terms of the Riemann invariants r±

r± =
2a

γ − 1
± u = const on

dx

dt
= u± a (250)

for a polytropic gas.
Consider the characteristics C− such that dx/dt = u − a. Since a > 0,

dx/dt = u − a < u, where u is the slope of the gas particles. Then also the
characterisctics C− start from the x axis (they cannot start from the piston)
(see Fig. 21). Consequently

r− =
2a

γ − 1
− u =

(
2a

γ − 1
− u

)∣∣∣
t=0

=
2a0
γ − 1

(251)

on all the characteristics C− covering all the accessible space-time. It follows
that

r− =
2a

γ − 1
− u =

2a0
γ − 1

(252)

everywhere, not only on its characteristics, implying, in particular, that a
can be expressed in terms of u

a = a0 +
γ − 1

2
u (253)

everywhere.
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Consider now the characteristics C+ such that dx/dt = u+ a. On them

r+ =
2a

γ − 1
+ u = const. (254)

The slopes u+a of C+ is greater than the slope of the particle path, implying
that we have to distinguish two cases: C+ curves originating from the x axis
and C+ curves originating from the piston.
i) If C+ originates from the x axis, we have, as before:

r+ =
2a

γ − 1
+ u =

(
2a

γ − 1
+ u

)∣∣∣
t=0

=
2a0
γ − 1

. (255)

Comparing (255) and (251) we infer that

u = 0, a = a0, on
dx

dt
= a+ u = a0 ⇒ on x = a0t+ η. (256)

Therefore the characteristics C+ originating from the x-axis are the straight
lines x = a0t+ η, η ≥ 0, and on them u, a are constants: u = 0, a = a0.

ii) if C+ originates from the piston, we first rewrite the characteristic equa-
tions for r+ using (253):

r+ = 2a
γ−1

+ u = 2a0
γ−1

+ 2u = const on
dx
dt

= a+ u = a0 +
γ+1
2
u.

(257)

Therefore u is constant on its characteristics (that depends only on u). It fol-
lows that the C+ characteristics originating from the pistons are also straight
lines:

x =

(
a0 +

γ + 1

2
u

)
t+ ζ, (258)

where ζ is the characteristic parameter enumerating the family of character-
istics emanating from the piston. The characteristic ζ meets the piston at
t = τ :

u = Ẋ(τ) at x = X(τ). (259)

Then u = Ẋ(τ) on C+, and at t = τ :

X(τ) = (a0 +
γ + 1

2
Ẋ(τ))τ + ζ (260)

Eliminating ζ from the equations (258) and (260) we obtain the equation of
the characteristic curve meeting the piston at t = τ :

x = X(τ) + [a0 +
γ + 1

2
Ẋ(τ)](t− τ), (261)
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on which

u = Ẋ(τ), a = a0 +
γ − 1

2
Ẋ(τ), S = S0. (262)

The equations (261) and (262) provide the solution in the space-time region
covered by the characteristics origination from the piston in the usual way:
one solves equation (261) with respect to τ , obtaining τ = τ(x, t; a0, γ), and
substitutes it into equations (262) to finally get u and a (see Fig. 22).

Figure 22: The C+ characteristics and the solution in space-time. In the
first part of its trajectory X(τ), the piston moves backward with increasing
speed: Ẋ(τ) < 0, Ẍ(τ) < 0; the slope decreases, u decreases and we have
a rarefaction wave with no breaking. In the second part of the trajectory
the piston moves backward with decreasing speed: Ẋ(τ) < 0, Ẍ(τ) > 0; the
slope increases and we have breaking.

The piston problem can be solved explicitly when the piston moves with
constant speed V :

X(t) = V t. (263)

We recall that

S = S0, a = a0 +
γ − 1

2
u everywhere, (264)

on the characteristics C+ originating from the x-axis

u = 0, a = a0, on x = a0t+ η, (265)

and on the characteristics originating from the piston we have, from (261)
and (262), the solution

x = V τ + [a0 +
γ+1
2
V ](t− τ),

u = V, a = a0 +
γ−1
2
V.

(266)
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The characteristics C+ originating from the piston have slope a0+
γ+1
2
V . We

distinguish two cases.
i) If V < 0 this constant slope is less than the slope a0 of the characteristics
C+ originating from the x-axis; therefore they never intersect (see Fig. 23).
There is a fan of characteristics originating from the origin (0, 0) of the space-
time

x =

(
a0 +

γ + 1

2
u

)
t, −|V | ≤ u ≤ 0. (267)

Inside the fan, the gas velocity is obtained solving (267) with respect to u,
obtaining

u =
2a0
γ + 1

(
x

a0t
− 1

)
⇒ a =

2a0
γ + 1

+
γ − 1

γ + 1

x

t
, (268)

see Fig. 23:

Figure 23: The characteristics curves when the piston moves with a negative
constant speed (a rarefaction wave).

Summarizing:

u =


−|V |, −|V |t ≤ x ≤ (a0 − γ+1

2
|V |)t,

2a0
γ+1

(
x
a0t

− 1
)
, (a0 − γ+1

2
|V |)t ≤ x ≤ a0t,

0, x ≥ a0t.

(269)

a =


a0 − γ−1

2
|V |, −|V |t ≤ x ≤ (a0 − γ+1

2
|V |)t,

2a0
γ+1

+ γ−1
γ+1

x
t
, (a0 − γ+1

2
|V |)t ≤ x ≤ a0t,

a0, x ≥ a0t.

(270)

If V > 0, the slope of the characteristics C+ originating from the piston
is greater than the slope a0 of the characteristics C+ originating from the
x-axis; therefore they intersect immediately at (xb, tb) = (0, 0) (see Fig. 24).
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Figure 24: The characteristics curves when the piston moves with a positive
constant speed (a compression wave).

Summarizing:

u =


V, V t < x < a0t,
V, 0, a0t < x <

(
a0 +

γ+1
2
V
)
t,

0, x >
(
a0 +

γ+1
2
V
)
t.

(271)

a =


a0 +

γ−1
2
V, V t < x < a0t,

a0, a0 +
γ−1
2
V, a0t < x <

(
a0 +

γ+1
2
V
)
t,

a0, x >
(
a0 +

γ+1
2
V
)
t.

(272)

At last we remark that, known u and a, one obtains ρ and p from

p = p0

(
ρ

ρ0

)γ
, ρ = ρ0

(
a

a0

) 2
γ−1

. (273)

The first equation is for a polytropic gas; the second equation comes from

a2 =
∂p

∂ρ
=
γp0
ρ0

(
ρ

ρ0

)γ−1

= a20

(
ρ

ρ0

)γ−1

. (274)

4.2.1 Regularization and shock in the piston compression problem

.
We have established, see (261), that the equation of the characteristics

originating from the piston are

x = X(τ) + c(u)(t− τ), u = Ẋ(τ), (275)
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where

c(u) = a0 +
γ + 1

2
u. (276)

This velocity fields corresponds to the flux

Q(u) = a0u+
γ + 1

4
u2 + const (277)

and leads to the shock equation

Ṡ(t) =
Q(u1)−Q(u2)

u1 − u2
= a0 +

γ + 1

4
(u1 + u2), (278)

where u1 and u2 are respectively the velocities behind and in front of the
shock:

u1 = Ẋ(τ), u2 = 0; (279)

therefore

Ṡ(t) = a0 +
γ + 1

4
Ẋ(τ) (280)

with, at x = S(t):

S(t) = X(τ) +

(
a0 +

γ + 1

2
Ẋ(τ)

)
(t− τ). (281)

Again we solve (281) with respect to τ , obtaining τ = τ(S, t), and we sub-
stitute it in (280) to get the first order ODE defining S(t), with S(0) = 0
and τ

∣∣
t=0

= 0 (tb = xb = 0 in the compression problem), and the problem is
implicitly solved.

These formulas can be simplified remarking that the sound speed is a0 ∼
343 m/s (at T ∼ 20 Celsius degrees) while the piston speed is in general much
smaller. If, f.i., V ∼ 10 cm/s, then V/a0 ∼ 3·10−4, the slope of the trajectory
of the piston is much smaller than the slope of the parallel characteristics C+

originating from the x-axis, and

Ẋ(τ) ≪ a0, X(τ) ≪ a0τ. (282)

Then

S(t) ∼
(
a0 +

γ + 1

2
Ẋ(τ)

)
t− a0τ, (283)

implying

Ṡ ∼ a0 +
γ + 1

2
Ẋ(τ) +

(
−a0 +

γ + 1

2
Ẍ(τ)t

)
dτ

dt
. (284)
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Eliminating Ṡ from (280) and (284) and dividing by a0, one obtains (VERIFY
IT)

γ + 1

4a0
Ẋ(τ) +

γ + 1

2a0
Ẍ(τ)t

dτ

dt
∼ dτ

dt
(285)

Multiplying by Ẋ(τ):

γ+1
4a0

(Ẋ(τ))2 + γ+1
2a0

Ẍ(τ)Ẋ(τ)tdτ
dt

= d
dt

(
γ+1
4a0

(Ẋ(τ))2t
)

∼ Ẋ(τ)dτ
dt

= d
dt

τ∫
0

Ẋ(τ ′)dτ ′,
(286)

and integrating with respect to t, we obtain

γ + 1

4a0
(Ẋ(τ))2t ∼

τ∫
0

Ẋ(τ ′)dτ ′, (287)

where we have set the integration constant to be 0, since, from (283), at t = 0
S = 0 and τ

∣∣
t=0

= 0.
With equations (283) and (287) the shock problem is reduced to the

solution of the algebro-transcendental equation (287) with respect to τ , to
get τ = τ(t), and its substitution in (283) gives the shock trajectory without
solving the usual nonlinear ODE.

If Ẋ(0) > 0 we have an initial compression, the shock starts at the origin:
S(0) = 0, τ

∣∣
t=0

= 0, and equation (287) simplifies further, for 0 < t≪ 1:

γ + 1

4a0
Ẋ(0)t ∼ τ, 0 < t≪ 1. (288)

Then (283) becomes

S(t) ∼
(
a0 +

γ+1
2
Ẋ(0)

)
t− a0

γ+1
4a0

Ẋ(0)t

=
(
a0 +

γ+1
4
Ẋ(0)

)
t

(289)

and the shock starts with speed a0 +
γ+1
4
Ẋ(0).

If the piston moves with constant speed V > 0, everything simplifies.
The C+ characteristics x = a0t + η originating from the x axis and those
x = V τ + (a0 +

γ+1
2
V )(t− τ) originating from the piston meet on the shock

front x = S(t) = (a0 +
γ+1
2
V )t, and the solution reads (VERIFY IT) (see

Fig. 25)

(
u
a

)
=


(
V
a0 +

γ−1
2
V

)
, V t < x <

(
a0 +

γ+1
4
V
)
t,(

0
a0

)
, x >

(
a0 +

γ+1
4
V
)
t.

(290)
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Figure 25: The regularized characteristics curves when the piston moves with
a positive constant speed (a regularized compression wave).

4.3 Dissipative regularization of hyperbolic equations
and the Burgers equation [36]

As we have already said, the regularization of hyperbolic systems based on
physical considerations is the best (but, in general, more difficult) way to
deal with the problem of the gradient catastrophe.

In this section we deal with the “dissipative regularization” of the Rie-
mann equation (88), introducing a small dissipative term:

ut + c(u)ux = νuxx, 0 < ν ≪ 1. (291)

This equation implies conservation of the mass:

d
dt

∫
R u(x, t)dx =

∫
R ut(x, t)dx

=
∫
R(−c(u)ux + νuxx)dx

= [−Q(u) + νux]
∞
−∞ = 0, Q′(u) = c(u),

(292)

but a loss of energy. Indeed, multiply (291) by u and integrate:

1

2
(u2)t = −(Q̃(u))x + νuuxx, Q̃′(u) = uc(u). (293)

d
dt

∫
R
u2(x,t)

2
dx =

∫
R

(
u2

2

)
tdx

=
∫
R(−uc(u)ux + νuuxx)dx

=
[
−Q̃(u)

]∞
−∞

+ ν
∫
R uuxxdx = −ν

∫
R u

2
xdx < 0.

(294)
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In both cases we have assumed that u(x, t), ux(x, t), Q(u), Q̃(u) → 0 as
x→ ±∞.

The introduction of the small dissipation introduces a vector field con-
trasting the steepening of the nonlinear term (see Fig. 26)

Figure 26: The vector field νuxx contrasts the steepening effect of the vector
field −uux.

4.3.1 The Burgers equation and its Cauchy problem

From now on we limit our considerations to the simplest among the nonlinear
equations (291), the so-called “Burgers equation”

ut + uux = νuxx, ν > 0. (295)

It turns out that also the Burgers equation can be integrated, through a
method based on the fact that the equation is the compatibility (integrability)
condition for the following system of linear equations for an auxiliary field
φ(x, t):

φx = − 1
2ν
uφ, ()

φt = νφxx.
(296)

The first equation is the so-called “Hopf-Cole transformation”, the second
equation is the famous “heat (or diffusion) equation”.

To show it, we first establish that (VERIFY IT)

φxx = − 1
2ν

(
ux − 1

2ν
u2
)
φ,

φxxx = − 1
2ν

(
uxx − 3

2ν
uux +

1
(2ν)2

u3
)
φ,

φtx = − 1
2ν
[ut − 1

2
uux +

1
4ν
u3]φ,

φxt = νφxxx = − 1
2ν
[νuxx − 3

2
uux +

1
4ν
u3]φ

(297)

and the Schwarz lemma φxt = φtx is satisfied if and only if u satisfies the
Burgers equation (295). Sometimes one preferes the potential form of the
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Burgers equation

ϕt −
1

2
ϕ2
x = νϕxx (298)

linearized to the heat equation φt = νφxx via the point transformation ϕ =
−2ν logφ.

The integrability scheme (296) can be used to solve the Cauchy problem
for the Burgers equation

ut + uux = νuxx, u = u(x, t; ν) ∈ R,
u(x, 0; ν) = u0(x).

(299)

through the following steps.
1. We first go from u(x, 0) to φ(x, 0) solving the first ODE in (296);
2. Given φ(x, 0), we solve the heat equation in (296) constructing φ(x, t);
3. One constructs the solution u(x, t) = 2νφx(x, t)/φ(x, t) again from the
first equation (296).
It is important to remark that the step 2 itself requires the use of the Fourier
transform method scheme of solution (see Fig. 27).

Figure 27: Integration scheme for the Cauchy problem of the Burgers equa-
tion.

Let us construct the solution of the Cauchy problem (299) of the Burgers
equation using this integration scheme. We first construct the solution of the
Cauchy problem for the heat equation

φt = νφxx,
φ(x, 0) = φ0(x).

(300)

using the Fourier method. The solution

φ(x, t) =
1

2
√
πνt

∫
R
e−

(x−y)2

4νt φ(y, 0)dy, (301)
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is obtained as follows:

φ(x, t) =
∫
R
dk
2π
eikx−νk

2tφ̂(k, 0) =
∫
R
dk
2π
eikx−νk

2t
∫
R dye

−ikyφ(y, 0)

=
∫
R dyφ(y, 0)

∫
R
dk
2π
eik(x−y)−νk

2t =
∫
R
dy
2π
φ(y, 0)e−

(x−y)2

4νt

∫
R dke

−νt(k−ix−y
2νt )

2

= 1√
νt

∫
R
dy
2π
φ(y, 0)e−

(x−y)2

4νt

∫
R e

−s2ds = 1
2
√
πνt

∫
R e

− (x−y)2

4νt φ(y, 0)dy.

(302)
In the 3rd step we exchange, as usual, the two integrals using Fubini; in the
4th step we complete the square in the second integral; in the 5th step we
use the identity ∫

R
e−(x−ia)2dx =

∫
R
e−x

2

dx =
√
π, a ∈ R, (303)

coming from the application of the Cauchy theorem to the integral
∮
e−z

2
dz,

where the closed contour is the rectangle (−R,R,R− ia,−R− ia).
The solution is exact but, in general, not expressible in terms of elemen-

tary functions. Let us consider the following two interesting examples, in
which non smooth initial conditions evolve for t > 0 into smooth functions.
1. If φ(x, 0) = δ(x− x0), then

φ(x, t) =
1

2
√
πνt

e−
(x−x0)

2

4νt . (304)

A Dirac δ initial condition evolves into a gaussian whose amplitude decays
as 1/

√
t, and whose variance grows as t (see the left Figure 28).

2. If φ(x, 0) = H(x−x0), where H(x) is the Heaviside step function (H(x) =
1 for x > 0, and H(x) = 0 for x < 0), then

φ(x, t) =
∞∫
x0

e−
(x−y)2

4νt dy = 1√
π

x−x0
2
√
νt∫

−∞
e−y

2
dy

= 1
2

(
1 + Erf

(
x−x0√
4νt

))
,

(305)

where Erf(x) is the error function

Erf(x) :=
2√
π

x∫
0

e−y
2

dy, (306)

with Erf(−x) = −Erf(x), Erf(0) = 0, Erf(∞) = 1 (see the right Figure 28).
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Figure 28: Three snapshots of the evolution of the initial conditions φ(x, 0) =
δ(x) (left) and φ(x, 0) = H(x) (right) at t = 0.1, 1.0, 10, according to the
Burgers equation for ν = 1.

Solving the first of equations (296) for φ(x, 0), with u = u(x, 0), one

obtains φ(x, 0) = A exp

(
− 1

2ν

x∫
0

u(y, 0)dy

)
. Therefore

φ(x, t) = 1
2
√
πνt

∫
R e

− (x−y)2

4νt φ(y, 0)dy

= A
2
√
πνt

∫
R e

− 1
2ν
G(x,y,t)dy,

(307)

where

G(x, y, t) :=

y∫
0

u(y′, 0)dy′ +
(x− y)2

2t
. (308)

Using again the first of equations (296) with u = u(x, t) one obtains the
solution of the Cauchy problem (299):

u(x, t) = −2ν
φx(x, t)

φ(x, t)
=

∫
R
x−y
t
e−

1
2ν
G(x,y,t)dy∫

R e
− 1

2ν
G(x,y,t)dy

. (309)

If ν > 0 the solution u(x, t) is continuous and single valued ∀x ∈ R, t > 0,
since the solutions of the heat equation are smooth and single valued ∀x ∈
R, t > 0.

Although the Burgers equation reduces to the Hopf equation when ν → 0,
it is not automatic that the solution of the Cauchy problem for the Burgers
equation tend to the solution of the Cauchy problem of the Hopf equation,
for the same initial condition, when ν → 0. Now we shall show that it tends
to the single valued discontinuous solution (the shock solution).
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To do so, we first remark that, if u(x, 0) is localized, G behaves asymp-
totically like a parabola: G(x, η, t) ∼ η2/(2t) as η → ±∞, and has one or
more local minima for η finite, depending on x and t (see Fig. 29).

Figure 29: Local minima of G(η), varying x and t.

Then −G(x, η, t) has local maxima, and since 1/(2ν) ≫ 1, one can apply
the Laplace method (see Appendix 2) to evaluate the leading order term of
the solution (309).

Suppose that we are in a space-time region in which there exists only one
max at η0 such that

∂G(x, η, t)

∂η

∣∣∣
η0

= 0 ⇒ η0 = η0(x, t). (310)

Then
∂G(x, η, t)

∂η

∣∣∣
η0

= u0(η0)−
x− η0
t

⇒ x = η0 + u0(η0)t (311)

and

u(x, t) ∼ x− η0
t

= u0(η0), 0 < ν ≪ 1. (312)

Therefore, in the space-time region in which there exists only one
stationary point η0, the solution of the Cauchy problem (299) tends
to the well-known solution

u(x, t) = u0(η0), x = η0 + u0(η0)t (313)

of the Cauchy problem for the Hopf equation, when ν → 0, corre-
sponding to the same initial condition.

We remark, from (311) and (312), that the stationary point equation for
G corresponds to the equation defining the characteristics, and the station-
ary point η0(x, t) is the characteristic parameter. Since multivaluedness and
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shocks appear when three or more characteristics meet, this corresponds to
the case in which there exist more stationary points. From Fig. 29 the sim-
plest case after that of one stationary point is the case of three stationary
points ηj, j = 1, 2, 3 and two maxima η1, η2:

∂G(x,η,t)
∂η

∣∣∣
ηj

= 0, ⇒ x = ηj + u0(ηj)t, j = 1, 2, 3. (314)

Then the Laplace method gives, for 0 < ν ≪ 1:

u(x, t) ∼
x−η1

t
(G′′(η1))−1/2e−

G(η1)
2ν +

x−η2
t

(G′′(η2))−1/2e−
G(η2)
2ν

(G′′(η1))−1/2e−
G(η1)
2ν +(G′′(η2))−1/2e−

G(η2)
2ν

. (315)

If (x, t) are such that G(η1) < G(η2), then e−
G(η1)
2ν ≫ e−

G(η2)
2ν , and (315)

reduces to

u(x, t) ∼ x− η1
t

= u0(η1). (316)

If (x, t) are such that G(η1) > G(η2), then e−
G(η1)
2ν ≪ e−

G(η2)
2ν , and (315)

reduces to

u(x, t) ∼ x− η2
t

= u0(η2). (317)

If (x, t) are such that G(η1) = G(η2), we have

η1∫
0

u(y, 0)dy +
(x− η1)

2

2t
=

η2∫
0

u(y, 0)dy +
(x− η2)

2

2t
, (318)

implying the shock condition (233):

η2∫
η1

u(y, 0)dy = (x−η1)2
2t

− (x−η2)2
2t

= − t
2
[u20(η2)− u20(η2)]

= η2−η1
2[u0(η2)−u0(η1)] [u

2
0(η2)− u20(η2)] = (η2 − η1)

u0(η1)+u0(η1)
2

.

(319)

In the 3rd step, we have used the fact that t = η2−η1
u0(η2)−u0(η1) , coming from

subtracting equations x = ηj + u0(ηj)t, j = 1, 2 in (314).
We have established that in the space-time region in which there ex-

ists three stationary point ηj, j = 1, 2, 3, the solution of the Cauchy
problem (299) for the Burgers equation tends, when ν → 0, to the
shock wave solution of the Cauchy problem for the Hopf equation,
corresponding to the same initial condition. Therefore the shock solu-
tion of the Hopf equation describes the evolution, according to the Burgers
equation, in the presence of a small dissipation (see Fig. 30).
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Figure 30: Three snapshots of the numerical dynamics of an initial gaussian
profile according to the Burgers equation with a small dissipation, and the
formation of a smooth shock.

4.3.2 The shock structure

Since in the Burgers equation ut = −uux + νuxx the vector fields −uux and
νuxx play the opposite role of steepening and smoothening out of the profile,
respectively, one expects the existence of a steady state, suggested also by
the shock solution. Therefore we look for a solution of the Burgers equation
in the form

u = U(X), X = x− vt; (320)

then U satisfies the ODE −vU ′ + UU ′ = νU ′′. Integrating it once we have
the first order ODE

νU ′ = U2/2− vU + A, (321)

where A is an arbitrary constant, that can be integrated once more by quadra-
tures:

X

ν
=

∫ U dy

y2/2− vy + A
. (322)

Looking for a solution such that

U → U2, as x→ ∞; U → U1, as x→ −∞, (323)

then equation (321) implies:

U2
1

2
− vU1 + A =

U2
2

2
− vU2 + A = 0 (324)

fixing the constants v, A in the following way:

v =
U1 + U2

2
, A =

U1U2

2
. (325)
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We remark that the velocity of the profile coincides with the velocity of the
shock wave of the Hopf equation.

Since, from (324), U1 and U2 are the roots of the denominator of the
integrand in (322), we have

X
2ν

=
∫ U dy

(y−U1)(y−U2)
= 1

U1−U2
ln U1−U

U−U2
(326)

and

u =
U1 + U2e

U1−U2
2ν

X

1 + e
U1−U2

2ν
X

. (327)

This formula describes a compression wave moving rigidly with velocity v =
U1+U2

2
, with shock strength (the relative jump) U1−U2

U1
and shock thickness

2ν
U1−U2

. The shock thickness tends to zero when the dissipation parameter
ν → 0 and leads to a discontinuous shock (see Fig. 31).

Figure 31: The shock structure in the case of a small dissipation.

4.3.3 Conclusions

Let us summarize what we learned from the previous considerations.

1) If the initial condition of the Burgers Cauchy problem (299) when 0 <
ν ≪ 1 is a smooth localized bump, initially

∥νuxx∥ ≪ ∥ut∥, ∥uux∥ = O(1) (328)

and the dynamics is ruled by the Hopf equation. Then the wave deforms and,
when |t−tb| ≪ 1, t < tb, the profile has a fast variation. In the neighborhood
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of (xb, tb) the space-time dependence is rule by the “fast variables”

x̃ =
x

ν
, t̃ =

t

ν
= O(1), (329)

and the dynamics is now ruled by the Burgers equation

ut̃ + uux̃ = ux̃x̃ (330)

in which there is no small parameter anymore; the solution (327) describes
the shape of the profile around the shock.
2. If the initial condition is given by a smooth compression wave, the Hopf
equation rules the dynamics until we are in the neighborhood of (xb, tb), when
the dynamics is ruled by (330) and the solution near the shock is described
by (327).
3. If the initial condition is given by a smooth rarefaction wave, the Hopf
equation rules again the dynamics, but now the solution becomes more and
more rarefacted, and the Burgers equation does not play any role.

4.4 Dispersive regularization of hyperbolic equations
and the KdV equation

In the KdV equation ut + uux + ϵ2uxxx = 0, u = u(x, t) ∈ R, dispersion
and nonlinearity have opposite effect, and one expect that a rigidly traveling
wave solution can exists. Therefore we look for a solution in the form

u = U(Θ), Θ := x− ct− x0, (331)

obtaining the following ODE for U :

−cUΘ + UUΘ + ϵ2UΘΘΘ = 0. (332)

Integrating once we obtain:

ϵ2UΘΘ +
1

2
U2 − cU =

E1

6
; (333)

multiplying by UΘ and integrating one more time we obtain the first order
ODE

ϵ2
U2
Θ

2
+
U3

6
− c

2
U2 =

E1

6
U +

E2

6
, (334)

where E1 and E2 are the two constants of integration. It can be rewritten as

ϵ2U2
Θ = 1

3
P (U),

P (U) := −U3 + 3cU2 + E1U + E2 = −(U − α)(U − β)(U − γ).
(335)
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Since U2
Θ > 0, then also P (U) > 0; therefore the real constants E1, E2 are

chosen to have three real roots, and we order them as α ≤ β ≤ γ.
Figure
From the figure it follows that the region in which U ∈ R and bounded

is β ≤ U ≤ γ.
The relation among the coefficients of the polynomial and its roots are

c = α+β+γ
3

,
E1 = −(αβ + βγ + αγ),
E2 = αβγ.

(336)

From the figure it follows that the region in which U ∈ R and bounded is
β ≤ U ≤ γ.

The ODE (335) becomes

dU

dΘ
=

1√
3ϵ

√
P (U) (337)

that is integrated by quadrature

1√
3ϵ
Θ =

U∫
γ

dU ′√
P (U ′)

(338)

Since the polynomial has degree 3, the solution can be expressed in terms of
elliptic functions.

Looking for the solution in the form

U = γ − (γ − β) sin2

(
φ

(
Θ

ϵ

))
(339)

one can show that

P (U) = (γ − α)(γ − β)2
(
1− κ2 sin2(φ)

)
sin2(φ) cos2(φ), (340)

where

κ =
γ − β

γ − α
. (341)

Therefore.......................
and show that the solution can be written in terms of the elliptic sine as:

U = γ − (γ − β)sn2
(√

γ−α
12

ζ
ϵ
, κ
)
,

κ =
√

γ−β
γ−α .

(342)
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11) Show that, if β → α (the case of two coinciding roots), then κ→ 1, and

sn(u, κ) → tanhu. (343)

Consequently, the travelling wave solution of KdV reduces to

U = γ − (γ − α) tanh2

(√
γ − α

12

ζ

ϵ

)
= α +

γ − α

cosh2
(√

γ−α
12

ζ
ϵ

) (344)

If, in addition, α = 0, then the travelling wave solution reduces to the so-
called 1-soliton solution of KdV

U =
3c

cosh2
(√

c
2
x−ct−x0

ϵ

) , (345)

an exponentially localized travelling wave whose velocity is proportional to
the amplitude and inversely proportional to the

√
width.

4.5 Exercices

1) Regularize the compression wave of problem 5) of section 2.1.2

2) What happens if we look for discontinuous solutions of ut + uux = 0 in the form u = H(s(t) −
x)u−(x, t) + H(x − s(t))u+(x, t), where H(x) is the Heaviside step function and u±(x, t) are smooth
functions?

3) Consider the Cauchy problem
ut + uux = 0,
u(x, 0) = f(x),

(346)

where f(x) describes a single bump, and study the behavior of the regularized (shock ) solution near
breaking.
A. See section 4 of Appunti 1.

4) Given the Cauchy problem
ut + c(u)ux = 0, c(u) = Q′(u),
u(x, 0) = f(x),

(347)

where f(x) describes a single bump,
i) construct the shock condition

ṡ =
Q(u2)−Q(u1)

u2 − u1
(348)

and show that it is equivalent of placing the vertical shock to cut equal area lobi of the three valued
solution.
ii) Show that, if c(u) = u, Q(u) = u2/2, the shock equations involving s(t), η1(t), η2(t) can be reformulated
as cutting equal area lobi on the initial profile:

η2∫
η1

f(η)dη =
1

2
(η1 − η2)(f(η1) + f(η2)) (349)
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5) Given the Burgers equation ut + uux = νuxx, ν > 0,
i) Show that, for localized solutions in R, dM/dt = 0 and dE/dt < 0, where M is the mass and E is the
energy:

M =

∫
R
u(x, t)dx, E =

∫
R
u2(x, t)dx. (350)

ii) find its traveling wave solution satisfying the boundary conditions u(x, t) → u±, x → ±∞, where u±
are constants, and discuss the shock structure.
iii) Find its similarity solutions.

6) Show that the solution of the Cauchy problem for the Burgers equation ut + uux = νuxx with initial
condition u(x, 0) = f(x) is given by

u(x, t) =

∫
R

x−η
t
e−

G(x,η,t)
2ν dη∫

R e
−G(x,η,t)

2ν dη
(351)

where

G(x, η, t) =

η∫
0

f(η′)dη′ +
(x− η)2

2t
(352)

7) Consider the Cauchy problem for the Burgers equation ut+uux = νuxx with Gaussian initial condition

u(x, 0) = f(x) = e−x2
, and let ηb = 1/

√
2 ∼ 0.71, xb =

√
2 ∼ 1.41, tb =

√
e/2 ∼ 1.16 be the breaking

parameters of the Hopf equation ut + uux = 0 corresponding to the above Gaussian initial condition (see
a previous excercise).
7a) Study the function

G(x, η, t) =

η∫
0

f(η′)dη′ +
(x− η)2

2t
(353)

as function of the variable η, with x ∈ R, t > 0 parameters in the following way. i) Show that, for η → ±∞,
G(x, η, t) behaves as a parabola: G ∼ η2/2t. ii) Show that, for 0 < t < tb, G(x, η, t) possesses just one
extremal point, a global minimum η0. iii) Show that, for t > tb, there is a finite interval x ∈ (x−, x+) in
which G(x, η, t) possesses three extremal points η2 < η0 < η1 such that η1, η2 are local minima and η0 is
a local maximum. iv) Show that: if x ∈ (x−, x+) and is close to x−, the global minimum is η2; if it is
close to x+, the global minimum is η1; there is an intermediate value of x ∈ (x−, x+) for which η1, η2 give
the same value of G: G(x, η1, t) = G(x, η2, t) and are then global minima. v) Show that, if x /∈ (x−, x+),
then there is only one extremal point, a global minimum η0. vi) Make plottings of all the above cases (see
Fig. 32).
7b) Use the above results to investigate the solution (351) of the Cauchy problem for the Burgers equation

ut + uux = νuxx with Gaussian initial condition u(x, 0) = f(x) = e−x2
, when 0 < ν ≪ 1 (small

dissipation), showing that such solution tends, for ν → 0, to the shock solution of the Hopf equation, for
the same initial condition.
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Figure 32: Plots of the function G(x, η, t) vaying η, for the Gaussian initial
condition f(η) = e−η

2
, and for the following choices of (x, t): (xb, tb), (xb +

0.440, tb + 1), (xb + 0.547, tb + 1), (xb + 0.700, tb + 1). We remark that,
at (xb, tb), G(x, η, t) has the global minimum at the triple point η = ηb; at
t = tb + 1, varying x in a suitable interval, the global minimum changes: if
x = xb+0.440, the global minimum is for η = η2 < 0 < η1; if x ∼ xb+0.547,
the first η2 and third η1 local minima give rise to approximately the same
value of G = 0.8807 and are global minima; if x = xb + 0.700, the global
minimum is for η = η1.

8) Multidimensional generalization of the Burgers equation. Consider the natural multidimen-
sional generalization of the Burgers equation, a pressureless Navier-Stokes equation:

ut + (u · ∇)u = ν∇2u, u(x, t) : Rn × R+ → R. (354)

i) Show that it admits the irrotational reduction u = −∇ϕ to

ϕt =
1

2
|∇ϕ|2 + ν∇2ϕ; (355)

ii) show that also this equation can be linearized to the heat equation

φt = ν∇2φ (356)

via the Hopf-Cole transformation ϕ = −2ν logφ.
iii) Conclude that the solution of the Cauchy problem

ut + (u · ∇)u = ν∇2u,
u(x, 0) = u0(x) = ∇ϕ0(x), ϕ0(x) assigned

(357)

is given by ...................
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5 Multiscale Expansions andModel Equations

of the Nonlinear Mathematical Physics

We have already seen dynamics described by different space-time scales like
in the case of the slowly varying wave trains of the linear dispersive PDEs, or
in the case of the hyperbolic dynamics in the presence of a small dissipation.
In this chapter we introduce the pertubation theory corresponding to the
“multiscale expansions method” and we derive several important examples
of “model equations of the nonlinear mathematical physics”. We begin with
the simpler case of the ODEs.

5.1 Multiscale expansions for ODEs

The first example we consider is the celebrated equation for the simple pen-
dulum

ü+ sinu = 0, u = u(t) ∈ R (358)

whose general solution is described by special functions called “elliptic func-
tions”. We ignore it and look for the solution under the hypothesis of “small
amplitudes”:

u = δq, 0 < δ ≪ 1. (359)

Then we expand in power series, keeping only the cubic nonlinearity:

q̈ + q =
ϵ

6
q3 +O(ϵ2), ϵ = δ2, (360)

and, to fix the problem, we choose some initial conditions

q(0) = 1, q̇(0) = 0. (361)

Since equation (360) depends on the small parameter ϵ, it is natural (but, as
we shall see, wrong) to look for the solution in the form of a power series in
ϵ of the type:

q(t) =
∑
n≥0

ϵnqn(t), (362)

implying, from (361), that

q0(0) = 1; qn(0) = 0, n ≥ 1; q̇n(0) = 0, n ≥ 0. (363)

In order to keep the expansion ordered (the nth term must be much bigger
than the next term), we require that the expansion be asymptotic

ϵ∥qn+1∥∞
∥qn∥∞

≪ 1, ∥f∥∞ := sup
t≥0

|f(t)|. (364)
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Equation (360) becomes

q̈0 + q0 + ϵ

(
q̈1 + q1 −

1

6
q30

)
+O(ϵ3). (365)

At O(1) we see that q0 satisfies the harmonic oscillator equation q̈0 + q0 = 0,
whose general solution reads

q0(t) = Aeit + Āe−it, (366)

where A is an arbitrary constant complex amplitude, fixed by (361) to be
A = 1/2.

At O(ϵ) we obtain a forced harmonic oscillator equation for q1:

q̈1 + q1 =
1

6
q30 =

1

6

(
A3e3it + 3A2Āeit + c.c.

)
. (367)

This equation expresses two important effects of the nonlinearity.
i) Although the initial condition excites the first harmonic only, the cubic
term excites the third harmonic at O(ϵ).
ii) The terms e±it in the forcing are solutions of the harmonic oscillator
equation; therefore they are resonant terms and the solution grows linearly
in time:

q1(t) = tαeit + βe3it + γeit + c.c.,
α = 1

4i
A2Ā, β = − 1

48
A3, γ ∈ C arbitrary.

(368)

It follows that
ϵq1(t) = O(ϵt) = O(1), if t = O(ϵ−1) (369)

and the series is no more asymptotic. In addition the solution cannot diverge
in t, since equation (367) is a hamiltonian ODE:

q̈1 = −V ′(q1), V (q1) =
q21
2
− ϵ

24
q41,

E =
q̇21
2
+ V (q1) = E(0)

=
(
q̇21
2
+

q21
2
− ϵ

24
q41

) ∣∣∣
t=0

finite.

(370)

We conclude that the ansatz (362) is wrong, and since the expansion ceases
to be asymptotic for t = O(ϵ−1), it suggests to look for the following richer
ansatz

q(t) =
∑
n≥0

ϵnQn(t, t1), t1 = ϵt. (371)

Then
d
dt
= ∂

∂t
+ ϵ ∂

∂t1
,

d2

dt2
= ∂2

∂t2
+ 2ϵ ∂

∂t
∂
∂t1

+ ϵ2 ∂
2

∂t21
,

(372)
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and

Q0(0, 0) = 1; Qn(0, 0) = 0, n ≥ 1; Q̇n(0, 0) = 0, n ≥ 0. (373)

We repeat the previous analysis with this new ansatz in (360), obtaining

(∂2t + 2ϵ∂t∂t1)(Q0 + ϵQ1) +Q0 + ϵQ1 −
ϵ

6
Q3

0 +O(ϵ2) = 0. (374)

At O(1) we have again the harmonic oscillator:

Q0tt +Q0 = 0 (375)

with solution
Q0(t, t1) = A(t1)e

it + A(t1)e
−it, (376)

where now A is a function of t1 to be determined. At O(ϵ) we have the forced
equation

Q1tt +Q1 = −2∂t∂t1Q0 +
Q3

0

6

= A3

6
e3it − 2i

(
At1 − 1

4i
A2Ā

)
eit + c.c.

(377)

Again we have a secular term, but now we can choose the dependence of
A on the slow variable t1 to eliminate it, imposing that the coefficient
of the resonant forcing eit be zero:

dA

dt1
=

1

4i
A2Ā. (378)

This equation describes how the complex amplitude of the har-
monic oscillation is slowly varying, due to the nonlinearity.

Using the polar representation of A: A = r exp(iθ), we obtain the two
real equations (VERIFY IT)

rt1 = 0, θt1 = −r
2

4
, (379)

implying the solution

r = const = r(0) := r0, θ = −r
2
0

4
t1 + θ0. (380)

Then the solution reads

q = r0e
i

(
t− r20

4
t1+θ0

)
+O(ϵ) = r0e

i(ωt+θ0) +O(ϵ), (381)

where

ω = 1− ϵ
r20
4

(382)
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indicates that the angula frequency decreases, due to the non linearity; an-
other important fact is its quadratic dependence on the amplitude, another
typical nonlinear effect.

Having eliminated the secular forcing in (377), the solution is bounded
(VERIFY IT):

Q1 = − 1

432
e3i(t−

t1
6 ) + Ã(t1)e

it + c.c., (383)

where Ã is an arbitrary function of t1.
If we want to impose the initial conditions we get (VERIFY IT)

r0 =
1

2
, θ0 = 0. (384)

We conclude remarking that, if we pushed the analysis at O(ϵ2) we would
have seen again secularities, and to eliminate them it would be necessary to
introduce also the slowly varying variable t2 = ϵ2t; and so on. Therefore the
correct ansatz for the solution is

q(t) =
∑
n≥0

ϵnQn(t, t), t = (t1, . . . , tn, . . . ), tn = ϵnt. (385)

Other examples of nonlinear ODEs treated using multiscale expansions
are presented among the exercises of this chapter.

The natural generalization of the method to the case of nonlinear PDEs
is discussed in the remaining part of this chapter.

5.2 Weakly nonlinear quasi monochromatic waves in
nonlinear dispersive PDEs and the nonlinear Schrödinger
equation

Here we apply the multiscale method to nonlinear dispersive PDEs, i.e., to
nonlinear PDEs that are dispersive in the linear approximation. One can
show that, under the hypothesis of

� small amplitudes,

� quasi - monochromatic waves,

the complex amplitude of the monochromatic wave is modulated by suitable
slow space-time variables, and this modulation is described by the nonlinear
Schrödinger (NLS) equations

iut + uxx + 2η|u|2u = 0, u = u(x, t), η = ±1. (386)
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As we have done it in the previous section, we prefer to illustrate the
method on an example, and we choose the natural generalization of the
pendulum equation (358) to a PDE, the so-called Sine-Gordon (SG) equation

utt − c2uxx + µ2 sinu = 0, (387)

an integrable nonlinear generalization of the Klein-Gordon equation relevant
in differential geometry. A physical derivation of it comes from the Scott
model, consisting of a chain of equal masses pendulums hanging by an elastic
thread, with first neighbors interactions due to torsion forces described by
the equations

mθ̈n = −µ2 sin θ + γ(θn+1 − θn)− γ(θn − θn−1), (388)

where γ is the torsion coefficient (see Fig. 33)

Figure 33: The Scott model of a sequence of pendulums connected by an
elastic string

In the case of a large number of pendulums at small distance δ ≪ 1, we
take the continuous limits nδ ∼ x:

θn(t) ∼ u(x, t), θn±1(t) ∼ u(x± δ, t)

= u(x, t)± δux(x, t) +
δ2

2
uxx(x, t) +O (δ3) ,

(389)

obtaining equation (387).
As we have already mentioned, the linear limit of (387) is the Klein-

Gordon (KG) equation

Lu := utt − c2uxx + µ2u = 0, (390)

with two dispersion relations

ω± = ±
√
µ2 + c2k2 (391)
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(from now on we choose ω(k) = ω+(k)). Due to the small amplitude hypoth-
esis, we expand the equation (387) in powers:

Lu = utt − c2uxx + µ2u =
µ2

6
u3 +O(u5) (392)

and we look for a solution in the form

u = ϵu1 + ϵ2u2 + ϵ3u3 +O(ϵ4). (393)

At O(ϵ) we have the KG equation

Lu1 = 0. (394)

The second hypothesis imposes to choose as starting point of our expansion
the monochromatic wave solution of (394):

u1 = Aeiθ(x,t) + c.c., θ(x, t) = kx− ω(k)t. (395)

At O(ϵ2) we also have Lu2 = 0, and we choose without loss of generality
u2 = 0.
At O(ϵ3) the nonlinear terms come into play:

Lu3 =
µ2

6
u31 =

µ2

6

(
A3e3iθ + 3A|A|2eiθ + c.c.

)
. (396)

As in the ODE example of the previous section, the term A3e3iθ indicates
that, due to the nonlinearity, the energy, initially concentrated on the first
harmonics, spreads on higher harmonics, and the term 3A|A|2eiθ is a resonant
forcing that cannot be eliminated, destroying the asymptotic character of the
expansion when t = O(ϵ−1). Motivated by the considerations made in the
ODE case, we assume that the amplitude A depend on the slow variables

x1 = ϵx, tn = ϵnt, n ∈ N+. (397)

Then
∂t → ∂t + ϵ∂t1 + ϵ2∂t2 +O(ϵ3),
∂2t → ∂2t + 2ϵ∂t∂t1 + ϵ2

(
2∂t∂t2 + ∂2t1

)
+O(ϵ3),

∂x → ∂x + ϵ∂x1 ,
∂2x → ∂2x + 2ϵ∂x∂x1 + ϵ2∂2x1 .

(398)

At O(ϵ) we have again Lu1 = 0, and

u1 = A(x1, t)e
iθ + c.c.,

t = (t1, t2, . . . , tn, . . . )
(399)
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with the complex amplitude modulated by the slowly varying space-time
variables in a way to be prescribed.

At O(ϵ2) we have

Lu2 = −2 (∂t∂t1 − c2∂t∂t1)u1 =

2iω(k)
(
At1 +

c2k
ω(k)

Ax1

)
eiθ + c.c.

(400)

Since exp(±iθ) are secular unacceptable forcings, their coefficients must be
zero; therefore

At1 +
c2k

ω(k)
Ax1 = At1 + ω′(k)Ax1 = 0, (401)

implying
A = A(x1 − ω′(k)t1, t2, . . . ),
u2 = A2(x1, t)e

iθ + c.c.
(402)

At O(ϵ3) we have

Lu3 = −2 (∂t∂t1 − c2∂x∂x1)u2 −
(
2∂t∂t2 + ∂2t1 − c2∂2x1

)
u1 +

µ2

6
u31

= 2iω [(∂t1 + ω′(k)∂x1)A2] e
iθ

+2ω
[(
i∂t2 +

c2−ω′2

2ω
∂2x1

)
A+ µ2

4ω
A|A|2

]
eiθ + µ2

6
A3

1e
3iθ + c.c.

(403)

Since exp(±iθ) are secular unacceptable forcings, and

ω′′(k) =
c2 − ω′2

ω
=

c2µ2

ω3(k)
, (404)

we must impose

A2t1 + ω′(k)A2x1 = 0 ⇒ A2 = A2(x1 − ω′(k)t1, t2, . . . ), (405)

and

iAt2 +
ω′′(k)

2
Ax1x1 +

µ2

4ω(k)
A|A|2 = 0 (406)

Therefore the elimination of all secularities at this order implies that the am-
plitude A depends on t2 through the nonlinear Schrödinger (NLS) equation
(406).

Summarizing, for real nonlinear PDEs whose linear approximation is
dispersive with dispersion relation ω(k), looking for small amplitude quasi-
monochromatic wave solutions:

u(x, t) = ϵA exp(i(kx− ω(k)t)) +O(ϵ2) + c.c., (407)

82



the amplitude A is modulated by the slowly varying variables (397) in the
following way:

A = A(ξ, t2, . . . ), ξ = ϵ(x− ω′(k)t), (408)

iAt2 +
ω′′(k)

2
Aξξ + b(k)A|A|2 = 0. (409)

Therefore, with respect to the slow space-time variables x1, t1 there is a rigid
translation with the group velocity; with respect to the slower time t2 the
amplitude evolves according to the NLS equation (409). The dependence
on the slower times tn, n ≥ 3 can be fixed, in principle, eliminating the
secularities at higher order.

We remark that the model equation NLS depends on the original non-
linear dispersive PDE from 1) the dispersion relation ω(k) of its linearized
theory, and 2) from the coefficient b(k) containing informations also on the
nonlinear terms (b(k) = µ2/(4ω(k)) in our example).

We also remark that equation (409) can be written in the suggestive form
of a time dependent Schrödinger equation

iAt2 +
ω′′(k)

2
Aξξ − V (ξ, t2)A = 0, (410)

with the “self-induced” potential

V (ξ, t2) = −b(k)|A(ξ, t2)|2. (411)

To fix the ideas, suppose that ω′′(k) > 0 ∀k. We have two cases.
1) If b(k) > 0 ∀k, V < 0, and we have a potential well, the attractive case
with bound states. In nonlinear optics we have a focalization of the energy
in suitable regions of space-time.
2) If b(k) < 0 ∀k, V > 0 and we have a potential barrier, with scattering
states; in nonlinear optics we have defocusing effects.
Therefore, depending on the relative sign of the dispersive and nonlinear
terms, we have two completely different dynamics. If the dispersive and non-
linear terms have the same sign, we have the “focusing NLS” equation; if the
dispersive and nonlinear terms have opposite sign, we have the “defocusing
NLS” equation.

In the example we considered: ω′′(k) > 0 ∀k (see (404)) and b(k) =
µ2/(4ω(k)) > 0 ∀k; then we have obtained the focusing NLS equation. It is
also possible that the signs of ω′′(k) and b(k) change varying k ∈ R; in this
case the same NLS equation is focusing or defocusing depending on the value
of the wave number k.

We close this section remarking that the slow variables of the multiscale
analysis could be generated also through a linear analysis and the dispersion
relation.
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The two hypothesis of small amplitude and quasi monochromatic wave
imply that, to leading order, the solution is described by its Fourier transform
approximation

u(x, t) ∼
∫
R

dk

2π
û0(k)e

i(kx−ω(k)t) (412)

in which û0(k) is concentrated around a specific wave number k0, suggesting
the change of variables

k = k0 + ϵk̃, 0 < ϵ≪ 1, (413)

and, consequently,

θ(x, t) = kx−ω(k)t = (k0x− ω(k0)t)+k̃ (x1 − ω′(k0)t1)−
ω′′(k0)

2
k̃2t2, (414)

and the slow variables x1, t1, t2 are the ones defined in (397).

ξ = x1 − ω′(k0)t1. (415)

Substituting (413),(414) into (412), we have

u(x, t) ∼ ϵ
∫
R
dk̃
2π
û0(k0 + ϵk̃)ei[k0+ϵk̃)x−ω(k0+ϵk̃)t]

∼ ϵei[k0x−ω(k0)t]
∫
R
dk̃
2π
û0(k0 + ϵk̃)ei[k̃ξ−i

ω′′(k0)
2

k̃2t2]

= ϵA(ξ, t2)e
i[k0x−ω(k0)t],

A(ξ, t2) :=
∫
R
dk̃
2π
û0(k0 + ϵk̃)ei[k̃ξ−i

ω′′(k0)
2

k̃2t2],
ξ = x1 − ω′(k0)t1.

(416)

Then the slowly varying amplitude satisfies the PDEs

At1 + ω′(k)Ax1 = 0, iAt2 +
ω′′(k)

2
Aξξ = 0; (417)

the first one is (401), and the second one is the linearized version of (406).
This argument allows one to construct the linear part of the nonlinear

PDE describing weakly nonlinear quasi-monochromatic waves in 1+1 dimen-
sions; the nonlinear part is generically described by the self-induced cubic
potential (411), where the coefficient b(k) is obtained from the multiscale
expansion when t = O(ϵ−2).

This simple approach, based on the expansion of the dispersion relation
around a wave number k0, can be generalized in a straightforward way to
higher dimensions. For instance, in d+ 1 dimensions, expanding around the
wave vector k0 = (k10, k20, . . . , kd0): k0+ϵk̃, k̃ = (k1, k2, . . . , kd), one obtains:

θ(x, t) =
(
k0 + ϵk̃

)
· x− ω

(
k0 + ϵk̃

)
t = [k0 · x− ω (k0) t]

+k̃ · (x1 −∇kω (k0) t1)− 1
2

d∑
i,j=1

∂2ω(k0)
∂ki∂kj

t2 +O(ϵ2),
(418)
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where
x1 = (x1, x2, . . . , xd), x1 = ϵx, tj = ϵjt, j = 1, 2 (419)

are slow space-time variables. Correspondingly, the slowly varying amplitude
A satisfies the linear PDEs:

(∂t1 +∇kω (k0) · ∇x1)A = 0, (420)

iAt2 +
1

2

d∑
i,j=1

∂2ω

∂ki∂kj

∣∣∣
k=k0

Axixj = 0. (421)

As before, the nonlinear part is generically described by the self-induced cubic
potential (411), where the coefficient b is obtained from the multiscale ex-
pansion at order t = O(ϵ−2). Therefore, taking care of equations (419),(421),
the following NLS equation in 2 + 1 dimensions

iut2 +
1
2

d∑
i,j=1

∂2ω(k0)
∂ki∂kj

Aξiξj + b(k0)|A|2A = 0,

A = A(ξ, t2), ξj = xj − ∂ω(k0)
∂kj

t1.

(422)

plays an important role as model equation in the description of weakly non-
linear, quasi-monochromatic waves in d+ 1 dimensions.

As an application, for the dispersion relation of the Euler equations in
the deep water regime (d = 2):

ω(k) =
√
g
(
k21 + k22

)1/4
, (423)

and assuming without loss of generality that the monochromatic wave travels
along the x1 = x direction: k0 = (k0, 0), then

∂2ω
∂k21

(k0) = − Cg

2|k0| < 0, ∂2ω
∂k1k2

(k0) = 0, ∂2ω
∂k22

(k0) =
Cg

|k0| > 0, (424)

where Cg = 1
2

√
g

|k0| is the group velocity. Then equation (424) reduces the

NLS equation:

iAt2 −
Cg
4|k0|

(
∂2x1 − 2∂2x2

)
− 2k40

ω
|A|2A = 0, (425)

whose dimensionless form reads

iuτ + uXX − uY Y + |u|2u = 0. (426)

This equation, called the hyperbolic NLS equation in 2+1 dimensions, is fo-
cusing in the wave propagation direction x, and defocusing in the transversal
direction y.
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5.3 Weakly nonlinear hyperbolic PDEs and the Hopf
model

Now we apply the multiscale method to the Riemann class of hyperbolic
equations

ut + c(u)ux = 0, u = u(x, t) (427)

under the hypothesis of small perturbation around the constant solution u0.
Therefore we look for solutions in the naive form

u(x, t) = u0 + ϵu1(x, t) + ϵ2u2(x, t) +O(ϵ3). (428)

Then the equation becomes

ϵu1t + ϵ2u2t + ϵ3u3t +O(ϵ4) + [c0 + ϵc′0(u1 + ϵu2)

+ϵ2
c′′0
2
u21](ϵu1x + ϵ2u2x + ϵ3u3x) = 0,

(429)

where
c0 = c(u0), c′0 = c′(u0), c′′0 = c′′(u0). (430)

At O(ϵ) we have the advection equation

u1t + c0u1x = 0, ⇒ u1 = f(x− c0t), f arbitrary. (431)

At O(ϵ2):
u2t + c0u2x = −c′0u1u1x := g(x− c0t). (432)

Since g(x− c0t) is a secular forcing, we have the usual linear growth:

u2 = tg(x− c0t) + h(x− c0t), h arbitrary, (433)

and the expansion (428) ceases to be asymptotic when t = O(1/ϵ) unless
we impose that u1u1x = ffx = 0, trivializing the solution. In addition, the
theory of hyperbolic waves is not compatible with this linear time growth of
the amplitude.

The way to fix the problem is by now clear: we have to allow the solution
to depend on slower time variables:

un = un(x, t, t1, t2, . . . ), tn = ϵnt. (434)

Then
∂t → ∂t + ϵ∂t1 + ϵ2∂t2 + . . . (435)

and we start again the analysis. At O(ϵ) and O(ϵ2):

u1t + c0u1x = 0, ⇒ u1 = f(x− c0t, t1, t2, . . . ), f arbitrary. (436)
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u2t + c0u2x = −(u1t1 + c′0u1u1x) =: g(x− c0t, t1, . . . ). (437)

Again the forcing is secular and, to avoid the linear growth, we must impose
that the main perturbation satisfy the well-known Hopf equation

u1t1 + c′0u1u1x = 0. (438)

Therefore the Hopf equation is the model equation for the class of
Riemann equations in the weakly nonlinear regime.

We remark that, in the non generic case in which c′0 = 0, c′′0 ̸= 0, then
u1t1 = 0, and one has to go to the next order to establish that the model
equation is the cubic Riemann equation

u1t2 +
c′′0
2
u21u1x = 0. (439)

5.4 Weakly nonlinear and weakly dissipative PDEs and
the Burgers equation

Consider the following class of PDEs

ut + c(u)ux = (D(u)ux)x , D(u) > 0, u = u(x, t) ∈ R, (440)

depending on two smooth arbitrary functions c(u), D(u). It is easy to verify
that the RHS is a dissipative term, showing that

1

2

d

dt

∫
R
u2dx = −

∫
R
D(u)u2xdx < 0, (441)

if u is localized.
Again we consider small perturbations of the constant solution u0:

u(x, t) = u0 + ϵu1(x, t) + ϵ2u2(x, t) +O(ϵ3), (442)

leading, at O(ϵ), to the equation

u1t + c0u1x = D0u1xx,
c0 = c(u0), D0 = D(u0),

(443)

reducing to the heat equation u1τ = D0u1ξξ via the change of variables

ξ = x− c0t, τ = t. (444)

Consider now two different situations.
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1. Small dissipation: D0 = ϵν > 0, ν = O(1).

Then, at O(ϵ) and O(ϵ2):

u1t + c0u1x = 0, ⇒ u1 = u1(x− c0t), (445)

u2t + c0u2x = − (c′0u1u1x − νu1xx) = f(x− c0t), (446)

where c′0 = c′(u0). We obtain the usual secular forcing that cannot be elimi-
nated without trivializing the expansion. Therefore we introduce slow times

uj = uj(x, t, t1, . . . ), tn = ϵnt, j ≥ 1, (447)

obtaining now, at O(ϵ) and O(ϵ2):

u1t + c0u1x = 0, u1 = u1(x− c0t, t1, . . . ), (448)

u2t + c0u2x = − (u1t1 + c′0u1u1x − νu1xx) = f(x− c0t, t1, . . . ). (449)

Eliminating the secular forcing is equivalent to fixing the dependence of u1
on the slower time t1 through the Burgers equation

u1 = u1(x− c0t, t1, . . . ),
u1t1 + c′0u1u1x − νu1xx = 0.

(450)

Therefore the Burgers equation describes weakly nonlinear and weakly
dissipative waves.

2. Weakly nonlinear long waves in dissipative media.

We approach this problem as we did with the derivation of the slow vari-
ables of NLS in the second part of §4.2. Let us start with the heat equation
(443) and observe that u = exp(iθ), θ = kx−W (k)t is solution of it if

W (k) = c0k − iD0k
2t. (451)

If we look for long waves (small wave numbers) in dissipative media, we
assume that

k = ϵγκ, γ > 0, D0 = O(1), (452)

implying that

θ = kx−W (k)t = ϵγκ(x− c0t) + iD0ϵ
2γκ2t

= κ(x1 − c0t1) + iD0κ
2t2,

(453)
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generating the slow variables

x1 = ϵγx, t1 = ϵγt, t2 = ϵ2γt, (454)

and the partial derivatives

∂x → ϵγ∂x1 , ∂t → ϵγ∂t1 + ϵ2γ∂t2 . (455)

As in the NLS case, using the linearized theory (coming from the weak non-
linearity) + the physical hypothesis (long waves), we have generated the
proper slow variables of the problem and the correct ansatz

u ∼ u0 + ϵu1(x1, t1, t2) +O(ϵ2). (456)

At O(ϵ1+γ):
u1t1 + c0u1x1 = 0, u1 = u1(x1 − c0t1, t2), (457)

At higher order, we have contributions of, in principle, different order:

u2t1 , u2x1 , u1u1x1 = O(ϵ2+γ), u1t2 , u1x1x1 = O(ϵ1+2γ). (458)

Using the principle of “maximal balance”, stating that nature favors situa-
tions in which the maximal number of terms balance at a certain order, we
observe that this maximal balance is achieved when

2 + γ = 1 + 2γ ⇒ γ = 1. (459)

Therefore the next order is O(ϵ3), with

u2t1 + c0u2x1 = − (u1t2 + c′0u1u1x1 −D0u1x1x1) = g(x1 − c0t1, t2). (460)

The usual secular forcing is eliminated imposing that u1 evolves with respect
to t2 according to the Burgers equation

u1t2 + c′0u1u1x1 = D0u1x1x1 . (461)

Therefore the Burgers equation describes also weakly nonlinear long
waves in dissipative media.

5.5 Weakly nonlinear and weakly dispersive PDEs and
the Korteweg - de Vries (KdV) equation

Consider the following class of nonlinear dispersive PDEs

ut + c(u)ux +K1(u) [K2(u) (K3(u)ux)x]x = 0, (462)
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that can be rewritten in the form

ut + c(u)ux + F (u)uxxx +G(u)uxuxx +H(u)u3x = 0,
F (u) = K1(u)K2(u)K3(u),
G(u) = K1(u)[3K2(u)K

′
3(u) +K ′

2(u)K3(u)],
H(u) = K1(u)K

′
2(u)K

′
3(u).

(463)

The small amplitude hypothesis implies the usual ansatz

u = u0 + ϵu1 + . . . , u0 = const, (464)

and the linearized equation, at O(ϵ), is the linear dispersive PDE

u1t + c0u1x + F0uxxx = 0, F0 = F (u0). (465)

with dispersive relation
ω(k) = c0k − F0k

3. (466)

We observe that, in the long wave regime (small wave numbers)

ω(k) ∼ c0k = O(k), vf = ω(k)/k ∼ c0 = O(1), |k| ≪ 1. (467)

Therefore we are in the so-called “weakly dispersive regime”.
Since we are interested in long waves, as before we write k = ϵγκ, γ > 0,

and

θ = kx− ω(k)t = ϵγκ(x− c0t) + F0ϵ
3γκ3t = κ(x1 − c0t1) + F0κ

3t3, (468)

with the introduction of the slow variables

x1 = ϵγx, t1 = ϵγt, t3 = ϵ3γt (469)

implying
∂x → ϵγ∂x1 , ∂t → ϵγ∂t1 + ϵ3γ∂t3 . (470)

Assuming
uj = uj(x1, t1, t3), j ≥ 1, (471)

we have, at the leading O(ϵ1+γ):

u1t1 + c0u1x1 = 0, u1 = u1(x1 − c0t1, t3). (472)

As before, at higher order we have contributions of different order:

u2t1 , u2x1 , u1u1x1 = O(ϵ2+γ), u1t3 , u1x1x1x1 = O(ϵ1+3γ), (473)
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and the maximal balance principle gives now

2 + γ = 1 + 3γ ⇒ γ =
1

2
. (474)

Therefore the next order is O(ϵ5/2), and the equation reads

u2t1 + c0u2x1 = − (u1t3 + c′0u1u1x1 + F0u1x1x1x1) = g(x1 − c0t1, t3) (475)

Again the resonant forcing can be eliminated if the dependence of the field
on t3 is described by the KdV equation

u1t3 + c′0u1u1x1 + F0u1x1x1x1 = 0. (476)

Therefore the KdV equation is a model equation in the description
of weakly nonlinear and weakly dispersive (long) waves.

It would be possible to show that, if c′0 = 0 and c′′0 ̸= 0, the model equation
would be the so-called modified KdV equation

u1t +
c′′0
2
u21u1x1 + F0u1x1x1x1 = 0. (477)

5.6 Water wave equations and their NLS and KdV lim-
its

Consider a small volume of fluid subjected to volume forces F⃗ = (F1, F2, F3)
(f.i., gravity) and pressure forces, with acceleration a⃗ = (a1, a2, a3) (see Fig.
34).

Figure 34: Small volume δxδyδz of fluid subjected to volume and pressure
forces.
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The Newton equation in the x direction reads:

ρa1δxδyδz =

[
p(x)−

(
p(x) +

∂p

∂x
δx

)]
δyδz + F1δxδyδz, (478)

where δxδyδz is the small volume and ρ is the density of the fluid. In vector
form:

ρa⃗ = F⃗ −▽p. (479)

Let x⃗(t) be the trajectory of the small volume of fluid; its velocity is v⃗ =
v⃗(x⃗(t), t), and the acceleration is

a⃗ =
dv⃗

dt
=
∂v⃗

∂t
+
∂v⃗

∂x

dx

dt
+
∂v⃗

∂y

dy

dt
+
∂v⃗

∂z

dz

dt
= v⃗t + (v⃗ · ▽) v⃗. (480)

Therefore the Newton law (479) becomes the Euler equations

v⃗t + (v⃗ · ▽) v⃗ =
F⃗ −▽p

ρ
. (481)

If F⃗ is the weight force: F⃗ = −▽ U(z), U(z) = ρgz:

v⃗t + (v⃗ · ▽) v⃗ = −▽(U + p)

ρ
. (482)

If there is dissipation with coefficient ν > 0, one obtains the Navier-Stokes
equations

v⃗t + (v⃗ · ▽) v⃗ = −▽(U + p)

ρ
+ ν △ v⃗. (483)

In addition, the conservation of mass

d

dt

∫
V

ρdV +

∫
∂V

ρv⃗ · n̂dσ = 0 (484)

implies, via the Gauss theorem, the continuity equation

ρt +▽ · (ρv⃗) = 0. (485)

The last equation (5 equations for the 5 unknowns v⃗, p, ρ) is the equation of
state:

p = p(ρ, S). (486)

In hydrodynamics, ρ = ρ0 constant, and the continuity equation becomes

▽ · v⃗ = 0. (487)
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Applying the operator▽∧ to the Euler equations (482) and using the identity

(v⃗ · ▽) v⃗ =
1

2
▽|v⃗|2 − v⃗ ∧(▽∧ v⃗), (488)

one obtains the vorticity equation

ω⃗t −▽∧ (v ∧ ω⃗) = 0, (489)

for the vorticity
ω⃗ := ▽∧ v⃗. (490)

This equation implies that, if ω⃗ is initially zero, it remains zero during the
evolution. Therefore ω⃗ = 0⃗ is a constraint compatible with the evolution
that can be imposed to the equations, obtaining an “irrotational flow”, with
two consequences:
i) the existence of a potential ϕ such that

v⃗ = ▽ϕ. (491)

ii) the simplification of the Euler equations (due to (488))

v⃗t +
1

2
▽ |v⃗|2 = −▽(U + p)

ρ0
. (492)

Writing this equation in terms of ϕ:

(▽ϕ)t +
1

2
▽ | ▽ ϕ|2 +▽

(
U + p

ρ0

)
= 0, (493)

integrating it:

ϕt +
1

2
| ▽ ϕ|2 + U + p− p0

ρ0
= f(t), (494)

and observing that ϕ is defined up to a function of t, we get rid of f(t),
obtaining the Bernoulli

ϕt +
1

2
| ▽ ϕ|2 + U + p− p0

ρ0
= 0, U = gρ0z, (495)

together with the Laplace equation

△ϕ = 0, (496)

consequence of (487).
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Surface water waves For surface water waves on a flat bottom (see Fig.
35):

Figure 35: A surface water waves on a flat bottom.

one has to add the boundary conditions on the bottom:

ϕz = 0, z = −h, (497)

(the water cannot penetrate through the bottom) and the corresponding
boundary conditions on the free surface of separation between water and air,
defined by the equation

F (x⃗, t) = z − ζ(x, y, t) = 0. (498)

Since water cannot mix with air, water particles on the free surface at t
remain on the free surface at later times:

F (x⃗p(t), t) = 0,
F (x⃗p(t) + δx⃗p, t+ dt) = ∇x⃗F · δx⃗p + Ftdt = 0.

(499)

Since δx⃗p/dt is the particle velocity, we infer that the “matter derivative” of
the free surface equation is zero:

DF

dt
= Ft + v⃗ · ∇x⃗F = Ft +∇x⃗ϕ · ∇x⃗F = 0, (500)

and, using (498), one finally obtains

ϕz = ζt + ϕxζx + ϕyζy, z = ζ(x, y, t). (501)
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We remark that also (497) can be written as DF/dt = 0, for the bottom
surface F = z + h = 0.

Summarizing, the surface water wave equations are:

△ϕ = 0, −h ≤ z ≤ ζ(x, y, t),
ϕz = ζt + ϕxζx + ϕyζy, z = ζ(x, y, t),
ϕt +

1
2
|▽ϕ|2 + gζ = 0, z = ζ(x, y, t),

ϕz = 0, z = −h.

(502)

In the small amplitude case |ϕ|, |ζ| ≪ 1 with their derivatives, equation
(502) reduce to

△ϕ = 0, −h ≤ z ≤ ζ(x, y, t) ∼ 0,
ϕz − ζt ∼ 0, z = ζ(x, y, t) ∼ 0,
ϕt + gζ ∼ 0, z = ζ(x, y, t) ∼ 0,
ϕz = 0, z = −h.

(503)

Applying ∂t to the third equation and using the second one, one obtains

ϕtt + gϕz = 0, z ∼ 0 (504)

Looking for a solution using separation of variables:

ϕ = ϕ0 +R(z)ei(k1x+k2y−ωt) + c.c., ζ = ζ0(k)e
i(k1x+k2y−ωt) + c.c., (505)

the first and fourth of equations (503) imply that

R′′(z) = (k21 + k22)R(z), −h ≤ z ≤ 0,
R′(−h) = 0,

(506)

whose solution is

R(z) = C cosh(k(z + h)), k =
√
k21 + k22, C = const. (507)

Replacing (505) in (504) one obtains

−ω2R(0) + gR′(0) = 0 (508)

and using (507), we finally obtain ω2 cosh(kh) = gk sinh(kh), implying the
well-known dispersion relation of surface water waves

ω2 = gk tanh(hk), k =
√
k21 + k22. (509)
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At last, from the 2nd equation, we get

ζ = iC
ω(k)

g
cosh(hk)ei(k1x+k2y−ω(k)t) + c.c. (510)

We distinguish two basic regimes.

1. Long waves (shallow water waves): h/λ ≪ 1, ⇒ hk ≪ 1 ⇒ ω ∼√
gh
√
k21 + k22.

2. Short waves (deep water waves): h/λ≫ 1, ⇒ hk ≫ 1 ⇒ ω ∼
√
gk.

An important example of long wave (shallow water wave) is the Tsunami.
Indeed, for it:

λ ∼ 100 Km, ζ ∼ 1 m. (511)

If h ∼ 6000 m (off of Polynesia), then h/λ ∼ 0.06 ≪ 1 and v ∼
√
gh ∼

870 Km/h, the speed of an airliner.
The wind waves are instead examples of short waves (deep water waves);

indeed
λ ∼ 100 m, ζ ∼ 2 m, (512)

and, if h ∼ 6000 m, h/λ ∼ 60 ≫ 1.

The KdV and KP water wave regimes. As we have seen in this chapter,
from the dispersion relation of the linearized theory it is possible to extract
important informations concerning the multiscale expansion, establishing the
proper slow variables to use, and the linearized form of the model equations
to be obtained. Here we apply this approach on the water wave theory in
the case of surface waves.

The start with the dispersion relation

ω2(k) = gk tanh(hk), k =
√
k21 + k22. (513)

We first observe that, in the case of long waves (shallow water theory),
hk ≪ 1, and (513) is expanded in the form

ω2(k) = gk
(
kh− 1

3
(kh)3 +O(kh)5

)
= ghk2

(
1− 1

3
(kh)2 +O(kh)4

)
,

(514)

implying that

ω(k) =
√
ghk

(
1− 1

6
(hk)2 +O(kh)4

)
. (515)
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One dimensional waves. In the case of one dimensional waves (k2 = 0),
this dispersion relation corresponds to the linear PDE

ηt +
√
gh

(
ηx +

h2

6
ηxxx

)
= 0. (516)

It turns out that, if one takes account of the quadratic nonlinearity of the
water wave equations, in the long wave approximation, one should add the
nonlinear KdV term 3

√
gh

2h
ηηx, obtaining the KdV equation

ηt +
√
gh

(
ηx +

h2

6
ηxxx +

3

2h
ηηx

)
= 0 (517)

for the amplitude η of the surface wave.
Observe that, near the shore (h small) the dispersive term is small with

respect to the nonlinear term, and the equation reduces to the Hopf equation,
describing wave breaking.

If we wanted to play the game of the slow variables, we should proceed
as we did in the previous sections. In the long wave regime: k = ϵγκ, γ > 0;
then ω ∼

√
gh(ϵγκ− h2

6
ϵ3γκ3), and

θ = kx− ω(k)t = ϵγκx−
√
gh(ϵγκ− h2

6
ϵ3γκ3)t

= κ(x1 −
√
ght1) +

√
ghh2

6
κ3t3 = κξ +

√
ghh2

6
κ3t3,

(518)

for the slow variables

x1 = ϵγx, t1 = ϵγt, t3 = ϵ3γt, ξ = x1 −
√
ght1. (519)

corresponding to the linear KdV

η = η(ξ, t3), ξ = x1 −
√
ght1,

ηt3 +
√
ghh

2

6
ηξξξ = 0.

(520)

If one takes account of the quadratic nonlinearity, one would obtain, in the
proper multiscale expansion, γ = 1, and the KdV equation

ηt3 +
√
gh

(
h2

6
ηξξξ +

3

2h
ηηξ

)
= 0 (521)

as the condition of elimination of the usual secularity.
Quasi one dimensional waves. In the case of long and quasi one dimen-
sional waves, the wave length in the y direction is much larger than the wave
length in the x direction: λ2 ≫ λ1 ≫ 1 ⇒ 1 ≫ k1 ≫ k2. Then

k =
√
k21 + k22 = k1

√
1 +

k22
k21

∼ k1

(
1 +

1

2

k22
k21

)
. (522)
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and the dispersion relation (515) is expanded in the following way:

ω ∼
√
ghk

(
1− h2

6
k2
)

∼
√
ghk1

(
1 + 1

2

k22
k21

)(
1− h2

6
(k21 + k22)

)
∼

√
gh
(
k1 +

1
2

k22
k1

− h2

6
k31

)
,

(523)

corresponding to the linear PDE in 2+1 dimensions

ηt +
√
gh

(
ηx +

h2

6
ηxxx +

1

2
∂−1
x ηyy

)
= 0. (524)

If one takes account of the quadratic nonlinearity of the water wave equations
in this long wave regime, one obtains the celebrated Kadomtsev-Petviashvili
(KP) equation

ηt +
√
gh

(
ηx +

h2

6
ηxxx +

3

2h
ηηx +

1

2
∂−1
x ηyy

)
= 0 (525)

for the amplitude η of the surface wave. Again, near the shore, h is small,
and the KP equation reduces to the dispersionless KP (dKP) equation

ηt +
√
gh

(
ηx +

3

2h
ηηx +

1

2
∂−1
x ηyy

)
= 0. (526)

Slow variables can be introduced as follows:

k1 = ϵpκ1, k2 = ϵp+qκ2, p, q > 0. (527)

Then
θ = k1x+ k2y − ω(k1, k2)t

= ϵpκ1x+ ϵp+qκ2y −
√
gh
[
ϵpκ1 +

ϵp+2q

2

k22
k1

− h2

6
ϵ3pκ31

]
t

(528)

The maximal balance principle imposes that

3p = p+ 2q ⇒ q = p, (529)

and we obtain

θ = κ1(x1 −
√
ght1) + κ2y2 −

√
gh
[
1
2

k22
k1

− h2

6
κ31

]
t3

= κ1ξ + κ2y2 −W (κ1, κ2)t3
(530)

with the slow variables

x1 = ϵpx, t1 = ϵpt, y2 = ϵ2py, t3 = ϵ3pt, ξ = (x1 −
√
ght1), (531)
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and W (κ1, κ2) is the new dispersion relation

W (κ1, κ2) =

√
gh

2

(
k22
k1

− h2

3
κ31

)
. (532)

The dispersion relation in (530) corresponds to the linearized KP equation
in the slow variables:

ηt3 +
√
gh

(
h2

6
ηξξξ +

1

2
∂−1
ξ ηy2y2

)
= 0. (533)

If one takes account of the quadratic nonlinearity, one would obtain, in the
proper multiscale expansion, the KP equation

ηt3 +
√
gh

(
h2

6
ηξξξ +

3

2h
ηηξ +

1

2
∂−1
ξ ηy2y2

)
= 0 (534)

as the condition of elimination of the usual secularity.
We remark that, if we break the maximal balance principle in this way

p > q, (535)

the dispersion in the x direction is negligeable, and the KP equation reduces
to the dKP equation:

ηt3 +
√
gh

(
3

2h
ηηξ +

1

2
∂−1
ξ ηy2y2

)
= 0. (536)

The NLS deep water regime. We consider small amplitude surface waves
in one dimension, in the deep water regime kh≫ 1, then

ω(k) =
√
gk, k ∈ R,

R(z) = C cosh(k(z + h)) ∼ C̃e|k|z.
(537)

If we are interested in small amplitude quasi monochromatic waves, we know
from (505,(507),(510) that the solutions read as follows

ϕ = ϵΦ(x1, z1, t1, t2, ..)e
iθ+|k|z + c.c.+O(ϵ2),

ζ = ϵA(x1, 0, t1, t2, ..)e
iθ + c.c.+O(ϵ2), A = iω

g
Φ

(538)

where the slow variables are

x1 = ϵx, z1 = ϵz, tj = ϵjt, j ≥ 1, (539)

and
θ = kx−

√
gkt. (540)
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From the above considerations we expact the following result The above
multiscale expansion leads to the following equations

At1 + ω′(k)Ax1 = 0, A = A(ξ, t2, . . . ),

iAt2 +
ω′′(k)

2
Aξξ + β(k)|A|2A = 0,

(541)

where
ξ = x1 − ω′(k)t1,

ω(k) =
√
g k, ⇒ ω′(k) = ω(k)

2k
, ω′′(k) = −ω(k)

4k2
< 0,

(542)

and where the coefficient β(k) is obtained from multiscale analysis; since A
is dimensionally a length, an elementary dimensional analysis suggests for β
the form β(k) = β0k

2ω(k), where β0 is a adimensional constant. Multiscale
analysis confirms this simple argument and fixes β0 = 1/2. Therefore we
obtain the following equation [39]

iAt2 +
ω′′(k)

2
Aξξ − ω(k)k2

2
|A|2A

= iAt2 −
ω(k)
8k2

Aξξ − ω(k)k2

2
|A|2A = 0,

A = A(x1 − ω
2k
t1, t2).

(543)

Since the sign of the dispersive and nonlinear terms are both negative, small
amplitude, quasi monochromatic surface waves in deep water are described
by the focusing NLS equation.

Verify that the change of variables to the canonical dimensionless form
iut + uxx + 2|u|2u = 0 is

x =
√
2k2a0(x1 −

ω

2k
t1), t = −ωa

2
0k

2

4
t2, u = A/a0, (544)

where a0 is a characteristic elevation.
To study the more realistic 2 + 1 dimensional deep water regime:

ω =
√
gκ, κ =

√
k21 + k22, (545)

we begin with equation (424) for d = 2

iut2 +
1
2

2∑
i,j=1

∂2ω(k0)
∂ki∂kj

Aξiξj + b(k0)|A|2A = 0,

A = A(ξ⃗, t2), ξj = xj − ∂ω(k0)
∂kj

t1,
(546)

and we assume without loss of generality that the monochromatic wave of
the linearized theory travel along the x1 = x direction: k0 = (k0, 0). Then
one obtains

ωk1k1|k0 = −
√
g

4|k0|
, ωk1k2|k0 = 0, ωk2k2|k0 =

√
g

2|k0|
, (547)
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and equation (546) becomes

iAt2 −
ω(k)
8k2

(Aξξ − 2Ax2x2)−
ω(k)k2

2
|A|2A = 0,

ξ = x1 − ω′(k0)t1,
(548)

, in a suitable adimensional form,

iut + uxx − uyy + 2|u|2u = 0, u = u(x, y, t) ∈ C. (549)

This equation, often called the hyperbolic NLS equation in 2 + 1 dimen-
sions, is focusing in the wave propagation direction x, and defocusing in the
transversal direction y.

5.7 Nonlinear optics and NLS [33]

For a non magnetic medium (M⃗ = 0⃗), in the absence of external charges and

currents, the electric field E⃗ and the polarization P⃗ are connected by the
equations

▽ · (ϵ0E⃗ + P⃗ ) = 0,

▽2E⃗ −▽(▽ · E⃗) = µ0
∂2

∂t2
(ϵ0E⃗ + P⃗ ).

(550)

We assume that P⃗ be connected to E⃗ through the convolution integral

P⃗ (r⃗, t) = ϵ0

t∫
−∞

χ(r⃗, t− t′)E⃗(r⃗, t′)dt′ (551)

where χ is the electric susceptibility. We remark that the electric suscepti-
bility χ(r⃗, t) is 0 for t < 0 by causality (the effect, the polarization, cannot
preceed the cause, the electric field). The convolution product becomes a
simple product in Fourier space

P⃗ω(r⃗) = ϵ0χω(r⃗)E⃗ω(r⃗), (552)

where P⃗ω(r⃗), χω(r⃗), E⃗ω(r⃗) are the Fourier transforms of P⃗ (r⃗, t), χ(r⃗, t), E⃗(r⃗, t)
with respect to t:

fω =

∫
R
e−iωtf(t)dt, f(t) =

1

2π

∫
R
eiωtfωdω. (553)

In Fourier space, equations (550) read:

▽ · (ϵ0E⃗ω + P⃗ω) = 0,

▽2E⃗ω −▽(▽ · E⃗ω) + µ0ω
2
(
ϵ0E⃗ω + P⃗ω

)
= 0.

(554)
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Using (552) and the first of (554), we obtain

0 = ▽ · (ϵ0E⃗ω + P⃗ω) = ▽ · (ϵE⃗ω)
= (▽ϵ) · E⃗ω + ϵ▽ ·E⃗ω,

(555)

where
ϵ(r⃗, ω) := ϵ0(1 + χω(r⃗)) (556)

is called dielectric constant (when it is constant), implying

▽ · E⃗ω = −E⃗ω ·
▽ϵ
ϵ
. (557)

Substituting (557) into the second of (554), we obtain

▽2E⃗ω +▽
(
E⃗ω ·

▽ϵ
ϵ

)
+
ω2

c2
ϵ

ϵ0
E⃗ω = 0⃗. (558)

Introducing the refraction index n(r⃗, ω) as follows

n2(r⃗, ω) := 1 + χω(r⃗), (559)

equation (558) becomes

▽2E⃗ω + 2▽
(
E⃗ω · ▽ lnn

)
+
ω2

c2
n2E⃗ω = 0⃗, (560)

and assuming a slow dependence of n on the space variables, this equation
reduces to the Helmholtz equation

▽2E⃗ω +
ω2

c2
n2(r⃗, ω)E⃗ω = 0⃗. (561)

Assuming

n(r⃗, ω) = n0(ω) + δn(r⃗, ω),

∣∣∣∣δnn0

∣∣∣∣≪ 1 ⇒ n2 ∼ n0
2 + 2n0δn, (562)

equation (561) becomes

▽2E⃗ω +
(
k20 + 2k20

δn(r⃗,ω)
n0

)
E⃗ω = 0⃗,

k0 :=
ω
c
n0

(563)

The last assumption is paraxiality in the direction of propagation z:

E⃗ω(r⃗) = A⃗(r⃗⊥, z)e
ik0z (564)
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where A⃗(r⃗⊥, z) depends on the transversal variables r⃗⊥ = (x, y), and slowly
on the propagation variable z (slow modulation of a monochromatic wave in
the direction z):

∂2z E⃗ω ∼ (2ik0A⃗z − k20A⃗)e
ik0z, (565)

we finally end up with equation

iA⃗z +
1

2k0
▽2

⊥ A⃗+ k0
δn(r⃗,ω)
n0(ω)

A⃗ = 0⃗,

▽2
⊥ = ∂2x + ∂2y .

(566)

At last, if δn = δn(I), where I is the light intensity I = |A⃗|2, we obtain
a general nonlinear Schrödinger equation

iA⃗z +
1

2k0
▽2

⊥ A⃗+ φ(|A⃗|2)A⃗ = 0⃗,

φ(|A⃗|2) := k0
δn(|A⃗|2)
n0(ω)

.
(567)

In the small fields limit:
δn

n0

∼ a|A⃗|2, (568)

it reduces to the cubic elliptic NLS equation in 2+1 dimension:

iA⃗z +
1

2k0
▽2

⊥ A⃗+ ak0|A⃗|2A⃗ = 0⃗. (569)

In the large field limit the refraction index δn saturates and φ(|A⃗|2) ∼ const.

5.8 Exercices
1) Consider the two anharmonic oscillators

q̈ + q − ϵ
6
q3 = 0, Hamiltonian cubic pendulum, 0 < ϵ << 1,

q̈ + q + ϵq̇3 = 0, with nonlinear friction
(570)

with the same initial conditions
q(0) = 1, q̇(0) = 0. (571)

Use the multiscale method to show that, respectively:

q(t) = cos
(
t− 1

16
ϵt
)
+O(ϵ),

q(t) =
(
1 + 3

4
ϵt
)−1/2

cos t+O(ϵ)
(572)

2) Use the multiscale method to construct the solution

q(t) =
a0eϵt/2√

1 +
(a0

2

)2
(eϵt − 1)

cos(t+ ϕ0) +O(ϵ) (573)

of the Van Der Pol oscillator
q̈ + q − ϵ(1− q2)q̇ = 0, (574)
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and show that
q(t) → 2 cos(t+ ϕ0) +O(ϵ), t→ ∞, (575)

i.e., the solution tends to a limiting cycle (at O(ϵ): the circle of radius 2).

3) Derive the Hopf equation ut + uux = 0 from the Riemann equation ut + c(u)ux = 0 using multiscale
expansions, in the weakly nonlinear regime.

4) Derive the Burgers equation ut+uux = νuxx from the following class ut+c(u)ux = (D(u)ux)x, D(u) >
0 of PDEs, in the weakly nonlinear regime, using multiscale expansions.

5)Derive the KdV equation ut+uux+uxxx = 0 from the following class ut+c(u)ux+K1(u)[K2(u)(K3(u)ux)x]x =
0 of nonlinear dispersive PDEs, using multiscale expansions.

6) Derive the NLS equation from the Sine Gordon equation utt−c2uxx+µ2 sinu = 0 (or, more in general,
from a large class of nonlinear dispersive PDEs), using multiscale expansions.

7) Derive the NLS equation from the KdV equation ut + uux + uxxx = 0 using multiscale expansions.

8) Derive the dKP(3,1) equation (ut + uux)x + uyy + uzz = 0 from the equations of Acoustics, under the
hypothesis of i) weak nonlinearity and ii) quasi one-dimensionality.

9) i) Derive the equations of surface water waves from the Euler equations, linearize them under a small
field hypothesis, and show their dispersive nature, with the dispersion relation

ω2(k) = gk tanh(h k), (576)

where g is the acceleration of gravity and h is the depth of the fluid.

10) i) Derive the KdV equation (see [1, 3]) in the context of surface water waves in (1 + 1) dimensions,
under the hypothesis of ia) small amplitudes and iib) shallow water (kh≪ 1, where k is the wave number
and h is the depth of the fluid). ii) Derive the KP equation (see [2, 3]) in the context of surface water
waves in (2 + 1) dimensions, under the hypothesis of iia) small amplitudes, iib) shallow water, and iic)
quasi one-dimensionality. Show that, neglecting dispersion, one obtains the dKP(2,1) equation.
iii) Derive (see [3]) the NLS equation in the context of surface water waves in (1 + 1) dimensions, under
the hypothesis of iiia) small amplitude (a << λ) and iiib) quasi monocromatic waves in sufficiently deep
water (kh ≫ 1). iv) Derive its multidimensional generalization in the context of surface water waves in
(2 + 1) dimensions.

11) Derive (see [?]) the NLS equation in the framework of Langmuir waves in a plasma, described by the
system of equations:

nt + (nv)x = 0, vt + vvx = ϕx − nx/n, ϕxx = n− 1,

with boundary onditions n → 1, v → 0, ϕ → 0 as |x| → ∞, where n is the electron density, v is the
electron velocity and ϕ is the electrostatic potential in dimensionless variables, expanding the fields around
the equilibrium solution:

n = 1 + ϵn1 + ϵ2n2 +O(ϵ3), v = ϵv1 +O(ϵ2), ϕ = ϵϕ1 +O(ϵ2).

12) Derive (see [14]) the NLS equation in nonlinear optics, for a homogeneous and isotropic dielectric.
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6 Soliton Equations and the IST Method

6.1 The KdV example
The KdV equation

ut − 6uux + uxxx = 0, u = u(x, t) ∈ R, (577)

(we have rescaled the independent and dependent variables to reach this convenient form) can be written
as the integrability (compatibility) condition of the following pair (the so-called “Lax pair”) of linear
differential equations for the auxiliary field ψ:

Lψ = Eψ, ψ = ψ(x, t, E),
ψt =Mψ,

(578)

where L,M are the following differential operators

L := −∂2x + u(x, t),
M := −4∂3x + 6u∂x + 3ux + c(k) = −4∂3x + 3(u∂x + ∂xu) + c(k),

(579)

and c(k) is an arbitrary scalar such that cx = 0.
We remark that the operator L is the Schrödinger operator and the first equation in (578) is the time

independent Schrödinger equation with energy E and eigenfunction ψ. We have the following results:

Et = 0 ⇔ Lt + [L,M ] = 0 ⇔ ut − 6uux + uxxx = 0, (580)

implying that the KdV dynamics is “isospectral”: ut − 6uux + uxxx = 0 ⇔ Et = 0; i.e., the spectrum
of the Schrödinger operator is a constant of motion iff the potential u of the Schrödinger operator evolves
according to the KdV equation. Let’s prove the first equivalence in (580):

(Lψ)t = Ltψ + Lψt = (Lt + LM)ψ;
(Eψ)t = Etψ + Eψt = Etψ + EMψ
= Etψ +M(Eψ) = (Et +ML)ψ

(581)

implying
(Lt + [L,M ])ψ = Etψ. (582)

If Lt + [L,M ] = 0, then Et = 0; if Et = 0, then (Lt + [L,M ])ψ = 0 for every eigenfunction ψ, implying
Lt + [L,M ] = 0.

The second equivalence is left as an exercise to the reader.
We also observe that, taking the x-derivative of the Schrödinger equation: ψxxx = uxψ+ (u−E)ψx,

the second of equations (578) can be rewritten as

ψt = (c(k)− ux)ψ + (4E + 2u)ψx, (583)

expressing ψt in term of ψ and ψx only.
Our goal is to use the above Lax pair to solve the Cauchy problem for the KdV equation on the line,

for localized u’s
ut − 6uux + uxxx = 0, u = u(x, t),
u(x, 0) = u0(x),
u(x, t) → 0, x→ ±∞,

(584)

through the Inverse Scattering (or Spectral) Transform (IST) method, summarized in the following scheme
(see Fig. 36)
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Figure 36: The IST scheme for KdV

6.1.1 Direct problem
It is convenient to write the energy E in terms of the momentun (wave number) k:

E = k2. (585)

If E > 0, then k ∈ R and since u → 0, x → ±∞, for large values of |x|, ψ oscillates like exp(±ikx). It
follows that ψ /∈ L2(R) and the spectrum in continuous (ψ(x, k) does not describes quantum particles, but
diffusion states). In addition, for a given energy E, there are two independent solutions corresponding to
±k (the continuous spectrum is doubly degenerate).

Figure 37: If E > 0, the eigenfunctions of a localized potential oscillate at
x ∼ ±∞.
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We introduce the so-called Jost eigenfunctions

ψ1(x, k) ∼ e−ikx,
ψ2(x, k) ∼ eikx,

}
x ∼ +∞, (586)

φ1(x, k) ∼ e−ikx,
φ2(x, k) ∼ eikx,

}
x ∼ −∞. (587)

and {ψ1(x, k), ψ2(x, k)} and {φ1(x, k), φ2(x, k)} are both good basis in the space of solutions of the
Schrödinger equation.

In addition there are two symmetries
1. since E = k2, k → −k is a symmetry: if ψ(x, k) is a solution of the Schrödinger equation, also ψ(x,−k)
is a solution. It follows that

ψ2(x, k) = ψ1(x,−k), φ2(x, k) = φ1(x,−k), (588)

since ψ2(x, k), ψ1(x,−k) are solutions of the Schrödinger equation with the same asymptotic behavior,
they coincide.
2. since u is real, and k ∈ R, if ψ(x, k) is solution then ψ(x, k). It follows that

ψ2(x, k) = ψ1(x, k), φ2(x, k) = φ1(x, k). (589)

Since the Schrödinger equation is real and ψ2(x, k), ψ1(x, k) are solutions of the Schrödinger equation with
the same asymptotic behavior, they coincide.
3. As a generalization of the symmetry 2, if the eigenfunction can be analytically prolonged off the real

k-axis, then, if ψ(x, k) is solution, then ψ(x, k̄) is also solution.
We can express the four eigenfunctions in terms of only two eigenfunctions: ψ(x, k), φ(x, k):

φ1(x, k) = φ(x, k), φ2(x, k) = φ(x,−k) = φ(x, k),

ψ1(x, k) = ψ(x, k), ψ2(x, k) = ψ(x,−k) = ψ(x, k).
(590)

Writing the φ eigenfunctions in terms of the basis {ψ, ψ̄} we obtain the “scattering equation”

φ(x, k) = a(k)ψ(x, k) + b(k)ψ(x, k), k ∈ R. (591)

In matrix form: (
φ(x, k)

φ(x, k)

)
= S(k)

(
ψ(x, k)

ψ(x, k)

)
,

S(k) =

(
a(k) b(k)

b(k) a(k)

)
,

(592)

where S(k) is the so called scattering matrix.
Using the Wronskian theorem stating that the WronskianW (f1, f2) := f1f2x−f1xf2 of two solutions

of the Schrödinger equation is x independent, it is convenient to evaluate the Wronskian of the Jost
eigenfunctions at ∞:

W (φ, φ̄) = φφ̄x − φxφ̄
∣∣∣
x∼−∞

= e−ikxikeikx − (−ik)e−ikxeikx = 2ik,

W (ψ, ψ̄) = ψψ̄x − ψxψ̄
∣∣∣
x∼∞

= 2ik.
(593)

In addition:

2ik =W (φ, φ̄) =W (aψ + bψ̄, b̄ψ + āψ̄) = (aψ + bψ̄)(b̄ψx + āψx)

−(aψx + bψ̄x)(b̄ψ + āψ̄)
∣∣∣
x∼∞

= (|a|2 − |b|2)W (ψ, ψ̄) = 2ik(|a|2 − |b|2), (594)

from which
|a(k)|2 − |b(k)|2 = 1 (detS(k) = 1), k ∈ R. (595)
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The coefficients of the scattering matrix are related to the well-know reflection and transmission coefficients
as follows

b(k)
a(k)

= R(k) reflection coefficient,
1

a(k)
= T (k) transmission coefficient.

(596)

Indeed
φ(x, k)

a(k)
= ψ(x, k) +

b(k)

a(k)
ψ(x, k), k ∈ R, (597)

φ(x, k)

a(k)
∼
{

e−ikx +R(k)eikx, x ∼ ∞,
T (k)e−ikx, x ∼ −∞ (598)

(see Fig. 38)

Figure 38: Reflected and transmitted waves by a localized potential.

implying that the scattering is unitary:

|T (k)|2 + |R(k)|2 = 1 (599)

(the probability that an incident particle is transmitted plus the probability that an incident particle is
reflected is equal to 1).

Analiticity properties in k. To study the analyticity properties of the eigenfunctions in k, it is nec-
essary to convert the Schrödinger equation + boundary conditions defining them into a single integral
equation.

To do so, we use the following result:
If G(x− y, k) is a Green’s function of the harmonic oscillator:

(
d2

dx2
+ k2

)
G(x− y, k) = δ(x− y), (600)

then the solution ψ(x, k) of the following integral equation

ψ(x, k) = ψ0(x, k) +

∫
R
G(x− y, k)u(y)ψ(y, k)dy (601)

(where ψ0(x, k) is any solution of the harmonic oscillator equation above) is a solution of the Schrödinger
equation (

d2

dx2
− u(x) + k2

)
ψ(x, k) = 0. (602)

(VERIFY IT applying the harmonic oscillator operator to the integral equation).
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We start with the Fourier integral representation of the Green’s function

G(x, k) =

∫
R

dp

2π
Ĝ(p, k)eipx (603)

implying that (
d2

dx2 + k2
)
G(x, k) =

∫
R

dp
2π

(k2 − p2)Ĝ(p, k)eipx

= δ(x) =
∫
R

dp
2π
eipx ⇒ Ĝ(p, k) = (k2 − p2)−1.

(604)

The obtained Green’s function

G(x, k) = −
∫
R

dp

2π

eikx

p2 − k2
, k ∈ R, (605)

has two polar singularities on the real axis that must be avoided to have a finite integral. Let G+(x, k)
and G−(x, k) the two Green’s functions obtained respectively passing below and above both singularities.
Then a simple exercice in contour integration gives

G±(x, k) = ±H(±x)
sin(kx)

k
. (606)

G+ is the so-called retarded (causal) Green’s function, and G− is the so-called advanced (anti-causal)
Green’s function. But since there is no time here, they are both acceptable.

It is easy to verify that the Jost eigenfunctions φ and ψ are constructed using respectively G+ and
G−, and satisfy the following integral equations

φ(x, k) = e−ikx +
x∫

−∞

sin k(x−y)
k

u(y)φ(y, k)dy,

ψ(x, k) = e−ikx −
∞∫
x

sin k(x−y)
k

u(y)ψ(y, k)dy.

(607)

To study the analyticity properties, it is convenient to introduce the functions

µ+(x, k) := φ(x, k)eikx, µ−(x, k) := ψ(x, k)eikx, (608)

satisfying the integral equations

µ+(x, k) = 1 +
x∫

−∞

e2ik(x−y)−1
2ik

u(y)µ+(y, k)dy,

µ−(x, k) = 1−
∞∫
x

e2ik(x−y)−1
2ik

u(y)µ−(y, k)dy.

(609)

We look for the solution of the integral equation for µ+ as a Neumann series

µ+(x, k) = 1 +
∑
k≥1

µj(x, k), (610)

obtaining the iteration formula

µj+1(x, k) =
x∫

−∞
K(x− y, k)u(y)µj(y, k), j ≥ 0,

µ0 = 1, K(x, k) := e2ikx−1
2ik

.

(611)

We first observe that, if Imk > 0, µ1(x, k) =
x∫

−∞
K(x− y, k)u(y)dy is analytic in the upper half k-plane,

therefore µ2(x, k) =
x∫

−∞
K(x − y, k)u(y)µ1(y, k)dy is also analytic in the upper half k-plane; and so on:
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all terms of the Neumann series are analytic for Imk > 0. To extend the analyticity property to the sum
µ+(x, k) of the Neumann series (610) it is necessary to prove its uniform convergence.

We first observe that

|K(x− y, k)| ≤
e−2Imk(x−y) + 1

2|k|
≤

1

|k|
; (612)

therefore

|µj+1(x, k)| ≤
x∫

−∞
|K(x− y, k)||u(y)||µj(y, k)|dy

≤ 1
|k|

x∫
−∞

|u(y)||µj(y, k)|dy.
(613)

Define

A(x) :=

x∫
−∞

|u(y)|dy, (614)

then
|µ1(x, k)| ≤ 1

|k|A(x),

|µ2(x, k)| ≤ 1
|k|

x∫
−∞

|u(y)||µ1(y, k)|dy

≤ 1
|k|2

x∫
−∞

|u(y)|A(y)dy = 1
|k|2

x∫
−∞

(
A2(y)

2

)
y
dy

= 1
2

(
A(x)
|k|

)2
.

(615)

By induction one can show that

|µn(x, k)| ≤
1

n!

(
A(x)

|k|

)n

≤
1

n!

(
∥u∥1
|k|

)n

, (616)

and we conclude that

|µ+(x, k)| ≤ 1 +
∑
n≥1

|µn(x, k)| ≤
∑
n≥0

1
n!

(
∥u∥1
|k|

)n
= exp

(
∥u∥1
|k|

)
,

(617)

proving the total convergence of the Neumann series. The total convergence of (610) for Imk ≥ 0, k ̸= 0,
and u ∈ L1(R) implies that µ+(x, k) is analytic for Imk > 0. Under these conditions, the eigenfunction
φ(x, k) exists unique, and is analytic for Imk > 0. Following the same reasoning, one shows that µ−(x, k)
(and ψ(x, k)) are analytic for Imk < 0.

It is possible to control the singular point k = 0 restricting a bit the properties of u. For k = 0 the
integral equation (609) for µ+ becomes

f(x) = 1 +

x∫
−∞

(x− y)u(y)f(y)dy, f(x) := µ+(x, 0). (618)

Looking again for a solution in the form of Neumann series

f(x) = 1 +
∑
n≥1

fn(x) (619)

we obtain the recursion

fj+1(x) =

x∫
−∞

(x− y)u(y)fj(y)dy, j ≥ 0, (620)

and the inequality

|fj+1(x)| ≤
x∫

−∞

(x− y)|u(y)||fj(y)|dy, j ≥ 0. (621)
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Therefore
|f1(x)| ≤M(x), (622)

where

M(x) :=

x∫
−∞

(x− y)|u(y)|dy. (623)

Analogously:

|f2(x)| ≤
x∫

−∞
(x− y)|u(y)||f1(y)|dy

≤
x∫

−∞
dy(x− y)|u(y)|

y∫
−∞

dy′(y − y′)|u(y′)|

≤
x∫

−∞
dy(x− y)|u(y)|

y∫
−∞

dy′(x− y′)|u(y′)|

= 1
2

x∫
−∞

( y∫
−∞

(x− y′)|u(y′)|dy′
)2


y

dy

= 1
2
M2(x),

(624)

and one can show by induction that

|hj(x)| ≤
1

j!
Mj(x). (625)

Therefore

|f(x)| ≤ 1 +
∑
j≥1

|fj(x)| ≤
∑
j≥0

Mj(x)

j!
= exp (M(x)) , (626)

and the convergence is uniform in any compact of the interval (−∞, a], ∀a ∈ R. It follows that the Jost
eigenfunction is well defined at k = 0 if u(x) ∈ L1

loc(R) and goes to 0 at x → ±∞ faster than 1/x2;
equivalently, if

u ∈ L1
1(R) ⇔

∫
R
(1 + |x|)|u(x)|dx <∞. (627)

The analyticity properties of the scattering coefficients can be found from the Wronskians:

W (φ, ψ̄) =W (aψ + bψ̄, ψ̄) = a(k)W (ψ, ψ̄) = 2ik a(k),
W (ψ,φ) =W (ψ, aψ + bψ̄) = b(k)W (ψ, ψ̄) = 2ik b(k).

(628)

Another useful representation of a(k), b(k) comes from comparing the scattering equation (591) and the
first of the integral equations (607) at x ∼ ∞:

φ(x, k) ∼ a(k)e−ikx + b(k)eikx,

φ(x, k) ∼ e−ikx +
∫
R

eik(x−y)−e−ik(x−y)

2ik
u(y)φ(y, k)dy

= e−ikx
(
1− 1

2ik

∫
R u(y)µ

+(y, k)dy
)
+ eikx 1

2ik

∫
R u(y)µ

+(y, k)e−2ikxdy,

(629)

obtaining
a(k) = 1− 1

2ik

∫
R u(y)µ

+(y, k)dy,

b(k) = 1
2ik

∫
R u(y)µ

+(y, k)e−2ikxdy.
(630)

Since φ(x, k), ψ(x, k) are analytic for Imk > 0, it follows from (628) that a(k) is also analytic for Imk > 0,
with asymptotics (from the first of (630))

a(k) = 1−
1

2ik

∫
R
u(y)dy +O(k−2), |k| ≫ 1. (631)

Since ψ(x, k), φ(x, k) have analyticity in opposite half planes, it follows from (629) that b(k) does not have
analyticity properties, in general, outside the real axis.
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At last, for |k| ≫ 1,

µ+(x, k) = 1 +
∫ x
−∞

e2ik(x−y)−1
2ik

u(y)µ+(y, k)dy

= 1− 1
2ik

∫ x
−∞ u(y)dy +O(k−2),

µ−(x, k) = 1−
∫∞
x

e2ik(x−y)−1
2ik

u(y)µ−(y, k)dy

= 1 + 1
2ik

∫∞
x u(y)dy +O(k−2),

(632)

implying that
µ±(x, k) = 1 +O(k−1), |k| ≫ 1,
u(x) = −2i∂x lim|k|→∞ [k(µ−(x, k)− 1)].

(633)

Dividing the scattering equation (591) by a(k):

φ(x, k)

a(k)
= ψ(x, k) +R(k)ψ(x, k), k ∈ R, (634)

we obtain a form of the scattering equation

µ+(x, k)

a(k)
= µ−(x, k) +R(k)e2ikxµ−(x, k), (635)

separating functions analytic in different half planes: µ+(x, k)/a(k) analytic for Imk > 0, apart from the

zeroes of a(k); µ−(x, k) analytic for Imk < 0, and R(k)e−2ikxµ−(x, k) with no analiticity properties for
Imk ̸= 0.

Discrete spectrum. Normalizable eigenfunctions, cannot oscillate at±∞. It follows, from the Schrödinger
equation ψxx = (u − E)ψ, that u − E > 0 at x ∼ ±∞. Since u → 0 as x → ±∞, then the energy must
be negative: E < 0, implying that k = ip ∈ iR. Then E = −p2, and choosing p > 0, the eigenfunctions
behave at ∞ as follows

ψ ∼
{

cepx, x ∼ −∞,
be−px, x ∼ ∞,

(636)

Usually they are normalized choosing c = 1:

ψ ∼
{

epx, x ∼ −∞,
be−px, x ∼ ∞,

(637)

Therefore ψ ∈ L2(R), and since the the Schrödinger equation is areal equation with real boundary condition
at −∞, then the normalization coefficient is real too: b ∈ R.

From qualitative considerations, for E = −p2 < 0, p > 0, we have, in general, solutions of the form

ψ ∼
{

α(E)epx + β(E)e−px, x ∼ −∞,
γ(E)epx + δ(E)e−px, x ∼ ∞,

(638)

To have a normalizable solution, we choose β(E) = 0, and, optionally, α(E) = 1. Since I cannot fix more
than two integration constants, γ(E) and δ(E) are in general different from zero, and the solution blows
up exponentially at +∞: ψ ∼ γ(E) exp(px) → ∞, at x→ ∞.

Consider a classical potential well u(x) < 0, and let x1 < x2 be the two points at which u(xj) =
E, j = 1, 2 (the inversion points). Then the Schrödinger equation ψxx = (u − E)ψ implies that, for
x ∈ (x1, x2), the concavity of ψ is towards the interior and ψ oscillates; if x /∈ (x1, x2), the concavity of ψ
is towards the exterior and ψ decays or blows exponentially. If E is just above the minimum of the well,
the oscillation is not enough to avoid the divergence at +∞. Increasing E, γ(E) decreases and ψ diverges
more slowly until we reach a value of E, say, E1, for which γ(E1) = 0 and we have the fundamental state.
Since γ(E ̸= 0) in a neighborhood of E1 excluding E1, the spectrum is discrete. Increasing more E, the
curvature ψxx/ψ increases and the number of oscillations increases, until we reach the value E2 for which
γ(E2) = 0 again, and we have the first excited case. And so on (see Fig. 39). The discrete spectrum
{E1, E2, . . . , En} is inside the interval (umin, 0), with

E1 < E2 < · · · < En < 0, p1 > p2 > · · · > pn > 0. (639)
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Figure 39:

Relation between the discrete spectum and the zeroes of a(k). Let k0 be a zero of a(k). Since a
cannot be zero on the real axis, due to the unitary relation (595), and since a(k) is analytic for Imk > 0,
then Imk0 > 0. In addition, from (628), it follows that W (φ(x, k0), ψ̄(x, k0)) = 0, implying that φ(x, k0)
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and ψ(x, k̄0) are linearly dependent:

φ(x, k0) = b0ψ(x, k0) = cψ(x,−k0). (640)

It follows that

φ(x, k0) ∼
{

e−ik0x, x ∼ −∞,
b0eik0x, x ∼ ∞.

(641)

Therefore k0 belongs to the discrete spectrum: E0 = k20 . Since the Schrödinger operator is hermitian,
then E0 ∈ R; then k0 = ip0, and Imk0 > 0 implies that p0 > 0. In addition

φ0(x) := φ(x, ip0) ∼ ep0x, x ∼ −∞. (642)

All this is valid for all zeroes kn = ipn, pn > 0 of a:

φ(x, ipn) = bnψ(x, ipn) = bnψ(x,−ipn), (643)

φn(x) := φ(x, ipn) ∼
{

epnx, x ∼ −∞,
bne−pnx, x ∼ ∞,

(644)

In addition, since the Schrödinger equation is real, and φn(x) is real at −∞, it follows that φn(x) ∈ R;
consequently bn ∈ R.

Its is easy to convince one self that these zeroes are finite: they are zeroes of an analytic function for
Imk > 0, therefore they are isolated for Imk > 0, and they can eventually cluster only at the boundary:
on the real line and at ∞. They cannot cluster on the real line due to the unitary condition |a(k)|2 =
1 + |b(k)|2 > 0, for k ∈ R. They cannot cluster at ∞, since there a(k) ∼ 1.

It is also possible to prove that they are simple zeroes. We start with the Schrödinger equation for
φ(x, k): (

L− k2
)
φ(x, k) = 0, L := −

d2

dx2
+ u(x), Im k > 0, (645)

and we differentiate it with respect to k and evaluate the result at k = ipn:

∂k
((
L− k2

)
φ(x, k)

) ∣∣∣
k=ipn

= (L+ p2n)φk(x, ipn)− 2ipnφn(x) = 0. (646)

Applying the operator ∫
R
dx φn(x)· (647)

to the above equation one obtains∫
R
dxφn(x)(L+ p2n)φk(x, ipn) = 2ipn

∫
R
φ2
n(x)dx. (648)

Integrating by parts twice the left hand side:

−[φn(x)φ′
k(x, ipn)− φ′

n(x)φk(x, ipn)]
∞
−∞

+
∫
R dx

(
(L+ p2n)φn(x)

)
φk(x, ipn) = 2ipn

∫
R φ

2
n(x)dx

(649)

and using (L+ p2n)φn(x) = 0, one obtains

[
φ′
n(x)φk(x, ipn)− φn(x)φ

′
k(x, ipn)

]∞
−∞ = 2ipn

∫
R
φ2
n(x)dx. (650)

To evaluate the LHS we use the asymptotics of φ(x, k):

φ(x, k) ∼
{

e−ikx, x ∼ −∞,
a(k)e−ikx + b(k)eikx, x ∼ ∞,

(651)
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from which one obtains

φk(x, k) ∼
{

−ixe−ikx, x ∼ −∞,
(a′(k)− ixa(k))e−ikx + (b′(k) + ixb(k))eikx, x ∼ ∞,

(652)

and

φk(x, ipn) ∼
{

−ixepnx, x ∼ −∞,
a′(ipn)epnx, x ∼ ∞.

(653)

Substituting these asymptotics in the LHS of (650) we obtain

−2pnbna
′(ipn) = 2ipn

∫
R
φ2
n(x)dx (654)

implying

ibna
′(ipn) =

∫
R
φ2
n(x)dx > 0. (655)

Since the RHS is positive, it follows that ipn is a simple zero of a(k). In addition, since bn is real, it
follows that ia′(ipn) is also real, with the same sign of bn.

6.1.2 Inverse problem
In the inverse problem we reconstruct the potential u(x) from a suitable set of spectral data, and we make
essential use of the analyticity properties of the eigenfunctions. Therefore we begin with the introduction
of the “analyticity projectors” P± defined by

P±f(k) := ±
1

2πi
lim

ϵ→0+

∫
R

f(k′)

k′ − (k ± iϵ)
dk′, k ∈ R. (656)

They map a Holder function 1 f(k), k ∈ R decaying at ∞ sufficiently fast into functions analytic in the
upper and lower halves of the complex k plane respectively, and satisfy the projection properties

P+P− = P−P+ = 0, P+2
= P+, P−2

= P−, P+ + P− = 1. (657)

f±(k) := P±f(k) are indeed analytic in the upper and lower halves of the complex k plane respectively.
For k+iϵ and Imk ≥ 0, f+(k) is well defined and analytic for Imk > 0; analogously, for k−iϵ and Imk ≤ 0,
f−(k) is well defined and analytic for Imk < 0. In addition:

P±f(k) ∼ ∓
1

2iπk

∫
R
f(k′)dk′, |k| ≫ 1. (658)

They also satisfy the following Plemelj-Sokhotsky formulas:

P±f(k) = ±
1

2πi
P

∫
R

f(k′)

k′ − k
dk′ +

1

2
f(k). (659)

To show it quickly, we also assume that f(k) be analytic in a very thin horizontal strip including the real
axis. Then

P±f(k) = ± 1
2πi

limϵ→0+
∫
R

f(k′)
k′−(k±iϵ)

dk′ = ± 1
2πi

limϵ→0+
∫
γ±

f(k′)
k′−k

dk′

= ±P 1
2πi

∫
R

f(k′)
k′−k

dk′ + 1
2
f(k),

(660)

where the contours γ± are shown in Fig. 44.

1A function f(k) in Holder in [a, b] if there exist c > 0 and 0 < µ < 1 such that
|f(k1)− f(k2)| < c|k1 − k2|µ ∀k1, k2 ∈ [a, b].
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Figure 40:

Moreover the properties (765) are satisfied; f.i.:

P+P−f(k) = P+f−(k) =
1

2πi

∫
R

f−(k′)

k′ − (k + iϵ)
dk = 0, (661)

closing the contour downstairs, and using the analyticity properties of f−(k) and the Cauchy theorem;

P+2
f(k) = P+f+(k) =

1

2πi

∫
R

f+(k′)

k′ − (k + iϵ)
dk = f+(k) = P+f(k), (662)

closing the contour upstairs, and using the analyticity properties of f+(k) and the residue theorem. At
last the condition P+ + P− = 1 follows directly from (768).

After these preliminaries, we begin with the scattering equation (635)

µ+(x, k)

a(k)
= µ−(x, k) +R(k)e2ikxµ−(x,−k), k ∈ R, (663)

separating functions analytic in different half planes: µ+(x, k)/a(k) analytic for Imk > 0, apart from
the simple zeroes of a(k); µ−(x, k) analytic for Imk < 0, and R(k)e−2ikxµ−(x,−k) with no analiticity
properties for Imk ̸= 0.

Since
µ+(x,k)

a(k)
is analytic for Imk > 0, apart from a finite number N of simple poles in kn = ipn,

whose residues are
µ+(x,ipn)
a′(ipn)

=
φ(x,ipn)e−pnx

a′(ipn)
= bn

a′(ipn)
ψ(x,−ipn)e−pnx

= bn
a′(ipn)

µ−(x,−ipn)e−2pnx,
(664)

it can be written as

µ+(x, k)

a(k)
= h+(x, k) +

N∑
n=1

bn

a′(ipn)

µ−(x,−ipn)e−2pnx

k − ipn
, (665)

where h+(x, k) is analytic for Imk > 0. Therefore the scattering equation becomes

h+(x, k) +
N∑

n=1

bn
a′(ipn)

µ−(x,−ipn)e−2pnx

k−ipn
= µ−(x, k)

+
(
P+ + P−)R(k)e2ikxµ−(x,−k), k ∈ R,

(666)

having also used the last of properties (765).
Now we separate the functions analytic in the upper half plane from those analytic in the lower half

plane:
h+(x, k)− P+

(
R(k)e−2ikxµ−(x,−k)

)
= µ−(x, k)

−
N∑

n=1

bn
a′(ipn)

µ−(x,−ipn)e−2pnx

k−ipn
+ P− (R(k)e2ikxµ−(x,−k)

)
, k ∈ R. (667)
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On the real axis, we have a function analytic in the upper half plane which is equal to a function analytic
in the lower half plane. Therefore, using the Riemann analytic continuation through the boundary (real
axis) between two domains (the upper and lower half k planes), the function on the LHS is the analytic
continuation of the function on the RHS in the upper half k plane, and viceversa. In this way once defines
an analytic function of k in the whole complex plane (an entire function). Since, due to the asymptotics
(766),(633), the RHS tends to 1 at k ∼ ∞, then the entire function is identically 1, by the first Liouville
theorem. Therefore:

µ−(x, k) = 1 + i
N∑

m=1
βm

µ−(x,−ipm)e−2pmx

k−ipm
+ 1

2πi

∫
R

R(k′)e2ik
′xµ−(x,−k′)

k′−(k−iϵ)
dk′, k ∈ R, (668)

where

βm :=
bm

ia′(ipm)
> 0, m = 1, . . . , N. (669)

This integral equation can be evaluated at k = −ipn, n = 1, . . . , N , obtaining:

µ−(x,−ipn) = 1−
N∑

m=1
βm

µ−(x,−ipm)e−2pmx

pm+pn
+ 1

2πi

∫
R

R(k′)e2ik
′xµ−(x,−k′)

k′+ipn
dk′, n = 1, . . . , N. (670)

Known the spectral data S = {R(k), pn, βn, n = 1, . . . , N}, equations (668) and (670) are a closed
system of N +1 linear equations for the N +1 unknowns µ−(x, k), µ−(x,−ipn), n = 1, . . . , N . Once the
solution µ−(x, k) is constructed from it, the potential u is then reconstructed from (633):

u(x) = ∂x

(
2

N∑
m=1

βmµ
−(x,−ipm)e−2pmx +

1

π

∫
R
R(k)µ−(x,−k)e2ikxdk

)
. (671)

This is the solution of the inverse problem.

6.1.3 Linear time evolution of the spectral data
We recall that the Jost eigenfunction φ evolves according to the equation

φt = (c(k)− ux)φ+ (4k2 + 2u)φx, (672)

with

φ(x, k) ∼
{

e−ikx, x ∼ −∞,
a(k)e−ikx + b(k)eikx, x ∼ ∞.

(673)

Evaluating (672) at x ∼ −∞ one obtains

0 = [c(k) + 4k2(−ik)]e−ikx ⇒ c(k) = 4ik3. (674)

Evaluating (672) at x ∼ ∞:

ate
−ikx + bte

ikx = 4ik3(a(k)e−ikx + b(k)eikx) + 4ik3(−a(k)e−ikx + b(k)eikx), (675)

implying the following elementary time evolution of the scattering coefficients

at = 0, bt = 8ik3b ⇒ a(k, t) = a(k, 0), b(k, t) = b(k, 0)e8ik
3t (676)

and of the reflection coefficient
R(k, t) = R(k, 0)e8ik

3t. (677)

From a(k, t) = a(k, 0) it follows that its zeroes are constant of motion:

pn(t) = pn(0). (678)
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Furthermore for the eigenfunction φn(x) = φ(x, ipn):

φnt ∼ 4p3nφn − 4p2nφnx, φn ∼ bne
−pnx, x ∼ ∞, (679)

implying that bnt = 8p3nbn ⇒ bn(t) = bn(0)e8p
3
nt. From (669) we conclude that

βn(t) = βn(0)e
8p3nt. (680)

Summarizing, the evolution of the spectral data is explicit:

S(t) = {R(k, t) = R(k, 0)e8ik
3t, pn(t) = pn(0), βn(t) = βn(0)e

8p3nt, n = 1, . . . , N}, (681)

and the IST is completed (see Fig. 41).

Figure 41:

6.1.4 Pure continuous spectrum
If the potential u(x) does not support bound states, f.i., if u > 0, or if u is too small to support bound
states, then the inverse problem reduces to

µ−(x, t, k) = 1 + 1
2πi

∫
R

R(k′,0)e2ik
′x+8ik3tµ−(x,t,−k′)
k′−(k−iϵ)

dk′, k ∈ R,

u(x, t) = 1
π
∂x
(∫

RR(k, 0)µ−(x, t,−k)e2ikx+8ik3tdk
)
.

(682)

Therefore the KdV evolution, if the initial condition does not support a discrete spectrum, describes a
nonlinear dispersive wave decaying as 1/

√
t for t≫ 1.

If |u| ≪ 1, then µ− ∼ 1 and

u(x, t) ∼ 1
π

∫
R 2ikR(k, 0)ei(2kx+8k3t)dk = 1

2π

∫
R û(λ)e

i(λx+λ3t)dλ,
û(λ) = iλR(λ/2), λ = 2k.

(683)

Then the spectral trasform reduces to the Fourier transform in the small field limit.
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6.1.5 Pure discrete spectum and solitons
If the potential u(x) is reflectionless; i.e., if R(k) = 0, then the integral equations of the inverse problem
reduce to

µ−(x, t, k) = 1 + i
N∑

m=1

βm(0)e−2pmx+8p3mt

k+ipm
µm(x, t), k ∈ R,

µn(x, t) +
N∑

m=1

βm(0)e−2pmx+8p3mt

pn+pm
µm(x, t) = 1,

µm(x, t) := µ−(x, t,−ipm),

(684)

and

u(x) = 2∂x

(
N∑

m=1

βm(0)e−2pmx+8p3mtµm(x, t)

)
. (685)

Since βn > 0, it is convenient to use the following notation:

βm(0)
2pm

e−2pmx+8p3mt = e−2pmXm ,

Xm := x− 4p2mt− γm,

γm := 1
2pm

ln
(

βm(0)
2pm

)
,

(686)

and equations (684), (685) become

µ−(x, t, k) = 1 + i
N∑

m=1

2pme−2pmXm

k+ipm
µm(x, t), k ∈ R,

µn(x, t) +
N∑

m=1

2pme−2pmXm

pn+pm
µm(x, t) = 1,

u(x, t) = 4∂x

(
N∑

m=1
pme−2pmXmµm(x, t)

)
.

(687)

The second of equations (687) is the linear algebraic system of N equations solving the inverse problem.
It is rewritten in the form

(
1 + e−2pnXn

)
µn(x, t) +

N∑
m = 1
m ̸= n

2pme−2pmXm

pn + pm
µm(x, t) = 1. (688)

6.1.6 The 1-soliton case
If N = 1, the algebraic system (688) reduces to a single equation

(
1 + e−2p1X1

)
µ1(x, t) = 1 ⇒ µ1(x, t) = (1 + e−2p1X1 )−1 (689)

and one obtains the celebrated 1-soliton solution of KdV:

u(x, t) = 4p1∂x
(
e−2p1X1µ1(x, t)

)
= 4p1∂x

(
e−2p1X1

1+e−2p1X1

)
= −2∂2x ln

(
1 + e−2p1X1

)
= − 2p21

cosh2(p1X1)
= − 2p21

cosh2(p1(x−4p21t−γ1))
.

(690)

It is an exponentially localized solution, coming from the exact balance between the dispersion uxxx and
the steepening nonlinearity −6uux, whose velocity and amplitude are directly proportional to p21, and the
localization is directly proportional to p1.
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6.1.7 The 2-soliton case
If N = 2 the algebraic system (688) becomes

(
1 + e−2p1X1

)
µ1 + 2p2

p1+p2
e−2p2X2µ2 = 1,

2p1
p1+p2

e−2p1X1µ1 +
(
1 + e−2p2X2

)
µ2 = 1

(691)

with determinant

∆2 = 1 + e−2p1X1 + e−2p2X2 +

(
p1 − p2

p1 + p2

)2

e−2p1X1−2p2X2 . (692)

Using the Cramer’s rule we solve the system:

µ1(x, t) =
1+

p1−p2
p1+p2

e−2p2X2

∆2
, µ2(x, t) =

1+
p2−p1
p1+p2

e−2p1X1

∆2
, (693)

and we obtain the 2-soliton solution, describing the nonlinear interaction of two solitons:

u(x, t) = 2∂x

(
2p1

(
1+

p1−p2
p1+p2

e−2p2X2
)
e−2p1X1+2p2

(
1+

p2−p1
p1+p2

e−2p1X1
)
e−2p2X2

∆2

)

= 2∂x

(
2p1e

−2p1X1+2p2e
−2p2X2+2

(p1−p2)2

p1+p2
e−2p1X1−2p2X2

∆2

)
= −2∂2x ln∆2.

(694)

It is possible to prove that the N -soliton solution of KdV, describing the nonlinear interaction of N
solitons, can be written in the compact form

u(x, t) = −2∂2x ln∆N , (695)

where ∆N is the determinant of the algebraic system (688).

6.1.8 Elastic soliton interaction and phase shift
Here we use the 2-soliton solution (694) to describe the interaction of two solitons corresponding to the
eigenvalues p1 > p2 > 0. First we travel with soliton 1, i.e: X1 = x−4p21t−γ1 = O(1), or x = 4p21t+const.
Consequently:

−2p2X2 = −2p2(4p21t+ const− 4p22t− γ2)

= −2p2[4(p21 − p22)t+ c′] ∼
{

+∞, t ∼ −∞,
−∞, t ∼ +∞,

(696)

It follows that, at t ∼ −∞:

∆2 ∼ e−2p2X2

(
1 +

(
p1−p2
p1+p2

)2
e−2p1X1

)
= e−2p2X2

(
1 + e−2p1X

−
1

)
,

X−
1 := x− 4p21t− γ1 + δ12, δ12 := 1

p1
ln
(

p1+p2
p1−p2

)
> 0,

(697)

and

u(x, t) = −2∂2x ln∆2 ∼ −2∂2x ln
(
e−2p2X2

(
1 + e−2p1X

−
1

))
= −2∂2x

[
−2p2X2 + ln

(
1 + e−2p1X

−
1

)]
= −2∂2x ln

(
1 + e−2p1X

−
1

)
= − 2p21

cosh2(p1(x−4p21t−γ1+δ12))
, t ∼ −∞.

(698)

At t ∼ +∞, ∆2 ∼ 1 + e−2p1X1 , then

u(x, t) ∼ −2∂2x ln
(
1 + e−2p1X1

)
= −2

p21
cosh2(p1(x− 4p21t− γ1))

, t ∼ ∞. (699)
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Comparing the position x1(t) of the soliton 1 at −∞ and at +∞.

x1(t) ∼
{

4p21t+ γ1 − δ12, t ∼ −∞,
4p21t+ γ1, t ∼ +∞,

(700)

we infer that, due to the nonlinear elastic interaction with the slower soliton 2, the faster soliton 1
experiences a shift forward, given by

∆x1 = x1(∞)− x1(−∞) = δ12 =
1

p1
ln

(
p1 + p2

p1 − p2

)
> 0. (701)

Analogously, moving with soliton 2, it is possible to show that the slower soliton 2 experiences a shift
backward, given by

∆x2 = x2(∞)− x2(−∞) = δ21 = −
1

p2
ln

(
p1 + p2

p1 − p2

)
< 0, (702)

so that the total momentum is conserved (see Fig. 42).

Figure 42:

In the general case of the interaction of N solitons, it is possible to show that the nth soliton
experiences the following phase shift

∆xn =
1

pn

 N∏
j=n+1

ln

∣∣∣∣pn + pj

pn − pj

∣∣∣∣− n−1∏
j=1

ln

∣∣∣∣pn + pj

pn − pj

∣∣∣∣
 (703)

indicating also that the interaction is pairwise.

6.2 The NLS example

The Cauchy problem for localized initial data, for the focusing and defocusing
NLS equations:

iut + uxx + 2σ|u|2u = 0, σ = ±1,
u(x, 0) = u0(x), u(x, t) → 0 for x→ ±∞,
σ = 1 focusing NLS, σ = −1 defocusing NLS,

(704)
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has been solved by Zakharov and Shabat in [43], using the Inverse Spectral
Transform (IST) method, originally discovered by Gardner, Green, Kruskal
and Miura in [16] to solve the Cauchy problem for the Korteweg - de Vries
(KdV) equation. See also the following books [42, 3, 10, 2], in which several
aspects of the method have been discussed in detail.

Lax pair. The NLS equations are the compatibility condition of the fol-
lowing Zakharov-Shabat Lax pair:

ψ
x
(λ, x, t) = X(λ, x, t)ψ(λ, x, t), (705)

ψ
t
(λ, x, t) = T (λ, x, t)ψ(λ, x, t), (706)

where

ψ(λ, x, t) =

(
ψ1(λ, x, t)
ψ2(λ, x, t)

)
,

X(λ, x, t) =

 −iλ iu(x, t)

iσu(x, t) iλ

 = −iλσ3 + iU(x, t),

T (λ, x, t) =

(
−2iλ2 + iσu(x, t)u(x, t) 2iλu(x, t)− ux(x, t)

2iσλu(x, t) + σux(x, t) 2iλ2 − iσu(x, t)u(x, t)

)

= −i(2λ2 − σ|u|2)σ3 + 2iλU − σ3Ux,

σ3 =

(
1 0
0 −1

)
, U =

(
0 u(x, t)

σū(x, t) 0

)
.

(707)

Indeed the integrability condition ψ
xt
= ψ

tx
is equivalent to the matrix equa-

tion
Xt − Tx + [X,T ] = 0, (708)

and the isospectral condition λt = 0, and λx = 0 imply the NLS equations
(704) or, in matrix form:

iUt + σ3
(
Uxx + 2U3

)
= 0. (709)

Xt = iUt, Tx = iσ(|u|2)xσ3 + 2iλUx − σ3Uxx,
[X,T ] = 2λ2[σ3, U ] + iλ[σ3, σ3Ux] + (2λ2 − σ|u|2)[U, σ3]− i[U, σ3U ]
= 2iλUx + σ|u|2[σ3, U ] + iσ(|u|2)xσ3,

(710)

from which (709) follows.
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It might be convenient to write the spectral problem (705) as the eigen-
value problem (multiplying (705) from the left by iσ3):

Lψ = λψ, L := σ3 (i∂x + U(x)) =

(
i∂x u(x)

−σu(x) −i∂x

)
. (711)

Reality symmetry. If ψ(x, t, λ) =

(
ψ1(x, t, λ)
ψ2(x, t, λ)

)
is a solution of the Lax

pair (705),(706),(707), then ψ̃(x, t, λ) =

(
−σψ2(x, t, λ̄)

ψ1(x, t, λ̄)

)
is also a solution

of (705),(706),(707). Proof is left as exercise.

6.2.1 Direct Problem

IST for rapidly decaying potentials. If u(x, t) → 0 as |x| → ∞, then

ψ
x
∼ −iλσ3ψ ⇒ ψ ∼

(
c±1 e

−iλx

c±2 e
iλx

)
, x→ ±∞, λ ∈ R, (712)

for the arbitrary constants c±1 , c
±
2 . Therefore we introduce the Jost solutions

ϕ(1) =

(
ϕ
(1)
1

ϕ
(1)
2

)
, ϕ(2) =

(
ϕ
(2)
1

ϕ
(2)
2

)
, ψ(1) =

(
ψ

(1)
1

ψ
(1)
2

)
, ψ(2) =

(
ψ

(2)
1

ψ
(2)
2

)
(713)

satisfying the following boundary conditions:

ϕ(1) ∼
(
1
0

)
e−iλx, ϕ(2) ∼

(
0
1

)
eiλx, x ∼ −∞,

ψ(1) ∼
(
1
0

)
e−iλx, ψ(2) ∼

(
0
1

)
eiλx, x ∼ ∞.

(714)

Both pairs {ϕ(1), ϕ(2)} and {ψ(1), ψ(2)} are good bases in the space of solutions
of the above Lax pair for decaying potentials, and one can write, for instance,
ϕ(1) and ϕ(2) in terms of the basis {ψ(1), ψ(2)} as follows:

ϕ(1) = S11(λ)ψ
(1) + S21(λ)ψ

(2), λ ∈ R,
ϕ(2) = S12(λ)ψ

(1) + S22(λ)ψ
(2), λ ∈ R,

(715)

or, in matrix form:(
ϕ
(1)
1 ϕ

(2)
1

ϕ
(1)
2 ϕ

(2)
2

)
=

(
ψ

(1)
1 ψ

(2)
1

ψ
(1)
2 ψ

(2)
2

)(
S11(λ) S12(λ)
S21(λ) S22(λ)

)
, λ ∈ R. (716)
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This is the so-called “scattering equation”, and S(λ) =

(
S11(λ) S12(λ)
S21(λ) S22(λ)

)
the scattering matrix. The reason for this terminology comes from observing
that

ϕ(1) ∼
(
1
0

)
e−iλx, x ∼ −∞, ϕ(1) ∼

(
S11(λ)e

−iλx

S21(λ)e
iλx

)
, x ∼ ∞, (717)

implying that

1
S11(λ)

ϕ(1) ∼
(
T (λ)e−iλx

0

)
, x ∼ −∞,

1
S11(λ)

ϕ(1) ∼
(

e−iλx

R(λ)eiλx

)
, x ∼ ∞,

(718)

where

T (λ) =
1

S11(λ)
, R(λ) =

S21(λ)

S11(λ)
(719)

are respectively the transmission and the reflection coefficients (see Figure
43)

Figure 43: Reflected and transmitted waves by a localized potential.

The Wronskian theorem. If Ψ is a fundamental matrix solution (i.e.,
detΨ ̸= 0) of the Lax pair (705),(706),(707), then, from the Jacobi (Abel)
theorem: (detΨ)x = (detΨ)tr (ΨxΨ

−1), it follows that

(detΨ)x = (detΨ)t = 0, (720)

since tr (ΨxΨ
−1) = trX = 0 and tr (ΨtΨ

−1) = trT = 0.
Applying this property to the fundamental matrices constructed from the
above Jost solutions, we obtain the following formulas:

det
(
ϕ(1), ϕ(2)

)
= det

(
ψ(1), ψ(2)

)
= 1,

det
(
ϕ(j), ϕ(j)

)
= det

(
ψ(j), ψ(j)

)
= 0, j = 1, 2,

(721)
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det
(
ϕ(1), ψ(2)

)
= S11(λ), det

(
ϕ(2), ψ(2)

)
= S12(λ),

det
(
ψ(1), ϕ(1)

)
= S21(λ), det

(
ψ(1), ϕ(2)

)
= S22(λ).

(722)

Since (720) holds, one evaluates the determinant asymptotically, where the eigenfunctions are simpler.

For instance, working with ϕ(j), j = 1, 2, we do it at x ∼ −∞: det
(
ϕ(1), ψ(2)

)
= ϕ

(1)
1 ϕ

(2)
2 − ϕ

(1)
2 ϕ

(2)
1 =

e−iλxeiλx = 1.

In addition, since det
(
ϕ(1), ϕ(2)

)
= det

(
ψ(1), ψ(2)

)
= 1, it follows from

(716) that we have the unimodularity condition:

detS(λ) = S11(λ)S22(λ)− S12(λ)S21(λ) = 1. (723)

From the above reality symmetry, it follows that

ϕ(2)(x, t, λ) =

(
−σϕ(1)

2 (x, t, λ̄)

ϕ
(1)
1 (x, t, λ̄)

)
, ψ(1)(x, t, λ) =

(
ψ

(2)
2 (x, t, λ̄)

−σψ(2)
1 (x, t, λ̄)

)
, (724)

and, consequently,

S22(λ) = S11(λ̄), S12(λ) = −σS21(λ̄). (725)

Then the scattering equations (716) can be rewritten as(
ϕ
(1)
1 ϕ

(2)
1

ϕ
(1)
2 ϕ

(1)
2

)
=

(
ψ

(1)
1 ψ

(2)
1

ψ
(1)
2 ψ

(1)
2

)(
S11(λ) −σS21(λ)

S21(λ) S11(λ)

)
, λ ∈ R. (726)

and the unimodularity condition (723) becomes

|S11(λ)|2 + σ|S21(λ)|2 = 1, λ ∈ R. (727)

Let us concentrate now on the vector solution ϕ(1)(x, λ). The spectral
problem (705) together with the boundary condition (752) are equivalent to
the following Volterra integral equation

µ+
1 (x, λ) = 1 + i

x∫
−∞

u(y)µ+
2 (y, λ)dy,

µ+
2 (x, λ) = iσ

x∫
−∞

ū(y)µ+
1 (y, λ)e

2iλ(x−y)dy,
(728)

where

µ+ =

(
µ+
1

µ+
2

)
= ϕ(1)eiλx ∼

(
1
0

)
, x ∼ −∞. (729)

Prove it as an exercise.
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Replacing the second equation into the first, one obtains the following
integral equation for the field µ+

1 :

µ+
1 (x, λ) = 1− σ

x∫
−∞

dy u(y)

y∫
−∞

dz ū(z)e2iλ(y−z)µ+
1 (z, λ). (730)

We observe that the integral equation (730) is well defined also for Imλ > 0
(since y − z > 0, e2iλ(y−z) decays exponentially at ∞ if Imλ > 0). To prove
the existence of the solution of (730) we expand µ+

1 in the Neumann series

µ+
1 (x, λ) =

∑
j≥0

µj(x, λ), µ0(x, λ) = 1, (731)

implying the recursion relation

µj+1(x, λ) = −σ
x∫

−∞

dy u(y)

y∫
−∞

dz ū(z)e2iλ(y−z)µj(z, λ), j ≥ 0. (732)

Consequently we have the inequality:

|µj+1(x, λ)| ≤
x∫

−∞

dy |u(y)|
y∫

−∞

dz|u(z)||µj(z, λ)|, j ≥ 0, Imλ ≥ 0, (733)

since |e2iλ(y−z)| ≤ 1 for Imλ ≥ 0.
For j = 0:

|µ1(x, λ)| ≤
x∫

−∞
dy|u(y)|

y∫
−∞

dz|u(z)| = 1
2

x∫
−∞

dy

((
y∫

−∞
dz|u(z)|

)2
)
y

= 1
2
U2(x) ≤ 1

2
∥u∥21,

U(x) :=
x∫

−∞
dy|u(y)|, ∥u∥1 :=

∫
R |u(y)|dy.

(734)

For j = 1:

|µ2(x, λ)| ≤
x∫

−∞
dy|u(y)|

y∫
−∞

dz|u(z)||µ1(z, λ)|

≤ 1
2

x∫
−∞

dy|u(y)|
y∫

−∞
dz|u(z)|U2(z) = 1

4!
U4(z).

(735)

Iterating this procedure, one can prove by induction that

|µn(x, λ)| ≤
(U(x))2n

(2n)!
, n ≥ 1, (736)
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implying that

|µ+
1 (x, λ)| ≤

∑
n≥0

(U(x))2n

(2n)!
= cosh (U(x)) ≤ cosh (∥u∥1) . (737)

Then the Neumann series is totally (absolutely and uniformely) conver-
gent if u(x) ∈ L1(R), i.e., if

∫
R |u(y)|dy < ∞. In addition, since all terms of

the series are analytic for Im λ ≥ 0, the uniform convergence implies that
the sum µ+

1 (x, λ) be analytic for Im λ ≥ 0. Similar considerations imply
that
i) the functions

µ− := ϕ(2)e−iλx, ν− := ψ(1)eiλx, ν+ := ψ(2)e−iλx, (738)

satisfy respectively the integral equations

µ−
1 (x, λ) = i

x∫
−∞

u(y)µ−
2 (y, λ)e

2iλ(y−x)dy,

µ−
2 (x, λ) = 1 + iσ

x∫
−∞

ū(y)µ−
1 (y, λ)dy,

(739)

ν−1 (x, λ) = 1− i
∞∫
x

u(y)ν−2 (y, λ)dy,

ν−2 (x, λ) = −iσ
∞∫
x

ū(y)ν−1 (y, λ)e
2iλ(x−y)dy,

(740)

ν+1 (x, λ) = −i
∞∫
x

u(y)ν+2 (y, λ)e
−2iλ(x−y)dy,

ν+2 (x, λ) = 1− iσ
∞∫
x

ū(y)ν+1 (y, λ)dy,
(741)

ii) µ−, ν− are analytic for Imλ ≤ 0, and ν+ is analytic for Imλ ≥ 0. Then
the wronskian relations (722) imply that S11(λ) and S22(λ) are analytic re-
spectively for Imλ ≥ 0 and for Imλ ≤ 0. The functions S12(λ) and S21(λ)
do not have analyticity properties off the real axis, unless the potential u(x)
is exponentially localized. Verify it!

Using integration by parts one can show that the large λ limit of the
Volterra integral equations (740) and (728) yields

ν−1 (x, λ) = 1 + iσ
2λ

∞∫
x

|u(y)|2dy +O(λ−2),

ν−2 (x, λ) = − σ
2λ
u(x) +O(λ−2),

µ+
1 (x, λ) = 1− iσ

2λ

x∫
−∞

|u(y)|2dy +O(λ−2),

µ+
2 (x, λ) = − σ

2λ
u(x) +O(λ−2),

(742)
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implying that u and |u|2 can be written in terms of the eigenfuntion as follows
(show it):

u(x, t) = −2σ limλ→∞
(
λν−2 (x, t, λ)

)
= −2σ limλ→∞

(
λµ+

2 (x, t, λ)
)
,

|u(x, t)|2 = 2iσ limλ→∞
(
λν−1 x(x, t, λ)

)
= 2iσ limλ→∞

(
λµ+

1 x(x, t, λ)
)
.
(743)

In addition, since µ+
1 → S11 and µ+

2 → S21e
2iλx for x → ∞ (see (717)),

the x → ∞ limit of (728) yields the following integral representation of the
scattering data:

S11(λ) = 1 + i

∫
R
u(y)µ+

2 (y, λ)dy, S21(λ) = iσ

∫
R
ū(y)µ+

1 (y, λ)e
−2iλydy.

(744)
Evaluating equations (744) for large λ, and using (742), we obtain

S11(λ) = 1− iσ

2λ

∫
R
|u(y)|2dy+O(λ−2), S21(λ) = iσ

∫
R
ū(y)e−2iλydy(1+O(λ−1)

(745)
and, consequently

∥u∥22 =
∫
R
|u(y)|2dy = 2iσ lim

λ→∞
(λ (S11(λ)− 1)) . (746)

At last, the reality symmetry (724) for the analytic eigenfunctions reads

ν+1 (λ) = −σν−2 (λ̄), ν+2 (λ) = ν−1 (λ̄). (747)

6.2.2 Bound states

Since the spectral problem ψ
x
= Xψ can be rewritten as the eigenvalue

problem

Lψ = λψ, L := σ3 (i∂x + U(x)) =

(
i∂x u(x)

−σu(x) −i∂x

)
, (748)

we observe that the operator L is self-adjoint in the defocusing (σ = −1)
case, with respect to the scalar product

(a, b) :=

∫
R

(
a1(x)b1(x) + a2(x)b2(x)

)
dx, a =

(
a1(x)
a2(x)

)
, b =

(
b1(x)
b2(x)

)
,

(749)
Indeed, if σ = −1,

(a,Lb) =
∫
R [a1 (ib1x + ub2) + a2 (−ib2x + ūb1)] dx

=
∫
R

[(
ia1x + ua2

)
b1 +

(
−ia2x + ūa1

)
b2
]
dx

=
∫
R

[(
(La)1

)
b1 +

(
(La)2

)
b2

]
dx = (La, b).

(750)
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It follows that, in the defocusing case, the spectrum is real. Since for real λ
the eigenfunctions behave as monochromatic waves at x ∼ ±∞, they cannot
belong to L2(R); it follows that, in the defocusing NLS case, the discrete
spectrum in absent. Discrete spectrum is generically present in the focusing
case (σ = 1).

We first recall that S11(λ) is analytic for Imλ ≥ 0. If λj, Imλj > 0 is a
zero of S11(λ) (then it will be an isolated zero): S11(λj) = 0, it follows from

(722) that the Jost solutions ϕ(1) and ψ(2) are proportional at λj:

ϕ(1)(x, λj) = bjψ
(2)(x, λj) ⇒ µ+(x, λj) = bj ν

+(x, λj)e
2iλjx. (751)

Since ϕ(1) and ψ(2) are analytic for Imλ > 0, and

ϕ(1) ∼
(
1
0

)
e−iλx, x ∼ −∞; ψ(2) ∼

(
0
1

)
eiλx, x ∼ ∞, λ ∈ R, (752)

it follows that ϕ(1)(x, λj) decays exponentially at x→ ±∞:

ϕ(1)(x, λj) ∼


(
1
0

)
e−iλjx, x ∼ −∞,

bj

(
0
1

)
eiλjx, x ∼ ∞,

(753)

and λj belongs to the discrete spectrum of the operator L. One can also
prove the reverse: if λj, Imλj > 0 is a discrete eigenvalue of the operator L,
then λj is a zero of S11(λ). The reality symmetry implies that λ̄j is a zero of
S22(λ), and belongs to the discrete spectrum as well.

Summarizing, viewing the initial condition u0(x) = u(x, 0) of the NLS
Cauchy problem as the potential of the spectral problem, the direct spec-
tral problem consists of constructing from u0(x) the following spectral data.
i) The scattering data S11(λ), S21(λ), associated with the continuous spec-
trum, given by the real line λ ∈ R, and, only in the focusing NLS case,
the discrete spectrum data λj, bj, j = 1, . . . , N , Imλj > 0, corresponding to
exponentially decaying eigenfunctions. Since S11(λ) is analytic for Imλ > 0,
its zeroes can cluster only for λ ∼ ∞ and/or Imλ → 0. But S11(λ) → 1 for
λ→ ∞ in the upper half plane, and |S11(λ)|2 + σ|S21(λ)|2 = 1, λ ∈ R; then
S11 cannot be zero for λ ∼ ∞ and for λ ∈ R, its zeroes cannot have cluster
points and N is finite.

Can one give a condition on the initial datum u0(x) for not having discrete
spectrum in the focusing case? To do it we go back to (730) with σ = 1,
inferring that

|µ1(x, λ)− 1| ≤
x∫

−∞

dy |u(y)|
y∫

−∞

dz|u(z)||µ1(z, λ)|, Imλ > 0. (754)
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Using again the Neumann series representation (731) of µ1 and the inequal-
ities (736) we infer that

|µ1(x, λ)− 1| ≤
x∫

−∞
dy |u(y)|

y∫
−∞

dz|u(z)|

(
1 +

∑
j≥1

|µj(z, λ)|

)

≤
x∫

−∞
dy |u(y)|

y∫
−∞

dz|u(z)|

(
1 +

∑
j≥1

U2j(z)
(2j)!

)
=
∑
j≥1

(U(x))2j

(2j)!

= cosh(U(x))− 1 ≤ cosh (∥u∥1)− 1, Imλ > 0.

(755)

Recalling that µ1(x, λ) → S11(λ) as x→ ∞, for Imλ ≥ 0, it follows that

|S11(λ)− 1| ≤ cosh(∥u∥1)− 1, Imλ > 0. (756)

If the norm 1 of the initial datum is sufficiently small:

cosh(∥u∥1) < 2, (757)

then cosh(∥u∥1)− 1 < 1 and

|S11(λ)− 1| < 1, Imλ > 0, (758)

incompatible with the existence of discrete spectrum (the existence of discrete
spectrum would imply the nonsense 1 < 1). The condition (757) is equivalent
to

∥u∥1 < cosh−1(2) = log
(
2 +

√
3
)
∼ 1.317, (759)

where cosh−1(·) is here the positive branch.

6.2.3 Time evolution of the spectral data

Now we show that the time evolution of the spectral data is very simple, thus
justifying the effort made to go to spectral space. We first observe that the
compatibility condition (708) is not affected by the change T → T + c(λ, t)I,
where I is the 2× 2 identity matrix and c is any parameter such that cx = 0.
Therefore equation (706) at |x| → ∞ reads

ψ
t
∼
(
−2iλ2 + c 0

0 2iλ2 + c

)
ψ. (760)

For the eigenfunction ϕ(1), satisfying ϕ(1) ∼
(
e−iλx

0

)
, x ∼ −∞, and ϕ(1) ∼(

S11(λ)e
−iλx

S21(λ)e
iλx

)
, x ∼ +∞, we have at x ∼ −∞ the condition (−2iλ2 +
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c)e−iλx = 0, implying c = 2iλ2. At x ∼ ∞ we have(
S11t(λ)e

−iλx

S21t(λ)e
iλx

)
=

(
0 0
0 4iλ2

)(
S11(λ)e

−iλx

S21(λ)e
iλx

)
, (761)

implying the equations S11t = 0 and S21t = 4iλ2S21. Therefore

S11(λ, t) = S11(λ, 0), S21(λ, t) = S21(λ, 0)e
4iλ2t ⇒ R(λ, t) = R(λ, 0)e4iλ

2t.
(762)

Since S11 does not evolve in time, then its zeroes are also independent of time:
λn(t) = λn(0), n = 1, . . . , N . In addition, we observe that, for the potentials
u such that u(x) exp(Im(λj)|x|) → 0, j = 1, . . . , N , as |x| → ∞, S21 can be
analytically extended in a strip of the upper half λ plane containing all the
eigenvalues, and S21(λj) = bj, j = 1, . . . , N ; consequently bn(t) = bn(0)e

4iλ2nt.
Summarizing, the t-evolution of the discrete spectrum is

λn(t) = λn(0), bn(t) = bn(0)e
4iλ2nt, n = 1, . . . , N. (763)

6.2.4 Inverse problem

In the inverse problem we reconstruct the potential u(x) from a suitable set
of spectral data, and we make essential use of the analyticity properties of the
eigenfunctions. Therefore we begin with the introduction of the “analyticity
projectors” P± defined by

P±f(λ) := ± 1

2πi
lim
ϵ→0+

∫
R

f(λ′)

λ′ − (λ± iϵ)
dλ′, λ ∈ R. (764)

They map a Holder function2 f(λ), λ ∈ R decaying at ∞ sufficiently fast
into functions analytic in the upper and lower halves of the complex λ plane
respectively, and satisfy the projection properties

P+P− = P−P+ = 0, P+2
= P+, P−2

= P−, P+ + P− = 1. (765)

f±(λ) := P±f(λ) are indeed analytic in the upper and lower halves of the
complex λ plane respectively: for λ + iϵ and Imλ > 0, f+(λ) is well defined
and analytic for Imλ > 0; analogously, for λ− iϵ and Imλ < 0, f−(λ) is well
defined and analytic for Imλ < 0. In addition:

P±f(λ) ∼ ∓ 1

2iπλ

∫
R
f(λ′)dλ′, |λ| ≫ 1. (766)

2A function f(λ) in Holder in [a, b] if there exist c > 0 and 0 < µ < 1 such that
|f(λ1)− f(λ2)| < c|λ1 − λ2|µ ∀λ1, λ2 ∈ [a, b].
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They also satisfy the following Plemelj-Sokhotsky formulas:

P±f(λ) = ± 1

2πi
PV

∫
R

f(λ′)

λ′ − λ
dλ′ +

1

2
f(λ), (767)

where PV
∫
is the principal value integral. To show it quickly, we also assume

that f(λ) be analytic in a very thin horizontal strip including the real λ axis.
Then

P±f(λ) = ± 1
2πi

limϵ→0+
∫
R

f(λ′)
λ′−(λ±iϵ)dλ

′ = ± 1
2πi

limϵ→0+
∫
γ±

f(λ′)
λ′−λdλ

′

= ± 1
2πi
PV

∫
R
f(λ′)
λ′−λdλ

′ + 1
2
f(λ),

(768)

where the contours γ± are shown in Fig. 44.

Figure 44:

Moreover the properties (765) are satisfied; f.i.:

P+P−f(λ) = P+f−(λ) =
1

2πi

∫
R

f−(λ′)

λ′ − (λ+ iϵ)
dλ = 0, (769)

closing the contour downstairs, and using the analyticity properties of f−(k)
and the Cauchy theorem;

P+2
f(λ) = P+f+(λ) =

1

2πi

∫
R

f+(λ′)

λ′ − (λ+ iϵ)
dλ = f+(λ) = P+f(λ), (770)

closing the contour upstairs, and using the analyticity properties of f+(λ)
and the residue theorem. At last the condition P++P− = 1 follows directly
from (768).

After these preliminaries, we begin with the scattering equation
ϕ(1) = S11(λ)ψ

(1) + S21(λ)ψ
(2) rewritten as follows

µ+(x, λ)

S11(λ)
= ν−(x, λ) +R(λ)ν+(x, λ)e2iλx, λ ∈ R. (771)
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In (771):

i)
µ+(x,λ)

S11(λ)
is analytic for Imλ > 0, up to the finite number N of poles λj, j =

1, . . . , N , the zeroes of S11(λ) (present only in the focusing case σ = 1), that
we assume to be simple; this is generically true, and the case, for instance, of
a double pole, can be obtained through the coalescence of two simple poles.
Then

µ+(x, λ)

S11(λ)
= φ+(x, λ) +

1 + σ

2

N∑
j=1

µ+(x, λj)

S ′
11(λj)(λ− λj)

, (772)

where φ+(x, λ) is analytic for Imλ > 0 and tends to

(
1
0

)
for λ→ ∞.

ii) ν−(x, λ) is analytic for Imλ < 0 and tends to

(
1
0

)
for λ→ ∞.

iii) the last term is, in general, analytic nowhere.
Introducing in front of this last term the identity operator P+ +P− = 1,

moving to the left all the functions analytic for Imλ > 0, moving to the right

all the functions analytic for Imλ < 0, and subtracting the vector

(
1
0

)
from

both sides, we obtain

φ+(x, λ)−
(
1
0

)
− P+Rν+e2iλx = ν− −

(
1
0

)
+ P−Rν+e2iλx

−1+σ
2

N∑
j=1

µ+(x,λj)

S′
11(λj)(λ−λj)

, λ ∈ R.
(773)

The LHS, analytic for Imλ > 0, is equal, for λ ∈ R, to the RHS, analytic for
Imλ < 0; therefore the LHS is the analytic continuation of the RHS to the
upper half plane, and viceversa. In addition, the LHS and the RHS tend to
0 as λ→ ∞. From the Liouville theorem, it follows that they are 0:

ν−(x, λ) =

(
1
0

)
+ 1

2πi

∫
R
R(λ′)ν+(x,λ′)e2iλ

′x

λ′−(λ−iϵ) dλ′ + 1+σ
2

N∑
j=1

µ+(x,λj)

S′
11(λj)(λ−λj)

,

φ+(x, λ) =

(
1
0

)
+ 1

2πi

∫
R
R(λ′)ν+(x,λ′)e2iλ

′x

λ′−(λ+iϵ)
dλ′.

(774)

Concentrating on the first of these two equations, we observe that it can
be written as an equation for the eigenfunction ν− only, using the reality

symmetry ν+1 (λ) = −σν−2 (λ̄), ν+2 (λ) = ν−1 (λ̄) and the bound state condition
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µ+(x, λj) = bj ν
+(x, λj)e

2iλjx:(
ν−1 (x, t, λ)
ν−2 (x, t, λ)

)
=

(
1
0

)
+ 1

2πi

∫
R
R(λ′,t)e2iλ

′x

λ′−(λ−iϵ)

(
−σν−2 (x, t, λ′)
ν−1 (x, t, λ

′)

)
dλ′

+1+σ
2

N∑
j=1

cj(t)e
2iλjx

λ−λj

(
−ν−2 (x, t, λ̄j)
ν−1 (x, t, λ̄j)

)
,

(775)

where

cj(t) :=
bj(t)

S ′
11(λj)

=
bj(0)e

4iλ2j t

S ′
11(λj)

= cj(0)e
4iλ2j t. (776)

To close the system (775), we evaluate these equations at λ̄n, n = 1, . . . , N :(
ν−1 (x, t, λ̄n)
ν−2 (x, t, λ̄n)

)
=

(
1
0

)
+ 1

2πi

∫
R
R(λ′,t)e2iλ

′x

λ′−λ̄n

(
−σν−2 (x, t, λ′)
ν−1 (x, t, λ

′)

)
dλ′

+1+σ
2

N∑
j=1

cj(t)e
2iλjx

λ̄n−λj

(
−ν−2 (x, t, λ̄j)
ν−1 (x, t, λ̄j)

)
, n = 1, . . . , N.

(777)

We have established the following result. Knowing the spectral data

S(t) = {R(λ, t) = R(λ, 0)e4iλ
2t, λ ∈ R, λn(t) = λn(0),

cn(t) = cn(0)e
4iλ2nt, n = 1, . . . , N}, (778)

equations (775),(777) are a closed system of 2(N+1) linear equations for the
vector eigenfunction ν−(x, λ) and for the vector eigenfunctions ν−(x, λ̄n), n =
1, . . . , N . Then they are the main equations of the inverse problem. To com-
plete the inverse problem, we use equations (779):

u(x, t) = −2σ limλ→∞
(
λν−2 (x, t, λ)

)
= −2σ limλ→∞

(
λµ+

2 (x, t, λ)
)
,

|u(x, t)|2 = 2iσ limλ→∞
(
λν−1 x(x, t, λ)

)
= 2iσ limλ→∞

(
λµ+

1 x(x, t, λ)
)
.
(779)

to reconstruct the potential from the data (778) as follows

u(x, t) = σ
iπ

∫
RR(λ, t)e

2iλxν−1 (x, t, λ)dλ− (1 + σ)
N∑
j=1

cj(t)e
2iλjxν−1 (x, t, λ̄j),

|u(x, t)|2 = ∂x

(
1
π

∫
RR(λ, t)e

2iλxν−2 (x, t, λ)dλ− i(1 + σ)
N∑
j=1

cj(t)e
2iλjxν−2 (x, t, λ̄j)

)
.

(780)
We first observe that the NLS solution (780) is the sum of two terms

u(x, t) = urad(x, t) + usol(x, t); (781)
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urad(x, t) is associated with the continuous spectrum and usol(x, t) is associ-
ated with the discrete spectrum. We also observe that, if the initial datum is
small: |u(x, 0)| ≪ 1, then ν− ∼ 1, and urad reduces to the Fourier transform
representation of the linear theory (verify it):

urad(x, t) ∼ 1
2π

∫
R û(k, 0)e

i(kx−k2t)dk,

û(k, 0) = iσR
(
−k

2
, 0
)
.

(782)

Then one verifies, through the stationary phase method, that the solution
exhibits the following longtime behavior

urad(x, t) ∼ 1√
t
A
(
x
t

)
ei

x2

4t , t≫ 1, ξ = x
t
= O(1),

A (ξ) = e−i π4

2
√
π
û(ξ/2, 0).

(783)

If the initial datum is not small, but no solitons are present, the above formula
generalizes as follows

urad(x, t) =
1√
t
R(x, t)e

i
(

x2

4t
+2ηR2

0(x
t ) log t+O(1)

)
, t≫ 1, x

t
= O(1),

R(x, t) = R0

(
x
t

)
+O

(
log t
t

)
,

(784)

where the real amplitude R0

(
x
t

)
can be expressed in terms of the initial data

through the IST (verify (784) by direct substitution).
The amplitude R0

(
x
t

)
is slowly varying, since

(R0(x/t))x =
R′

0(ξ)

t
≪ 1, t≫ 1, ξ = x

t
= O(1),

(R0(x/t))t = − ξR′
0(ξ)

t
≪ 1,

(785)

then the solution describes a slowly varying amplitude modulation of the

carrier wave exp
(
i
(
x2

4t
+ 2ηR2

0

(
x
t

)
log t+O(1)

))
, decaying to zero as 1/

√
t

(see Figure 45), as t grows. Then

u(x, t) → usol(x, t), t→ ∞. (786)

Therefore the longtime behavior of the solution of the Cauchy problem is
described by the discrete part of the spectrum, and now we concentrate on
it.
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Figure 45: The graphs of the analytic formula describing the asymptotics of
the real part of the solution for a gaussian initial condition at t = 10.

6.2.5 The N soliton solution

We concentrate on the focusing case σ = 1 and assume that the initial
condition u0(x) be a reflectionless potential, such that R(λ, 0) = 0. Then the
inverse equations reduce to the algebraic system(

ν−1 (x, t, λ̄n)
ν−2 (x, t, λ̄n)

)
=

(
1
0

)
+

N∑
j=1

cj(t)e
2iλjx

λ̄n−λj

(
−ν−2 (x, t, λ̄j)
ν−1 (x, t, λ̄j)

)
. (787)

Known its solution by Cramer’s rule, then u and |u|2 are reconstructed, using
(743), as follows

u(x, t) = −2
N∑
n=1

cn(t)e
−2iλ̄nxν−1 (x, t, λ̄n),

|u(x, t)|2 = −2i∂x

( N∑
j=1

cj(t)e
2iλjxν−2 (x, t, λ̄j)

)
.

(788)

To construct u, we rewrite (787) for νn(x, t) := ν−1 (x, t, λ̄n):

νn(x, t) +
N∑
l=1

Dnl(x, t)νl(x, t) = 1,

Dnl(x, t) :=
N∑
k=1

ck(0)cl(0)e
2i(λk−λ̄l)x+4i(λ2k−λ̄2l )t

(λ̄n−λk)(λk−λ̄l)

(789)

and

u(x, t) = −2
N∑
n=1

cn(0)e
−2iλ̄nx−4iλ̄2ntνn(x, t). (790)
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To construct directly |u|2, we rewrite (787) for χn(x, t) := ν−2 (x, t, λ̄n):

χn(x, t) +
N∑
l=1

Cnl(x, t)χl(x, t) = wn(x, t), n = 1, . . . , N,

Cnl(x, t) = Dnl(x, t), wn(x, t) =
N∑
k=1

c̄k(0)e
−2iλ̄kx−4iλ̄2kt

λn−λ̄k
.

(791)

Remarkably, |u|2 can be written in the compact form

|u(x, t)|2 = ∂2x log (detA) , A = I + C = I +D, (792)

entirely in terms of detA.
To prove (792), we proceed as follows. By Cramer’s rule, the solution of (791) reads

χn =
1

detA

N∑
k=1

(−1)k+nwkMkn(A), n = 1, . . . , N, A = I + C, (793)

where Mkn(A) is the determinant minor of matrix A, obtained from A eliminating the kth row and the
nth column. On the other hand, from the Jacobi formula:

(detA)x = tr (AxAdj(A)) = −2i

N∑
n,m,k=1

(−1)n+m ck(t)cm(t)e2i(λm−λ̄k)x

λn − λ̄k
Mnm(A). (794)

Then the second of equations (788) leads to

|u|2 = −2i∂x
(

1
detA

N∑
n,m,k=1

(−1)n+m ck(t)cm(t)e2i(λm−λ̄k)x

λn−λ̄k
Mnm(A)

)
= ∂x

(
(detA)x
detA

)
= ∂2x (log (detA)) .

(795)

We recall that the eigenvalues λk lie in the upper half plane:

λk = ξk + iηk, ξk, ηk ∈ R, ηk > 0, k = 1, . . . , N ; (796)

it is convenient to introduce the real parameters

xk =
1

2ηk
log

(
|ck(0)|
2ηk

)
, φk = arg(ck(0)), (797)

and the quantities

Xk = 2ηk(x−xk+4ξkt), Yk = 2ξkx+4(ξ2k−η2k)t+φk, k = 1, . . . , N, (798)

so that D and u are rewritten as

Dnm = 4
N∑
k=1

ηkηme
−(Xk+Xm)+i(Yk−Ym)

[ξn − ξk − i(ηn + ηk)][ξk − ξm + i(ηk + ηm)]
. (799)
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and

u(x, t) = −4
N∑
n=1

ηne
−Xn−iYn−iφnνn. (800)

If N = 1, one obtains the 1-soliton solution of focusing NLS (also called
the bright soliton):

D11 = e−2X1 ⇒ ν1 =
(
1 + e−2X1

)−1
,

u1(x, t) = −4η1e
−X1−iY1ν1 = − (2η1)e

−2i[ξ1x+2(ξ21−η21)t]−iφ1

cosh[2η1(x−x1+4ξ1t)]
.

(801)

It describes the amplitude modulation of a monochromatic wave (the car-
rier wave), whose envelope is exponentially localized, with amplitude and
localization 2η1, traveling with speed −4ξ1; the carrier wave travels with the

independent speed 2
η21−ξ21
ξ1

. If ξ1 = 0, the soliton is stationary (see Figure 46).

Figure 46: Plots of |u1(x, t)| in yellow, and of Re(u1(x, t)) in blue, for ξ1 =
−2, η1 = 0.5, x1 = φ1 = 0.

Equation (792) gives directly

|u1(x, t)|2 = ∂2x log
(
1 + e−2X1

)
=

4η21
cosh2[2η1(x− x1 + 4ξ1t)]

. (802)

Now we investigate the elastic interaction of two solitons choosing N = 2,
and concentrating directly on (792). Then the components of the 2×2 matrix

138



A = I +D are

A11 = 1 + e−2X1 − 4η1η2e−(X1+X2)+i(Y1−Y2)

(λ1−λ̄2)2
,

A12 =
4η1η2e−(X1+X2)−i(Y1−Y2)

(λ1−λ̄1)(λ̄1−λ2)
+

4η22e
−2X2

(λ1−λ̄2)(λ̄2−λ2)
,

A21 =
4η21e

−2X1

(λ2−λ̄1)(λ̄1−λ1)
+ 4η1η2e−(X1+X2)+i(Y1−Y2)

(λ2−λ̄2)(λ̄2−λ1)
,

A22 = 1 + e−2X2 − 4η1η2e−(X1+X2)−i(Y1−Y2)

(λ2−λ̄1)2
.

(803)

To specify the problem, we consider two solitons traveling with positive
speed: ξ1, ξ2 < 0, and such that soliton 1 is faster than soliton 2: |ξ1| > |ξ2|,
and observe the interaction in the reference frame of soliton 1:

x = −4ξ1t+O(1), |t| ≫ 1. (804)

. Then

X1 = O(1), t±∞,
X2 ∼ 2η2(x+ 4ξ2t+ const) ∼ 2η2(4(|ξ1| − |ξ2|)t+ const) ∼ ±∞, t ∼ ±∞.

(805)
It follows that, when t≫ 1, A11 ∼ 1 + e−2X1 , A12 ∼ 0, A21 ∼ O(1), A22 ∼ 1,
implying that

detA = A11A22 − A12A21 ∼ 1 + e−2X1 , (806)

the same formula as in (802). Therefore

|u2(x, t)|2 ∼ ∂2x log
(
1 + e−2X1

)
=

4η21
cosh2[2η1(x− x1 + 4ξ1t)]

, t ∼ ∞, (807)

and the observer sees at t ∼ ∞ the soliton 1 in the position x1(∞) = x1. If,
instead, t ∼ −∞, then

detA ∼ e−2X2

(
1 +

∣∣∣λ1 − λ2
λ1 − λ̄2

∣∣∣4e−2X1

)
(808)

(verify it!), up to exponentially small corrections.
At this stage it is convenient to introduce the parameter ∆x1 as follows

∆x1 =
1

η1
log
∣∣∣λ1 − λ̄2
λ1 − λ2

∣∣∣. (809)

It is a positive parameter, since∣∣∣λ1 − λ̄2
λ1 − λ2

∣∣∣2 = (η1 + η2)
2 + (ξ1 − ξ2)

2

(η1 − η2)2 + (ξ1 − ξ2)2
> 1. (810)
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Then

detA ∼ e−2X2
(
1 + e−4η1(x−x1(−∞)+4ξ1t)

)
, x1(−∞) = x1 −∆x1. (811)

Therefore (792) gives

|u2(x, t)|2 = ∂2x log(detA) ∼ ∂2x
(
−2X2 + log

(
1 + e−4η1(x−x1(−∞)+4ξ1t)

))
= ∂2x

(
log
(
1 + e−4η1(x−x1(−∞)+4ξ1t)

))
=

4η21
cosh2[2η1(x−x1(−∞)+4ξ1t)]

.

(812)
Also at t ∼ −∞ the observer sees soliton 1, but now in the position x1(−∞),
with a global positive phase shift:

x1(∞)− x1(−∞) = x1 − (x1 −∆x1) = ∆x1 > 0. (813)

Therefore the fastest soliton 1 experiences a forward shift; analogously
one could show that soliton 2 has a backward shift (verify it !) (see Fig. 47)

∆x2 = − 1

η2
log
∣∣∣λ1 − λ̄2
λ1 − λ2

∣∣∣ < 0, (814)

with the conservation of the momentum:

η1∆x1 + η2∆x2 = 0. (815)

Figure 47: The evolution in space-time of the 2 soliton solution from two
different perspectives (the second is the view from above) describing the
interaction of 2 bright solitons with ξ1 = −0.4, η1 = 1, x1 = 1, φ1 = 0, ξ2 =
−0.1, η2 = 1.5, x2 = 0, φ2 = 0. Soliton 1 has amplitude 2 and speed 1.6, while
soliton 2 has amplitude 3 and speed 0.4. Therefore soliton 1 is smaller than
soliton 2, but four times faster, and overcomes soliton 2 during the dynamics.
The perspective from above shows clearly the elastic interaction with phase
shift.
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In the general case, theN -soliton solution describes the nonlinear pairwise
elastic interaction of N bright solitons traveling with different speeds −4ξk,
k = 1, . . . , N . If |ξ1| > |ξ2| > · · · > |ξN |, then soliton n is pushed forward
in the interaction with the slower solitons (n + 1), . . . , N , and is pushed
backward in the interaction with the faster solitons 1, . . . , n−1, experiencing
the global phase shift

∆xn =
1

ηn

(
log

N∏
k=n+1

∣∣∣λn − λ̄k
λn − λk

∣∣∣− log
n−1∏
k=1

∣∣∣λn − λ̄k
λn − λk

∣∣∣) , (816)

with
N∑
k=1

ηk∆xk = 0. (817)

If ξk = 0, k = 1, . . . , N , the envelopes of the N solitons do not travel and the
N-soliton solution describes a bound state with N − 1 degrees of freedom,
periodic in time, with period

T = LCM{Tij, i, j = 1, . . . , N, i > j},
Tij =

2π
ωi−ωj

, ωk = −4η2k, η1 > η2 > · · · > ηN .
(818)

7 The KdV hierarchy; infinitely many sym-

metries and constants of motion

7.1 The KdV hierarchy
It is possible to use the Lax pair approach to construct the hierarchy of integrable PDEs associated with
the Schrödinger equation ψxx − (u+ λ)ψ = 0 (with λ = −E) as follows.

First we rewrite it in matrix form (with λ = −E):

ψ⃗x = Uψ⃗, U =

(
0 1
u+ λ 0

)
, ψ⃗ =

(
ψ
ψx

)
(819)

and we look for a compatible time evolution

ψ⃗t = V ψ⃗, V =

(
A B
C D

)
, (820)

From the compatibility ψ⃗xt = ψ⃗tx we obtain

ψ⃗xt = Utψ⃗ + Uψ⃗t = (Ut + UV )ψ⃗, ψ⃗tx = Vxψ⃗ + V ψ⃗x = (Vx + V U)ψ⃗,

⇒ (Ut − Vx + [U, V ]) ψ⃗ = 0⃗,
(821)

valid for every eigenfunction, implying the following matrix equation

Ut − Vx + [U, V ] = 0. (822)
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In components:
Ax = C − (u+ λ)B,
Dx = −C + (u+ λ)B,
Bx = D −A,
ut = Cx + (u+ λ)(D −A).

(823)

Subtracting the first two and using the x derivative of the third:

(D −A)x = −2C + 2(u+ λ)B = Bxx ⇒ C = (u+ λ)B −
1

2
Bxx. (824)

The last equation becomes

ut = uxB + (u+ λ)Bx − 1
2
Bxxx + (u+ λ)Bx

= 2λBx − 1
2
(Bxxx − 4uBx − 2uxB)

= 2λBx − 1
2

(
Bxx − 2uB − 2∂−1

x (uBx)
)
x
.

(825)

It can be written in the following compact form

ut = 2λBx − 1
2
(LB)x (826)

introducing the integro-differential operator

L := ∂2x − 2u− 2∂−1
x u∂x, ∂−1

x f :=

x∫
−∞

f(x′)dx′. (827)

The PDE (826) must be λ-independent, and we look for B as polynomial in λ

B =
n∑

j=0

λjBj(x, t) (828)

in order to achieve it. Substituting (828) into (826) we obtain

ut = 2
n∑

j=0
λj+1Bjx − 1

2

n∑
j=0

λj (LBj)x

= 2
n+1∑
j=1

λjBj−1x − 1
2

n∑
j=0

λj (LBj)x .
(829)

Equating to zero the coefficients of all λ powers we obtain

λn+1 : Bnx = 0 ⇒ Bn = const,
λj : Bj−1x = 1

4
(LBj)x , 1 ≤ j ≤ n

⇒ B0 = 1
4n

LnBn = Bn
4n

Ln · 1,
ut = − 1

2
(LB0)x = αn

(
Ln+1 · 1

)
x
, αn := − Bn

2·4n .

(830)

Since L · 1 = −2u we finally construct the following hierarchy of nonlinear PDEs

ut2n+1 = αn
(
Ln+1 · 1

)
x
= c2n+1 (Lnu)x =: c2n+1K(n), n ∈ N,

c2n+1 = −2αn.
(831)

called the “KdV hierarchy”, that can be integrated by the IST associated with the Schrödinger operator.
Let us introduce the operator

L := ∂2x − 4u− 2ux∂
−1
x ; (832)

then it is possible to show that:
1) the operators L and L are “well coupled” by the following relation:

∂xL = L∂x, (833)
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implying
∂xLn = Ln∂x, n ∈ N+. (834)

2) The operators L and L are adjoint

< f,Lg >=< Lf, g > (835)

with respect to the bilinear form

< f, g >:=

∫
R
f(x)g(x)dx. (836)

Both proofs are direct; for (833):

∂xL = ∂x(∂2x − 2u− 2∂−1
x u∂x) = ∂3x − 2∂xu− 2u∂x

= (∂2x − 2∂xu∂
−1
x − 2u)∂x = (∂2x − 2ux∂

−1
x − 4u)∂x = L∂x

(837)

Equation (834) follows by repeated application of (833) and by induction:

∂xL2 = ∂xLL = L∂xL = L2∂x. (838)

For (835):

< f,Lg >=
∫
R f(gxx − 4ug − 2ux∂

−1
x g)dx =

∫
R[fxx − 4uf + 2∂−1

x (uxf)]gdx∫
R(fxx − 2uf − ∂−1

x (ufx))g =< Lf, g > (839)

where we have used the integration by parts formula ∂−1
x (uxf) = uf − ∂−1

x (ufx). Using the operators L
and L, and (834), the KdV hierarchy of integrable equations can be written in two equivalent ways

ut2n+1 = −
c2n+1

2

(
Ln+11

)
x
= c2n+1 (Lnu)x = c2n+1L

nux = c2n+1Kn (840)

The first three equations of the KdV hierarchy, for n = 0, 1, 2, are:

ut1 = c1K0, K0 = ux, the advection equation,
ut3 = c3K1, K1 = (uxx − 3u2)x = uxxx − 6uux, the KdV equation,
ut5 = c5K2, K2 = (uxxxx − 10uuxx − 5u2x + 10u3)x = uxxxxx − 10uuxxx
−20uxuxx + 30u2ux, the quintic KdV equation.

(841)

As we see, although the operators L is integro-differential, Lnu, n = 0, 1, 2 are local functions of u and
its derivatives. It is possible to show that this property is true for any n ∈ N+.

7.1.1 Symmetries and constants of motion
Now we introduce the notion of (infinitesimal generator of a) symmetry of a given PDE

ut = K(x, u, ux, uxx, . . . ). (842)

Def. σ(x, u, ux, uxx, . . . ) is a symmetry (an infinitesimal generator of a symmetry) of equation (842) when,
if u(x, t) is a solution of (842), then u+ ϵσ is a solution of (842) up to O(ϵ). Then equation

(u+ ϵσ)t = K (x, u+ ϵσ, ux + ϵσx, uxx + ϵσxx, . . . ) (843)

is satisfied up to O(ϵ):

(u+ ϵσ)t = ut + ϵσt +O(ϵ2) = ut + ϵ
(

∂σ
∂u
ut +

∂σ
∂ux

uxt +
∂σ

∂uxx
uxxt + . . .

)
+O(ϵ2)

= ut + ϵ

(∑
j≥0

∂σ

∂(∂
j
xu)

∂jx

)
ut +O(ϵ2) = ut + ϵ

(∑
j≥0

∂σ

∂(∂
j
xu)

∂jx

)
K +O(ϵ2),

K (x, u+ ϵσ, ux + ϵσx, uxx + ϵσxx, . . . ) = K + ϵ

(∑
j≥0

∂K

∂(∂
j
xu)

∂jx

)
σ +O(ϵ2).

(844)
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Since ut = K, to leading (O(ϵ)) order we obtain the symmetry equation

σ̂′ ·K = K̂′ · σ, (845)

where f̂ ′ · g is the Frechét derivative of f(x, u, ux, uxx, . . . ) in the direction g:

f̂ ′ · g :=

∑
j≥0

∂f

∂(∂jxu)
∂jx

 g =
∂

∂ϵ
f(u+ ϵg)

∣∣∣
ϵ=0

. (846)

Since all the equations of the KdV hierarchy are associated with the Schrödinger operator, they share
the same direct and inverse problems. It is easy to show that the time evolution of the spectral data
associated with the flow M = 2n+ 1 is:

S(k, tM ) = {R(k, tM ), pl(tM ), βl(tM ), l = 1, . . . , N} , M = 2n+ 1, (847)

R(k, tM ) = R(k, 0)e−iωM (k)tM , ωM (k) := cM (−1)
M+1

2 (2k)M ,

pl(tM ) = pl(0), βl(tM ) = βl(0)e
−cM (2pl)

M tM .
(848)

We remark that two different flows of the hierarchy induce the following time evolutions of the reflection
coefficients:

Rt2n+1 = −iω2n+1R, Rt2m+1 = −iω2m+1R, (849)

and these evolutions are compatible (they commute):

Rt2n+1t2m+1 = Rt2m+1t2n+1 = −ω2n+1ω2m+1R. (850)

This commutation of the two flows in the spectral space implies the commutation of the two flows also in
physical space:

ut2n+1t2m+1 = ut2m+1t2n+1 ⇔ ∂t2m+1Kn = ∂t2n+1Km ⇔

K̂′
n ·Km = K̂′

m ·Kn,
(851)

implying that the vector fields {Kn}n∈N are the (infinitesimal generators of) symmetries of the whole
KdV hierarchy. In particular, KdV possesses the infinitely many commuting symmetries σn =
Kn, n ∈ N+. Equivalently, the KdV flow commutes with the infinitely many flows of the KdV
hierarchy.

We remark that the first two symmetries σ0 = K0 = ux and σ1 = K1 = ut = uxxx − 6uux of
the hierarchy (859) are the infinitesimal generators of respectively the x- and t-translations symmetries.
Indeed, if the equation is x-translation invariant and t-translation invariant (like the equations of the
KdV hierarchy, that do not depend explicitly on x and t) and u(x, t) is a solution, it follows that also
u(x+ a, t+ b) is solution ∀a, b ∈ R. then

u(x+ ϵ, t) = u(x, t) + ϵux(x, t) +O(ϵ2), σ0 = ux(x, t), a = ϵ, b = 0,
u(x, t+ ϵ) = u(x, t) + ϵut(x, t) +O(ϵ2), σ1 = ut(x, t) = uxxx − 6uux, a = 0, b = ϵ.

(852)

As we know from classical mechanics, the Noether theorem establishes a connection between symme-
tries and constants of motion. Let’s see how this connection appears in this integrable field theory.

Let F be the functional

F [u] :=

∫
R
ρ(u, ux, uxx, . . . )dx. (853)

A variation δu of the field induces the following variation δF of the functional

δF =
∫
R

(
∂ρ
∂u
δu+ ∂ρ

∂ux
δux + ∂ρ

∂uxx
δuxx + . . .

)
dx

=
∫
R

(
∂ρ
∂u

− ∂x
(

∂ρ
∂ux

)
+ ∂2x

(
∂ρ

∂uxx

)
+ . . .

)
δu dx =

∫
R

δF
δu

δu dx,
(854)

where
δF
δu

:= ∂ρ
∂u

− ∂x
(

∂ρ
∂ux

)
+ ∂2x

(
∂ρ

∂uxx

)
+ · · · =

∑
k≥0

(−1)k∂kx

(
∂ρ

∂(∂k
xu)

)
(855)
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is the so-called “gradient of F” (or variational (Euler) derivative of F). The second step in (854) comes
from integration by parts.

It is possible to show that the denumerable set of functions Lnu are gradients (variational derivatives)
of some functionals Hn:

Lnu =
δHn

δu
. (856)

For instance we have, for the first three flows:

L0u = u = δH0
δu

, H0 :=
∫
R

u2

2
dx,

Lu = uxx − 3u2 = δH1
δu

, H1 := −
∫
R

(
u2
x
2

+ u3
)
dx,

L2u = uxxxx − 10uuxx − 5u2x + 10u3 = δH2
δu

, H2 :=
∫
R ρ2dx,

ρ2 =
u2
xx
2

+ 5uu2x + 5
2
u4.

(857)

Let’s verify, f.i., that δH2
δu

= L2u:

δH2
δu

= ∂ρ2
∂u

− ∂x
(

∂ρ2
∂ux

)
+ ∂2x

(
∂ρ2
∂uxx

)
= 10u3 − 5u2x − (10uux)x

+uxxxx.
(858)

Using (831) and (856), the KdV hierarchy (840) can be written in the Hamiltonian form

ut2n+1 = c2n+1L
nux = c2n+1∂xLnu = c2n+1∂x

δHn

δu
, n ∈ N (859)

for the Hamiltonian operator ∂x, where Hn is the Hamiltonian of the nth flow. For instance, the Hamil-
tonian of KdV is H1.

The denumerable set of functionals {Hm}m∈N are constants of motion for the whole KdV hierarchy;
indeed:

dHm
dt2n+1

=
∫
R

(
∂ρm
∂u

ut2n+1 + ∂ρm
∂ux

uxt2n+1 + ∂ρm
∂uxx

uxxt2n+1 + . . .
)
dx

=
∫
R

δHm
δu

ut2n+1dx =
∫
R(L

m+1 · 1)(Lnux)dx =
∫
R L

n+m+1uxdx
=
∫
R
(
Ln+m+1u

)
x
dx = 0,

(860)

using the fact that L is the adjoint of L, and, in the last step, integrating the exact derivative of a localized
function.

Then the relations

σn = ∂x
δHn

δu
, n ∈ N (861)

connecting (infinitesimal generators of) symmetries to constants of motion are the analogues of the Noether
theorem.

7.1.2 Involutivity of the constants of motion
The connections with the finite dimensional theory of Hamiltonian systems of ODEs

q̇ = ∇pH(q, p), ṗ = −∇qH(q, p), (862)

where q, p ∈ RN , and H(q, p) is the Hamiltonian function on the 2N -dimensional phase space, is quite
clear. This system can be written in the more compact form

u̇ = J∇uH(u), (863)

where

u =

(
q

p

)
∈ R2N , J =

(
0N IN
−IN 0N

)
, (864)

0N and IN are respectively the N ×N zero and identity matrices, and J is the Hamiltonian operator.
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At last the Hamiltonian H(u) is a constant of motion:

Ḣ =

2N∑
j=1

∂H

∂uj
u̇j =

2N∑
j=1

∂H

∂uj
Jjk

∂H

∂uk
= ∇uH · J∇uH = 0. (865)

Comparing the Hamiltonian form (859) of the KdV hierarchy with (863) we see that the Hamilto-
nian operator J in (863) is replaced by the Hamiltonian operator ∂x in (859), and the gradient of the
Hamiltonian H(u) by the Euler derivative (the gradient) of the Hamiltonian functionals Hn[u] of the KdV
hierarchy.

Now the Liouville theorem of integrability for Hamiltonian systems (863) states that, if the system
(863) possesses N independent constants of motion H1, H2, . . . , HN , and these constants of motion are in
involution, i.e, they satisfy the equations

∇uHn · J∇uHm = 0, ∀n,m = 1, 2, . . . , N, (866)

then the system (863) is Liouville integrable, since there exists a change of dependent variables to action-
angle variables allowing one to linearize the dynamics.

In the infinite dimensional Hamiltonian field theory described by the KdV hierarchy, the existence of
N independent constants of motion for (863) is replaced by the existence of a denumerable set of constants
of motion for the KdV hierarchy. As for the involutivity of these constants of motion, we observe that the
scalar product in (866), defining the involutivity of the constants of motion of (863), should be replaced
by the equations

<
δHm

δu
, ∂x

δHn

δu
>= 0, m, n ∈ N+ (867)

involving the infinitely many constants of motion of the KdV hierarchy. The proof of (867), and then the
proof of the Liouville integrability of the equations of the KdV hierarchy, follows from (860) and the fact
that

0 = dHm
dt2n+1

=
∫
R

δHm
δu

ut2n+1dx =
∫
R

δHm
δu

(Lnu)x dx =< δHm
δu

, ∂x
δHn
δu

> . (868)

7.2 Other soliton equations and their integrability scheme
Also the NLS and KP equations are distinguished examples of soliton equations, and share with KdV
many features: the existence of a Lax pair and of an IST method to solve the Cauchy problem, the
existence of infinitely many soliton solutions, the existence of infinitely many symmetries and constants
of motion in involution. Here we just list their Lax pairs and some basic soliton solutions.

7.2.1 The KP equation
The KP equation

(ut − uxxx + 6uux)x = 3α2uyy , u = u(x, y, t) (869)

arises from the following integrability scheme

(α∂y + ∂2x − u)ψ = 0,
(∂t + 4∂3x − 6u∂x − 3ux − 3αw)ψ = 0, wx = uy ,

(870)

where α = i (the time dependent Schrödinger equation) or α = −1 (the heat equation).
Its 1 soliton solution (for α = i) reads:

u = −
(p+ q)2

2
cosh2

(
(p+ q)x+ (q2 − p2)y − 4(p3 + q3)t− c

2

)
(871)

(if p = q it reduces to the 1 soliton solution of KdV).
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7.3 Applicability versus integrability
We have introduced a certain number of integrable PDEs of the nonlinear mathematical physics, like the
Hopf, Burgers, KdV, KP and NLS equations, that are applicable in many physical contexts and, at the
same time, integrable. Is it a coincidence? It happens too many times to be a coincidence; so let’s try to
understand why.

Considering KdV as illustrative example, using the multiscale perturbation theory we have established
that a large class of nonlinear dispersive PDEs reduces to the KdV equation under the hypothesis of weak
nonlinearity and weak dispersion. Therefore the KdV equation is the simplest nonlinear model
describing weak nonlinearity and weak dispersion, and since the class of nonlinear dispersive
equations contains many physical systems exhibiting weak dispersion, the KdV equation is largely
applicable in physics. Suppose now that, in the large class of equations reducing to KdV in the above
limit, there is one integrable PDE (possessing an integrability scheme like a Lax pair, infinitely many
symmetries and constants of motion). Since the multiscale procedure preserves integrability, mapping f.i.
symmetries of the original integrable equation to symmetries of KdV, it follows that the KdV equation
inherits the integrability properties. Therefore it is enough that one of the equations of the large class
of nonlinear dispersive PDEs be integrable, to imply the integrability properties of the model equation.
In the light of these considerations, the integrability of KdV is not a miracle, and it is no surprising
at all. The same considerations can be made for the other nonlinear integrable PDEs studied in these
notes. Therefore it is not surprising that many model equations of the nonlinear Mathematical Physics
be integrable.

7.4 Exercices

1) Analyticity projectors. Show that the operators

P±f(λ) := ±
1

2πi

∫
R

f(λ′)

λ′ − (λ± iϵ)
dλ. (872)

are analyticity projectors on the real line; i.e., they map a Holder function f(λ), λ ∈ R decaying at ∞
sufficiently fast into functions analytic in the upper and lower halves of the complex λ plane respectively.
ii) Show, in particular, that

(P+)2 = P+, (P−)2 = P−, P+P− = P−P+ = 0, P+ + P− = 1. (873)

2) Given a Holder function f(λ) for λ ∈ R decaying at ∞ sufficiently fast, a polynomial P (λ), a set of
complex numbers {k+j , R

+
j , j = 1, . . . , N+,

k−j , R
−
j , j = 1, . . . , N−}, where Im k+j > 0 and Im k−j < 0, show that the unique solution of the Riemann

problem
ψ+(λ)− ψ−(λ) = f(λ), λ ∈ R (874)

where ψ±(λ) are analytic in the upper and lower halves of the complex λ plane respectively, except for
the simple poles k±j ’s with residues R±

j ’s, and ψ±(λ) → P (λ), |λ| >> 1, is

ψ±(λ) = P (λ) +

N+∑
j=1

R+
j

λ− k+j
+

N−∑
j=1

R−
j

λ− k−j
± P±f(λ). (875)

3) Let u(x) = −Aδ(x − x0), A ∈ R, be the potential of the Schrödinger equation [−∂2x + u(x)]ψ = k2ψ.
Evaluate explicitly: i) the eigenfunctions of the continuous spectrum and the coefficients a(k), b(k), R(k), T (k);
ii) the discrete spectrum pj , the corresponding eigenfunctions and the norming constants bj . Show that
the existence of discrete spectrum depends on the sign of A.

4) Assume u(x) = O(ϵ), ϵ << 1, and construct the first two terms of the ϵ - expansion of the eigenfunctions
and of the spectral data.
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5) Scattering problem. Study the scattering problem described by the Schrödinger equation

−ψ′′(x, k) + u(x)ψ(x, k) = k2ψ(x, k), x ∈ R, k > 0,

where ψ(x, k), the eigenfunction of the continuous spectrum of the Schrödinger operator −d2/dx2 +V (x),
represents the wave function of a particle beam scattered by the localized potential u(x) e E = k2 > 0 is
the energy of the beam (the continuous spectrum σc = {E > 0}), with the following boundary conditions:

ψ(x, k) ∼ R(k)e−ikx + eikx, x ∼ −∞; ψ(x, k) ∼ T (k)eikx, x ∼ ∞

describing an incoming beam of particles of wave number k and intensity 1, partially reflected and trans-
mitted through the potential (R(k) e T (k) are respectively the reflection and transmission coefficients).
i) Observe that the function ϕ(x, k) = ψ(x, k)/T (k) satisfies a simpler scattering problem:

ϕ′′(x, k) + k2ϕ(x, k) = u(x)ϕ(x, k), x ∈ R, , k > 0

ϕ(x, k) ∼
R(k)

T (k)
e−ikx +

eikx

T (k)
, x ∼ −∞; ϕ(x, k) ∼ eikx, x ∼ ∞

and use the advanced Green function of the operator d2/dx2 + k2 to rewrite such a problem as a Volterra
integral equation [9], obtaining:

ϕ(x, k) = eikx −
∞∫
x

dy
sin k(x− y)

k
u(y)ϕ(y, k)

and the following integral representations for the reflection and transmission coefficients:

1

T (k)
= 1−

∫
R
dk
e−iky

2ik
u(y)ϕ(y, k),

R(k)

T (k)
=

∫
R
dk
eiky

2ik
u(y)ϕ(y, k).

Such an integral equation, equivalent to the Schrödinger differential equation + boundary conditions, is
the most convenient formulation of the problem to extract informations.
ii) Use the method of successive approximations to study the properties of ϕ in the following way.
a) Rerwrite the integral equation for the unknown f(x, k) = ϕ(x, k)e−ikx, such that f ∼ 1, x→ ∞:

f(x, k) = 1 +

∞∫
x

e2ik(y−x) − 1

2ik
u(y)f(y, k)dy

and look for the solution as a Neumann series:

f(x, k) =

∞∑
i=0

hi(x, k), h0 = 1, (876)

obtaining the recursion relation:

hj+1(x, k) =

∞∫
x

e2ik(y−x) − 1

2ik
u(y)hj(y, k)dy, j ≥ 0. (877)

b) From the inequality: |e2ik(y−x) − 1|/|2ik| ≤ 1/|k|, valid for Im k ≥ 0, k ̸= 0, show that

|hj+1(x, k)| ≤ 1
|k|

∞∫
x

|u(y)||hj(y, k)|dy, (878)

and then that:

|hn(x, k)| ≤ 1
n!

(
A(x)
|k|

)n
≤ 1

n!

(
A(−∞)

|k|

)n
,

A(x) :=
∞∫
x

|V (y)|dy.
(879)
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Therefore the Neumann series representing the solution is absolutely and uniformely convergent for Im
k ≥ 0, k ̸= 0, if u(x) ∈ L1(R). Under these conditions, the solution exists unique, and it is analytic in the
upper half of the complex k plane. Analogously one can prove that 1/T (k) is analytic in the upper half
of the complex k plane. Under more stringent conditions on u, one could show, in a similar manner, that
the eigenfunction is also continuous on the real k axes, where the physics takes place.
c) Let kj , j = 1, .., N be the zeroes of the function 1/T (k) in the upper half of the complex k plane
(the poles of the transmission coefficient). Then, since λj = Ej = k2j ∈ R, it follows that a) kj is purely

imaginary: kj = ipj , pj > 0, j = 1, .., N , b) the functions ϕ(x, kj), j = 1, .., N are exponentially localized:

ϕj(x) := ϕ(x, kj) = O(e−pj |x|), |x| → ∞, j = 1, ..N

and then they are eigenfunctions of the Schrödinger operator in L2(R):

−ϕ′′j (x) + u(x)ϕj(x) = −p2jϕj(x), x ∈ R

corresponding to negative eigenvalues λj = Ej = −p2j < 0 of the energy (the discrete spectrum: σp =

{−p2j}N1 ). Summarizing: σ = σp ∪ σc = {−p2j}N1 ∪ R+.

d) Show that the set of λj = −p2j , j = 1, .., N is bounded from below.
Hint. Take the scalar product of the eigenfunction ϕj , normalized to 1, with the Schrödinger equation,
obtaining:

λj − (ϕj , uϕj) = (ϕ′j , ϕ
′
j) ≥ 0 ⇒ |λj | ≤ −(ϕj , V ϕj) ≤ |(ϕj , uϕj)| ≤ ||u||∞.

e) Show that, if u(x) = u0δ(x− x0), the integral equation admits the solution

ϕ(x, k) = eikx − u0H(x0 − x)
sin k(x− x0)

k
eikx0 .

Then:

ϕ(x, k) =
2ik − u0

2ik
eikx +

u0e2ikx0

2ik
e−ikx, x < x0

T (k) =
2ik

2ik − u0
, R(k) =

u0e2ikx0

2ik − u0
.

Found ϕ(x, k), at last reconstruct ψ(x, k) = 2ik
2ik−u0

ϕ(x, k).

f) Verify that the solution we found for k ∈ R, if extended outside the real k axis, diverges always at + or -
infinity, unless k = −iu0/2 ∈ iR+. Therefore, if the potential is positive (u0 > 0), no eigenfunctions exist
in L2(R); if, instead, the potential is negative, then there exists one and only one L2(R) eigenfunction
ψ1(x) := ϕ(x, i|u0|/2) ∈ L2(R):

ψ1(x) = H(x− x0)e
− |u0|

2
x +H(x0 − x)e

|u0|
2

x

corresponding to the negative energy E1 = k21 = −u20/4, and describing a bound state (a localized quantum
particle): σp = {E1}.
g) If u(x) = ϵv(x), ϵ << 1, show that:

ϕ(x, k) = eikx − ϵ

∞∫
x

dy
sin k(x− y)

k
v(y)eiky +O(ϵ2),

T (k) = 1 +
ϵ

2ik

∫
R
dxv(x) +O(ϵ2), R(k) =

ϵ

2ik

∫
R
dxv(x)e−2ikx +O(ϵ2)

6) Using the above strategy, study the scattering problem

ϕ′′(x, k) + k2ϕ(x, k) = u(x)ϕ(x, k), x ∈ R, ϕ(x, k) ∼ e−ikx, x ∼ −∞

showing that, in this case, it is convenient to use the retarded Green function of the operator d2/dx2+k2.
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7) Let φ(x, k) and ψ(x, k) be the Jost eigenfunctions of the Schrödinger operator satisfying the boundary
conditions:

φ(x, k) ∼ e−ikx, x→ −∞, ψ(x, k) ∼ e−ikx, x→ ∞ (880)

i) Write the integral equations satisfied by them; ii) show that φ(x, k)eikx and ψ(x, k)eikx are analytic
respectively in the upper and lower halves of the k plane; iii) show that

−2i
d

dx
[k(ψ(x, k)eikx − 1)] → u(x), |k| ≫ 1. (881)

8) Let k0 be a zero of a(k) = 1/T (k), where T (k) is the transmission coefficient of the Schrödinger equation.
i) Show that k0 belongs to the discrete spectrum (therefore k0 = ip, p > 0) and, correspondingly, that
φ(x, k0) ∈ L2(R), with the asymptotics

φ(x, k0) ∼ epx, x ∼ −∞, φ(x, k0) ∼ be−px, x ∼ ∞ (882)

where b ∈ R.
ii) Show that the zeroes k0 = ip of a(k) are simple, and that iba′(ip) > 0.

A. For i), use the Wronskian relation W (φ, ψ̄) = 2ika(k) to infer that φ(x, k0) = bψ(x, k0) = bψ(x,−k0).

9) Inverse Problem. Using the analyticity properties of φ(x, k), ψ(x, k), a(k), together with their asymp-
totics for large k, i) rewrite the scattering equation

φ(x, k) = a(k)ψ(x, k) + b(k)ψ(x,−k), k ∈ R (883)

for the Schrödinger operator as a linear Riemann - Hilbert problem on the real k axis, for a given set of
scattering data. ii) Express the solution of such a linear RH problem in terms of integral equations for
the eigenfunctions, and iii) reconstruct the potential u(x) in terms of the scattering data.

10) t - evolution of the scattering data. Obtain the t evolution of the scattering data if u evolves according
to KdV.

11) Consider the Cauchy problem on the line for the KdV equation ut + uxxx − 6uux = 0, with the
initial condition u(x, 0) = −b exp(−x2). Show (numerically) that, i) if b = 0.1, the dynamics is described
by a pure nonlinear dispersive waves (travelling with negative group velocity); if b = 1, by a nonlinear
dispersive waves (traveling with negative group velocity) + one soliton, travelling with positive speed; if
b = 4, by a nonlinear dispersive waves (traveling with negative group velocity) + two solitons, traveling
with positive speeds (see the figures below). Interpret these numerical experiments in the light of the IST
for KdV.
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Figure 1 for b = 0.1: the area of the well is not large enough to support bound states ⇒ the solution
evolves into nonlinear dispersive waves; Figure 2 for b = 1: the area of the well is large enough to support
one bound state ⇒ the solution evolves into a one soliton + nonlinear dispersive waves; Figure 3 for b = 4:
the area of the well is large enough to support two bound states ⇒ the solution evolves into two solitons
+ nonlinear dispersive waves.

11) Construct the 2-soliton solution of KdV and study the interaction of the two solitons.
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8 Darboux transformations

Darboux transformations (DTs) are algebraic techniques enabling one to
construct exact solutions of nonlinear integrable PDEs from simpler exact
solutions. Here we present them for the KdV and NLS equations.

8.1 DTs for KdV
We begin with the KdV equation

ut + uxxx − 6uux = 0, u = u(x, t) (884)

and its Lax pair
ψxx = (u− k2)ψ, ψ = ψ(x, t; k),
ψt = (c− ux)ψ + (2u+ 4k2)ψx,

(885)

and we indicate by (u, ψ) any pair of functions u = u(x, t) and ψ = ψ(x, t; k) satisfying equations (884)
and (885). We look for a DT transformation in the matrix form

ψ⃗ = χψ⃗(0), ψ⃗ =

(
ψ
ψx

)
, ψ⃗(0) =

(
ψ(0)

ψ
(0)
x

)
, χ =

(
A B
C D

)
(886)

implying

ψ(x, t; k) = A(x, t, k)ψ(0)(x, t; k) +B(x, t, k)ψ
(0)
x (x, t; k), (887)

mapping a given solution (u(0), ψ(0)) of equations (884), (885) to another solution (u, ψ) of the same
equations.

From (887)

ψx = Axψ(0) +Aψ
(0)
x +Bxψ

(0)
x +Bψ

(0)
xx = Axψ(0) +Aψ

(0)
x

+Bxψ
(0)
x +B(u(0) − k2)ψ(0) = [Ax +B(u(0) − k2)]ψ(0) + [A+Bx]ψ

(0)
x ,

(888)

ψxx = [Axx +Bx(u(0) − k2) +Bu
(0)
x ]ψ(0) + [Ax +B(u(0) − k2)]ψ

(0)
x

+[Ax +Bxx]ψ
(0)
x + [A+Bx](u(0) − k2)ψ(0) = (u− k2)ψ

= (u− k2)[Aψ(0) +Bψ
(0)
x ].

(889)

Since ψ(0) and ψ
(0)
x are independent, we have two equations for the unknowns A and B:

Axx + 2Bx(u(0) − k2) +A(u(0) − u) +Bu
(0)
x = 0,

2Ax +Bxx +B(u(0) − u) = 0
(890)

As we did in the construction of the KdV hierarchy, the hierarchy of DTs is constructed assuming for A
and B a polynomial dependence on k2. In the simplest case, A,B do not depend on k2; then the first of
equations (890) implies that

Bx = 0 ⇒ B = 1 (891)

and equations (890) simplify to

Axx +A(u(0) − u) + u
(0)
x = 0,

2Ax + (u(0) − u) = 0.
(892)

Multiplying the second equation by A, and subtracting it to the first, we obtain the equation

Axx − 2AAx + u
(0)
x = 0 (893)

that can be integrated once to the Riccati equation

Ax −A2 + u(0) − k21 = 0, (894)
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where k1 is a constant. The Riccati equation can be linearized by the transformation

A = −
ϕx

ϕ
, (895)

to the Schrödinger equation
ϕxx = (u(0) − k21)ϕ, ϕ = ϕ(x), (896)

for k = k1.
Summarizing, given the solution (u(0), ψ(0)) of equations (884), (885), and given a solution ϕ(x, t) of

the Schrödinger equation for the potential u(0)(x, t) and k = k1, then the pair (u, ψ), defined by

u(x) = u(0)(x)− 2
(

ϕx
ϕ

)
x
,

ψ(x, k) = ψ
(0)
x (x, k)− ϕx

ϕ
ψ(0)(x, k),

(897)

is also solution of equations (884), (885). The first of the DTs (897) comes from the second of equations
(892) and from (895); the second from (887), (895), and B = 1.

As an example, one construct the 1-soliton solution of KdV choosing u(0)(x, t) = 0. Then ϕ(x, t) =

γ1ep(x−4p2t) + γ2e−p(x−4p2t) solves the Schrödinger equation for k1 = ip and

u(x, t) = −2p

(
γ1ep(x−4p2t) − γ2e−p(x−4p2t)

γ1ep(x−4p2t) + γ2e−p(x−4p2t)

)
x

. (898)

Choosing γ1 = re−px0 , γ2 = repx0 , one recovers the 1-soliton solution:

u(x, t) = −
2p2

cosh2 (p(x− 4p2t− x0))
. (899)

8.1.1 What is the spectral meaning of the DT?

For the given solution u(0)(x, t) of KdV, we choose ψ(0) to be the Jost eigenfunction φ(0)(x, t, k):

φ(0) ∼ e−ikx, x ∼ −∞, φ(0) ∼ a(0)(k)e−ikx + b(0)(k)eikx, x ∼ ∞, (900)

and ϕ(x, t) to be a solution of the Lax pair for u = u(0)(x, t) and k = ip, p > 0 such that

ϕ ∼ α±e−px + β±epx, x ∼ ±∞, ⇒ ϕx
ϕ

∼ ±p, x ∼ ±∞. (901)

Then, at x ∼ −∞, the second of the DT equations (897)

ψ(x, k) = φ
(0)
x (x, k)− ϕx(x)

ϕ(x)
φ(0)(x, k) ∼ −i(k + ip)e−ikx, (902)

Let φ(x, k) be the Jost eigenfunction corresponding to the transformed potential u and behaving as

φ ∼ e−ikx, x ∼ −∞, φ ∼ a(k)e−ikx + b(k)eikx, x ∼ ∞; (903)

then ψ(x, k) = −i(k + ip)φ(x, k) and

φ(x, k) = i
k+ip

[
φ
(0)
x (x, k)− ϕx

ϕ
φ(0)(x, k)

]
∼ i

k+ip

[
ik
(
−a(0)(k)e−ikx + b(0)(k)eikx

)
− p

(
a(0)(k)e−ikx + b(0)(k)eikx

)]
∼ k−ip

k+ip
a(0)(k)e−ikx − b(0)(k)eikx = a(k)e−ikx + b(k)eikx, x ∼ ∞.

(904)

We conclude that

a(k) =
k − ip

k + ip
a(0)(k), b(k) = −b(0)(k). (905)

In terms of transmission and reflection coefficients:

T (k) =
k + ip

k − ip
T (0)(k), R(k) = −

k + ip

k − ip
R(0)(k). (906)

Therefore the DT adds the zero ip to the scattering coefficient a (the pole ip to the transmission
coefficient), corresponding to the bound state k = ip, p > 0.
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8.2 DTs for the NLS equation [37, 40]

Now we outline the construction of the DT for the NLS equation, showing
how to add simultaneously n poles.

We recall that the focusing and defocusing NLS equations

iut + uxx + 2η|u|2u = 0, η = ±1 (907)

are the compatibility condition of the following Zakharov-Shabat Lax pair:

Ψ⃗x(λ, x, t) = X̂(λ, x, t)Ψ⃗(λ, x, t), Ψ⃗t(λ, x, t) = T̂ (λ, x, t)Ψ⃗(λ, x, t), (908)

where

X̂(λ, x, t) = −iλσ3 + iU(x, t),

T̂ (λ, x, t) =

(
−2iλ2 + iηu(x, t)u(x, t) 2iλu(x, t)− ux(x, t)

2iληu(x, t) + ηux(x, t) 2iλ2 − iηu(x, t)u(x, t)

)
,

σ3 =

(
1 0
0 −1

)
, U =

(
0 u(x, t)

ηū(x, t) 0

)
.

(909)

We first observe that the vector eigenfunction Ψ⃗(λ, x, t) satisfies the fol-
lowing symmetry.
If Ψ⃗(λ, x, t) = (Ψ1(λ, x, t),Ψ2(λ, x, t))

T solves the Lax pair (908), then
(−ηΨ2(λ, x, t),Ψ1(λ, x, t))

T solves the Lax pair (908) in which λ is replaced
by λ̄.

We also observe that, since trX = trT = 0, the Abel theorem implies

(detΨ)x = tr(X) det(Ψ) = 0, (detΨ)t = tr(T ) det(Ψ) = 0; (910)

then det(Ψ) = const.
It is easy to verify that

U † = NUN , X†(λ̄) = −NX(λ)N , T †(λ̄) = −NT (λ)N (911)

where U † is the adjoint of U , and

N =

(
η 0
0 1

)
. (912)

In addition we have

(Ψ−1(λ))x = −Ψ−1(λ)Ψx(λ)Ψ
−1(λ) = −Ψ−1(λ)X(λ),

(Ψ−1(λ))t = −Ψ−1(λ)T (λ)
(913)
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and, using (911):

Ψ†
x(λ̄) = Ψ†(λ̄)X†(λ̄) = −Ψ†(λ̄)NX(λ)N ,

Ψ†
t(λ̄) = Ψ†(λ̄)T †(λ̄) = −Ψ†(λ̄)NT (λ)N (914)

Comparing equations (913) and (914), we infer that Ψ−1(λ) and NΨ†(λ̄)N
satisfy the same matrix equations Fx = −FX, Ft = −FT ; therefore the
normalization of the fundamental solution can be chosen such that

Ψ−1(λ) = NΨ†(λ̄)N (915)

(we often omit to indicate the dependence on x, t, if not necessary).
Let u(0)(x, t) be a particular solution of NLS, and let Ψ(0)(x, t, λ) be the

corresponding fundamental solution of (908). Again its normalization is cho-
sen such that

Ψ(0)−1
(λ) = NΨ(0)†(λ̄)N . (916)

We look for the following relation

Ψ(x, t, λ) = χ(x, t, λ)Ψ(0)(x, t, λ) (917)

between the matrix solutions Ψ(x, t, λ) and Ψ(0)(x, t, λ) of (908), correspond-
ing to the particular solutions u(x, t) and u(0)(x, t) of NLS, where χ(x, t, λ)
is the so-called Darboux (Dressing) matrix.

We also assume that

χ(x, t, λ) = I +
χ̃(x, t)

λ
+O(λ−2), |λ| ≫ 1. (918)

If Ψ and Ψ(0) satisfy (915) and (916), then also the Darboux matrix satisfies
the symmetry

χ−1(λ) = Nχ†(λ̄)N . (919)

Substituting (917) in (908) and using (918), we infer that

U = U (0) + [σ3, χ̃], (920)

implying that
u(x, t) = u(0)(x, t) + 2 (χ̃(x, t))12 , (921)

where (M)12 is the component 12 of matrix M .
From the definition (917) we have

Ψx = χxΨ
(0) + χΨ

(0)
x = (χx + χX(0))Ψ(0),

Ψx = XΨ = XχΨ(0),
⇒ χx = Xχ− χX(0)

(922)
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and, analogously
χt = Tχ− χT (0). (923)

In addition:

(χ−1)x = −χ−1χxχ
−1 = −χ−1(Xχ− χX(0))χ−1 = −χ−1X +X(0)χ−1,

(χ−1)t = −χ−1χtχ
−1 = −χ−1(Tχ− χT (0))χ−1 = −χ−1T + T (0)χ−1.

(924)
Extracting X or T from these equations we get

X(λ) = −χ(χ−1)x + χX(0)χ−1 = −χ(λ)
(
∂x −X(0)(λ)

)
χ−1(λ),

T (λ) = −χ(χ−1)t + χT (0)χ−1 = −χ(λ)
(
∂t − T (0)(λ)

)
χ−1(λ).

(925)

We remark that the matrices X(0), T (0), X, T depend on λ polinomially:

X(0)(λ;x, t) = −iλσ3 + iU (0)(x, t), X(λ;x, t) = −iλσ3 + iU(x, t),
T (0)(λ;x, t) = 2λX(0)(λ;x, t) +W (0)(x, t), T (λ;x, t) = 2λX(λ;x, t) +W (x, t),

(926)
and this will imply suitable constraints on χ.

8.2.1 Rational dependence on λ

We also assume that χ(λ) be a rational function of λ:

χ(x, t;λ) = I +
N∑
m=1

Am(x, t)

λ− λm
, λm ∈ C, (927)

implying that

u(x, t) = u0(x, t) + 2
N∑
m=1

(Am(x, t))12 . (928)

Using (919) it follows that

χ(−1)(λ) = Nχ†(λ̄)N = I +
N∑
m=1

NA†
m(x, t)N
λ− λ̄m

. (929)

In addition:
χ(λ)χ−1(λ) = χ(λ)Nχ†(λ̄)N = I, (930)

Consequently we have

I = χ(λ)χ−1(λ) ∼ χ(λ̄n)
NA†

nN
λ− λ̄n

, λ ∼ λ̄n (931)
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implying that the residue at λ̄n must be zero:

χ(λ̄n)NA†
n = 0, 1 ≤ n ≤ N. (932)

It follows that the 2× 2 matrices An, A
†
n are degenerate

det(An) = det(A†
n) = 0, ∀n (933)

and admit the following representation

An = p(n) · r(n)†, A†
n = r(n) · p(n)†, (934)

where the two component vectors p(n), r(n) will be specified later on, and

v =

(
v1
v2

)
, v† = (v1, v2). (935)

In components:

(An)αβ = p(n)α r
(n)
β ,

(
A†
n

)
αβ

= r(n)α p
(n)
β . (936)

Therefore the constraint (932) is satisfied if

χ(λ̄n) Nr(n) = 0. (937)

In addition, equations (919) and (925) imply that, if X(0), T (0) had the λ-
dependence indicated in (926), X,T would be singular in λ̄n:

X(λ) ∼ −χ(λ̄n)
(
∂x −X(0)(λ̄n)

)
Nr(n) · p(n)

T
(λ− λ̄n)

−1, λ ∼ λ̄n. (938)

But since X,T must have the λ-dependence indicated in (926) as well, it
follows that the residue of the expression in (938) must be zero. Consequently

0 = χ(λ̄n)
(
∂x −X(0)(λ̄n)

)
Nr(n) · p(n)

T

= χ(λ̄n)
((
∂x −X(0)(λ̄n)

)
Nr(n)

)
· p(n)

T
+ χ(λ̄n) Nr(n) · p(n)

x

T

.
(939)

Using (937), we infer that

χ(λ̄n)
(
∂x −X(0)(λ̄n)

)
Nr(n) = 0. (940)

Let q(n) = (q
(n)
1 , q

(n)
2 )T be a vector solution of the Lax pair (908),(909) with

u = u(0) and λ = λn:
q(n)
x = X(0)(λn)q

(n); (941)
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then the complex symmetry of the ZS Lax pair implies that Nr(n) solves the
Lax pair (908),(909) with u = u(0) and λ = λn:(

Nr(n)
)
x
= X(0)(λn)Nr(n), (942)

where

r(n) :=

−q(n)2

q
(n)
1

 . (943)

Once r(n), n = 1, . . . , N are known, equation (937):(
I +

N∑
m=1

p(m)·r(m)†

λ̄n−λm

)
Nr(n) = 0, n = 1, . . . , N (944)

must be viewed as a linear algebraic system for the vectors p(n), n = 1, . . . , N .
We rewrite it in the final form:

N∑
m=1

Bnmp
(m) = Nr(n), n = 1, . . . , N,

Bnm := r(m)†·Nr(n)

λm−λ̄n =
ηq

(n)
2 q

(m)
2 +q

(n)
1 q

(m)
1

λm−λ̄n .

(945)

Known r(n),p(n), n = 1, . . . , N , the matrices An = p(n) ·r(n)†, n = 1, . . . , N
and the Darboux matrix χ are known, together with the dressed solution

u(x, t) = u(0)(x, t) + 2
N∑
m=1

p
(m)
1 q

(m)
1 . (946)

In the simplest case N = 1, omitting the superscript (1), we have:

p =
1

B11

Nr =
1

B11

(
−η q2
q1

)
, B11 =

η |q2|2 + |q1|2

2iImλ1
, (947)

u(x, t) = u(0)(x, t) + 2p1r2 = u(0)(x, t)− 4iηImλ1
q1q2

η |q2|2 + |q1|2
, (948)

and the Darboux matrix reads

χ = I + 2iIm(λ1)
λ−λ1 Pη,

Pη =
1

η|q2|2+|q1|2

(
−ηq̄2
q̄1

)
(−q2, q1) = 1

η|q2|2+|q1|2

(
η|q2|2 −ηq̄2q1
−q2q̄1 |q1|2

)
.

(949)

If η = 1, P1 is the orthogonal projector on the subspace span{(−q̄2, q̄1)T}.
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8.2.2 The solution on the zero background

If, as for the KdV, u(0) = 0, then the fundamental solution reads Ψ(0) =
exp[(−iλx− 2iηλ2t)σ3], and

q :=

(
ξ1e

−iλ1x−2iλ21t

ξ2e
iλ1x+2iλ̄21t

)
(950)

solve the Lax pair for λ = λ1. Choosing λ1 = −a + ib, a, b ∈ R and
ξj = rje

iθj , j = 1, 2, equation (948) gives the 1-soliton solution of NLS.
If η = 1 (the focusing NLS case), one obtains the so-called “bright soli-

ton”:

u(x, t) = −2ib
e2i[ax−2(a2−b2)t+θ0]

cosh[2b(x− 4at− x0)]
, (951)

where x0 =
1
2b
ln(r2/r1) and θ0 = (θ1 − θ2)/2.

If η = −1 (the defocusing NLS case), one obtains the solution

u(x, t) = −2ib
e2i[ax−2(a2−b2)t+θ0]

sinh[2b(x− 4at− x0)]
, (952)

singular at x = 4at + x0. The soliton solution (951) describes a smooth
and exponentially localized amplitude modulation of a monochromatic car-
rier wave; the carrier wave travels with speed 2(a2 − b2)/a, while the expo-
nentially localized envelope travels faster with speed 4a. We remark that
amplitude and localization of the soliton envelope are linearly proportional
(and proportional to b), while the envelope speed is completely independent,
being proportional to a, unlike the KdV case.

8.2.3 The solution on the homogeneous background u(0) = ae2i|a|
2t

In this section we limit our considerations to the focusing NLS case η = 1,
and we choose, as initial solution, the homogeneous background solution

u(0) = ae2i|a|
2t, a is any constant complex parameter. (953)

Using the gauge symmetry (if u(x, t) solves NLS, also u(x, t)eiρ, ∀ρ ∈ R,
solves NLS) and the scaling symmetry (if u(x, t) solves NLS, also bu(bx, b2t), ∀b ∈
R, solves NLS), it is possible to choose a = 1 in (953) without loss of gener-
ality.

The DTs described above allow one to construct analytic solutions over
this background( with a = 1).
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It is straightforward to verify that the corresponding fundamental solution
of the Lax pair (908),(908), verifying the condition detΨ(0) = 1, is

Ψ(0)(λ) = 1√
2µ(µ+λ)

eitσ3
(

eΘ(λ) −(µ+ λ)e−Θ(λ)

(µ+ λ)eΘ(λ) e−Θ(λ)

)
,

Θ(λ) ≡ iµ(x+ 2λt),
(954)

where σ3 = diag(1,−1) is the Pauli matrix and µ, λ are complex parameters
satisfying the constraint

µ2 = 1 + λ2. (955)

Since we want to apply the results of this construction to the study of pe-
riodic anomalous waves in nature, investigated in the next chapter, we look
for solutions periodic in x and hyperbolic in t (to describe the modulation
instability), we must choose −1 < µ < 1 and λ ∈ iR, with |λ| < 1. It is
therefore convenient to use the following parametrization of equation (955)

µ = cosϕ, λ = i sinϕ, ϕ ∈ R, (956)

so that

Θ(λ) = i(cosϕ)x− (sin 2ϕ)t =
ikx− σt

2
, µ+ λ = eiϕ, (957)

where
k = 2µ = 2 cosϕ (958)

plays the role of wave number and

σ = 2 sin 2ϕ = k
√
4− k2 (959)

that of growth rate. Therefore

Ψ(0)(x, t, λ) =
1√
k
eitσ3

(
e

ikx−σt−iϕ
2 −e− ikx−σt−iϕ

2

e
ikx−σt+iϕ

2 e−
ikx−σt+iϕ

2

)
. (960)

A generic vector solution of the ZS Lax pair, for λ = λ1 = i sinϕ1 is a linear
combination of the two column vectors of Ψ(0)(λ1):

q = γ1

(
e

ik1x−σ1t−iϕ1
2

+it

e
ik1x−σ1t+iϕ1

2
−it

)
+ γ2

(
−e−

ik1x−σ1t−iϕ1
2

+it

e−
ik1x−σ1t+iϕ1

2
−it

)
, (961)

where

k1 = 2 cosϕ1, σ1 = 2 sin(2ϕ1) = k1

√
4− k21. (962)
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Choosing

γ1 = e
σ1t1−ik1x1+iπ/2

2 , γ2 = γ−1
1 (963)

we get

q =

(
q1
q2

)
=

(
e

ik1(x−x1)+iπ/2−σ1(t−t1)−iϕ1
2

+it

e
ik1(x−x1)+iπ/2−σ1(t−t1)+iϕ1

2
−it

)
+

(
−e−

ik1(x−x1)+iπ/2−σ1(t−t1)−iϕ1
2

+it

e−
ik1(x−x1)+iπ/2−σ1(t−t1)+iϕ1

2
−it

)

= 2

 sinh
[
ik1(x−x1)+iπ/2−σ1(t−t1)−iϕ1

2

]
eit

cosh
[
ik1(x−x1)+iπ/2−σ1(t−t1)+iϕ1

2

]
e−it


(964)

At last, after some algebra (verify it!), (948) becomes

u(x, t) = A(x, t;ϕ1, x1, t1), (965)

where

A(x, t;x1, t1) ≡ e2it
(
1 + 2i sinϕ1

sinh[σ1(t−t1)]−i cos[k1(x−x1)]
cosh[σ1(t−t1)]−sinϕ1 cos[k1(x−x1)]

)
= e2it cosh[σ1(t−t1)+2iϕ1]+sinϕ1 cos[k1(x−x1)]

cosh[σ1(t−t1)]−sinϕ1 cos[k1(x−x1)]

(966)

is the Akhmediev breather [4, 6, 5], exact solution of NLS for all values of
the real parameters ϕ1, x1, t1, and k1, σ1 are defined in (962), see Fig. 48.

Figure 48: The Akhmediev (Akhmediev-Eleonskii-Kulagin) breather.

This solution, x-periodic with period 2π/k, is exponentially localized in
time over the background u(0), and changes it by the multiplicative phase
factor e4iϕ:

A(x, t;ϕ, x1, t1) → e2it±2iϕ, as t→ ±∞; (967)

161



in addition, its modulus takes its maximum at the point (x1, t1), with

|A(x1, t1;ϕ, x1, t1, ρ)| = 1 + 2 sinϕ. (968)

As we shall see in the next chaper, it plays an important role in the theory
of periodic anomalous waves in nature.

The corresponding fundamental solution of the ZS spectral problem reads

Ψ(x, t, λ) =

[
I +

2iIm(λ1)

λ− λ1

1

|q2|2 + |q1|2

(
−q̄2
q̄1

)
(−q2, q1)

]
Ψ(0)(x, t, λ),

(969)
where q and Ψ(0) are defined respectively in (964) and in (960).

8.3 Exercices

1) Use the DT of KdV to construct the exact solution of the KdV equation over the constant background
solution u(0) = c =constant, with c ∈ C.

2) Show how to derive the Akhmediev solution (965), (966) from the solution q in (964).
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9 Anomalous waves in nature and the NLS

model

9.1 Anomalous waves in 1 + 1 dimensions

As we have seen during the course, NLS describes the amplitude modulation
of quasi-monochromatic waves of small amplitude (weak nonlinearity). If
X,T are the physical variables, then the physical phenomenon we want to
describe in the above approximations is described by a field

η(X,T ) = δA(x1, t1, t2)e
i(kX−ω(k)T ) + c.c.+O(δ2),

x1 = δX, tj = δjT, j = 1, 2, 0 ≪ δ ≪ 1,
(970)

A(x1, t1, t2) = A(ξ, t2),
ξ = x1 − ω′(k)t1 = δ(X − ω′(k)T ),

(971)

and the complex amplitude evolves according to the NLS equation

iAt2 +
ω′′(k)

2
Aξξ + µ(k)|A|2A = 0. (972)

If µ(k) ∈ R, we distinguish two cases:
i) µ(k)ω′′(k) > 0, the focusing NLS equation,
ii) µ(k)ω′′(k) < 0, the defocusing NLS equation.

For example, in the case of surface water waves in deep water, µ(k) =

−k2ω(k)
2

< 0, and

ω2(k) = gk tanh(hk) ∼ gk, hk ≫ 1 ⇒ ω(k) ∼
√
gk,

ω′(k) = ω(k)
2k
, ω′′(k) = −ω(k)

8k2
,

(973)

so that the equation becomes [39]

iAt2 −
ω(k)
8k2

Aξξ − ω(k)k2

2
|A|2A = 0. (974)

Therefore the signs of the dispersive and nonlinear terms are both negative,
and we are in the focusing NLS regime. The following change of variables

u(x, t) = k2A(ξ, t2), x = δ

√
2

ω′(k)
(X − ω′(k)T ), t = −δ2 T

ω(k)
(975)

brings equation (972),(973) to the adimensional form used in the literature

iut + uxx + 2|u|2u = 0; (976)
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in general, taking also account of the defocusing case, we shall have

iut + uxx + 2η|u|2u = 0, η = ±1. (977)

If the dispersion prevails, the NLS equation (977) reduces to the linear
Schrödinger equation for a free particle iut + uxx ∼ 0; if the nonlinearity
prevails: iut + 2η|u|2u ∼ 0, then the general solution reads

u(x, t) ∼ a(x)e2iη|a(x)|
2t (978)

(the nonlinearity implies that the frequency is proportional to the modulus
square of the amplitude).

If a(x) = a constant, we obtain the exact background solution of NLS

u(0)(x, t) = ae2iη|a|
2t, (979)

used in the previous section as the starting point of the Darboux dressing
construction of the Akhmediev breather.

This background solution corresponds to the first nonlinear correction,
obtained by Stokes in 1847 in his effort to construct periodic solutions of
the Euler equations (the Stokes waves [38]) as an asymptotic series, starting
from the monochromatic wave solution of the linearized water wave theory.
It describes a constant light intensity I = |u|2 in nonlinear optics, and a
constant boson density ρ = |u|2 in a Bose condensate.

9.2 Linear stability analysis on the background solu-
tion

Since this background solution (we choose wlg a = 1, as discussed in the
previous section) has interesting physical meanings, it is important to know
if it is stable under small perturbations:

u(x, t) = u(0)(x, t) + ϵw(x, t), u(0) = e2iηt, 0 < ϵ≪ 1. (980)

Substituting it into the NLS equation (977) and keeping terms up to O(ϵ),
we obtain the so-called “NLS equation linearized around the exact solution
u(0)”:

iwt + wxx + 2η(e4iηtw̄ + 2w) = 0. (981)

If the perturbation is a monochromatic wave of the form

w(x, t) = e2iηt
(
γ+(t)e

ikx + γ−(t)e
−ikx) , k ∈ R, (982)
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then equation (981) reduces to two coupled ODEs for γ±:

iγ̇+ + (2η − k2)γ+ + 2ηγ− = 0,
iγ̇− + (2η − k2)γ− + 2ηγ+ = 0,

(983)

implying
−iγ̇+ + (2η − k2)γ+ + 2ηγ− = 0. (984)

In terms of the functions

S(t) := γ− + γ+, D(t) = γ− − γ+, (985)

the above equations become simpler:

iṠ − k2D = 0,

iḊ + (4η − k2)S = 0.
(986)

Taking the time derivative of the second, and using the first, we obtain

D̈ − Ω2(k, η)D = 0 (987)

where
Ω2(k, η) = k2(4η − k2). (988)

We analize the two cases.
1) If η = −1, the defocusing case, Ω2 = −k2(4 + k2) < 0. Then Ω = iω(k),
ω(k) = k

√
4 + k2 ∈ R. Therefore the background is neutrally stable, since

the perturbation gives rise to small oscillations around it.

2) If η = 1, the focusing case, Ω2 = k2(4− k2). Then there are two subcases:
i) if |k| > 2, then Ω2 = −k2(k2−4) < 0, Ω = iω̃(k), with ω̃(k) = k

√
k2 − 4 ∈

R, and the background is again neutrally stable, since the perturbation gives
rise to small oscillations around it.
ii) If |k| < 2, then Ω2 = k2(4− k2) > 0; then

Ω(1, k) = |k|
√
4− k2 =: σ(k), (989)

and the background is unstable, since a small perturbation gives rise to ex-
ponential growth and decay with the growth rate σ(k) (see Fig. 49).
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Figure 49: The graph of σ(k) for |k| ≤ 2 gives the instability curve of focusing
NLS.

We complete the linear stability analysis in the unstable case (focusing
NLS for |k| < 2). Then

D = Aeσt +Be−σt,

S = −i Ḋ
4−k2 = −i k√

4−k2 (Ae
σt −Be−σt) ,

(990)

where A and B are arbitrary constants. Going back to γ±, we obtain

γ+ = S̄−D̄
2

= 1
2

(
ik√
4−k2 − 1

)
Āeσt − 1

2

(
ik√
4−k2 + 1

)
B̄e−σt,

γ− = S+D
2

= 1
2

(
1− ik√

4−k2

)
Aeσt + 1

2

(
1 + ik√

4−k2

)
Be−σt.

(991)

In the unstable region, it is convenient to introduce the angle ϕ such that

ϕ = arccos
(
k
2

)
, ⇒

k = 2 cosϕ, σ = 2 sin(2ϕ).
(992)

implying

1± ik√
4− k2

= 1± i
cosϕ

sinϕ
= ±i e

∓iϕ

sinϕ
. (993)

At last, from equations (980), (982) we obtain the solution (980) of the
linearized equation (981) describing the evolution of the perturbation of the
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unstable background:

u(x, t) = e2it
{
1 + iϵ

2 sinϕ

[
(Āeσt+iϕ − B̄e−σt−iϕ)eikx + (−Aeσt+iϕ +Be−σt−iϕ)e−ikx

]}
= e2it

{
1 + iϵ

2 sinϕ

[
(Āeikx − Ae−ikx)eσt+iϕ + (−B̄eikx +Be−ikx)e−σt−iϕ

]}
.

(994)

9.3 The Cauchy problem of the anomalous waves

In this section we want to solve the periodic Cauchy problem of the focusing
NLS equation for a generic period initial perturbation of the homogeneous
background solution u(0) = exp(2it) of NLS (what we call the Cauchy prob-
lem of the anomalous waves AWs):

iut + uxx + 2|u|2u = 0,
u(x, 0) = 1 + ϵv(x), v(x+ L) = v(x), 0 < ϵ≪ 1,

(995)

where v(x) is the generic initial periodic perturbation, conveniently expanded
in Fourier series:

v(x) =
∑
j≥1

(
cje

ikjx + c−je
−ikjx

)
, kj =

2π

L
j, |cj| = O(1). (996)

Due to the scaling properties of NLS, we have set

c0 =

∫
R
v(x)dx = 0, (997)

without loss of generality. We also assume to be in the generic case in which
π/L is not an integer.

Let
N = ⌊L/π⌋; (998)

then, from the instability condition |k| < 2 derived in the previous section, it
follows that the first N Fourier modes ±kj, j = 1, . . . , N are unstable, since
they give rise to exponentially growing and decaying waves of amplitudes
O(ϵe±σjt), where the growing rates σj are defined by

σj = kj

√
4− k2j > 0, (999)

while the remaining infinitely many modes give rise to oscillations of ampli-

tude O(ϵe±iωjt), where ωj = kj
√
k2j − 4, and therefore are stable.

For t ≤ O(1), the evolution of the unstable part of the initial condition
is well described by the formulas (994) of the previous section. We just have
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to establish a connection between the arbitrary constants A and B in (994)
and the Fourier coefficients cj, c−j, j ≥ 1. For each unstable mode kj, we
evaluate the perturbation in (994) at t = 0, and we compare it the initial
perturbation associated with the kj mode, obtaining:

cj = i
Aje

iϕj−Bje
−iϕj

2 sinϕj
, c−j = i

−Aje
iϕj+Bje

−iϕj

2 sinϕj
(1000)

In terms of the convenient parameters

αj = −kjAj, βj = kjBj, (1001)

the relation with the Fourier coefficients is given by:

cj = − i

σj

(
αje

iϕj + βje
−iϕj
)
, c−j =

i

σj

(
αje

iϕj + βje
−iϕj
)

(1002)

and
αj = e−iϕjcj − eiϕjc−j, βj = eiϕjc−j − e−iϕjcj. (1003)

At last the solution of the Cauchy problem (995),(996), for t ≤ O(1), is given
by

u(x, t) = e2it
[
1 +

N∑
j=1

(
2ϵ|αj |
σj

eσjt+iϕj cos[kj(x−Xj)]

+
2ϵ|βj |
σj

e−σjt−iϕj cos[kj(x− X̃j)] +O(ϵ) oscillations
)]

+O(ϵ2),

(1004)

where the parameters αj, βj are the linear combination (1225) of the Fourier
coefficients cj, c−j of the initial perturbation, and

Xj =
arg(αj)+π/2

kj
, X̃j =

− arg(βj)+π/2

kj
, j = 1, . . . , N. (1005)

VERIFY IT!
Equations (1004),(1005),(1225) describe the first linear stage of MI, gov-

erned by the focusing NLS equation linearized about the background solution
(953).
Therefore
the initial datum splits into exponentially growing and decaying waves, respec-
tively the α- and β-waves, each one carrying half of the information encoded
into the unstable part of the initial datum, plus small oscillations associated
with the stable modes, remaining small during the evolution.

The jth unstable mode becomes O(1) at times of O(σ−1
j | log ϵ|); therefore

the most unstable modes, the ones appearing first, are the modes with larger
growth rate σj. It follows that, at logarithmically large times, one enters
the (first) nonlinear stage of MI, the linearized NLS theory cannot be used
anymore, and, to describe the evolution, the full integrability machinery of
the finite gap method for NLS must be used.
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9.4 The case of one unstable mode and the Fermi-
Pasta-Ulam recurrence of anomalous waves [17, 18,
19]

From now on we concentrate on the simplest case of only one unstable mode:

N = 1 ⇔ π < L < 2π; (1006)

then equations (1004) simplify to

u(x, t) = e2it
[
1 +

(
2ϵ|α1|
σ1

eσ1t+iϕ1 cos[k1(x−X1)]

+2ϵ|β1|
σ1

e−σ1t−iϕ1 cos[k1(x− X̃1)] +O(ϵ) oscillations
)]

+O(ϵ2),

X1 =
arg(α1)+π/2

k1
, X̃1 =

− arg(β1)+π/2
k1

,

(1007)

and, for

1 ≪ t≪ 1

σ1
ln

(
1

ϵ

)
, (1008)

we have the asymptotics

u(x, t) ∼ e2it
[
1 +

2ϵ|α1|
σ1

eσ1t+iϕ1 cos(k1(x−X1))
]
. (1009)

Therefore we are looking, in the nonlinear region t = O(σ−1
1 | log ϵ|), for

an exact, x-periodic solution of NLS describing the modulation instability
of a single nonlinear mode, matching with (1009) in the overlapping region
1 ≪ t ≪ O(| log ϵ|). The natural candidate for such a solution is, up to an
arbitrary phase factor eiρ, ρ ∈ R, the Akhmediev breather

A(x, t;ϕ,X, T ) = e2it cosh[σ(t−T )+2iϕ]+sinϕ cos[k(x−X)]
cosh[σ(t−T )]−sinϕ cos[k(x−X)]

,

σ = k
√
4− k2 = 2 sin(2ϕ), k = k1 =

2π
L

= 2 cosϕ,
ϕ = arccos

(
k
2

)
= arccos

(
π
L

)
,

(1010)

and since it should appear in the asymptotic region t = O(σ−1
1 | log ϵ|), then

t1 must have the form

t1 =
1

σ1
ln
γ

ϵ
, (1011)

where γ > 0 must be fixed by matching. Evaluating (1010) in the overlapping
region 1 ≪ t≪ O(σ−1

1 | log ϵ|) one obtains (now t− t1 ≪ −1):

eiρA(x, t, x1, t1) ∼ e2it+i(ρ−2ϕ)

(
1 +

ϵσ

γ
eσt+iϕ cos(k(x− x1)

)
. (1012)
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Comparing (1012) and (1009) and imposing a good matching, one fixes all
the free parameters in (966) as follows

k = k1, σ = σ1, ϕ = ϕ1, ρ = 2ϕ1, x1 = X1, (1013)

and

γ =
σ2
1

2|α1|
⇒ t1 = T1 :=

1

σ1
log

(
σ2
1

2ϵ|α1|

)
= O(σ−1

1 | log ϵ|). (1014)

Therefore the first AW appears in the finite t-interval |t−T1| ≤ O(1), and is
described by the Akhmediev breather solution of NLS:

u(x, t) = e2iϕ1A
(
x, t;ϕ1, X1, T1

)
+O(ϵ), (1015)

whose parameters are expressed in terms of the initial data through elemen-
tary functions. It is important to remark that the first AW contains informa-
tions only on half of the initial data (the half encoded in the parameter α1:
the α1-wave), and that the modulus of the first AW generated by the initial
condition (1221),(996) acquires its maximum at t = T1 in the point x = X1,
mod L; and the value of this maximum is

|u(X1, T1)| = 1 + 2 sinϕ1 < 1 +
√
3 ∼ 2.732. (1016)

This upper bound, 2.732 times the background amplitude, is consequence
of the formula sinϕ1 =

√
1− (π/L)2, π < L < 2π, and is obtained when

L→ 2π.
We also notice that the position x = X1 of the maximum of the AW

coincides with the position of the maximum of the growing sinusoidal wave
of the linearized theory; this is due to the absence of nonlinear interactions
with other unstable modes, in the simplest case N = 1.

Similar considerations can be made to study this Cauchy problem at
negative times. In the time interval

1 ≪ |t| ≪ O

(
1

σ1
ln

(
1

ϵ

))
, t < 0, (1017)

we have the asymptotics

u(x, t) ∼ e2it
[
1 +

2ϵ|β1|
σ1

e−σ1t−iϕ1 cos(k1(x− X̃1))
]

(1018)

to be matched again with the Akhmediev solution, appearing in the asymp-
totic region t = O(σ−1

1 | log ϵ|), t < 0. Now

t1 = − 1

σ1
ln
γ̃

ϵ
, γ̃ > 0, (1019)
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Evaluating the Akhmediev breather (1010) in the region (1017), since now
t− t1 ≫ 1, we obtain

eiρA(x, t, x1, t1) ∼ e2it+i(ρ+2ϕ1)

(
1 +

ϵσ

γ̃
e−σt−iϕ cos(k(x− x̃1)

)
(1020)

Comparing now (1020) and (1018), we fix the free parameters of the Akhme-
diev breather as follows:

k = k1, σ = σ1, ϕ = ϕ1, ρ = −2ϕ1, x1 = X1,

t1 = −T̃1, T̃1 := 1
σ1

log
(

σ2
1

2ϵ|β1|

)
,

(1021)

obtaining the following result.
The first RW appearing at negative times, in the finite t-interval |t + T̃1| ≤
O(1), is described again by the Akhmediev solution of NLS, but with different
parameters:

u(x, t) = e−2iϕ1A
(
x, t;ϕ1, X̃1,−T̃1

)
+O(ϵ), (1022)

It is important to remark that this AW contains informations only on the
second half of the initial data (the half encoded in the parameter β1: the
β1-wave), and that the modulus of the first AW generated by the initial
condition (1221),(996) acquires its maximum at t = −T̃1 < 0 in the point
x = X̃1.

The AWs at t = −T̃1 and at t = T1 are two consecutive AWs, represented
to leading order by the same exact solution: the Akhmediev breather, space
shifted by X1 − X̃1, and shifted in time by T1 + T̃1. Since NLS is invariant
under t-translations, one infers the following exact AW recurrence, in the
case of a single unstable mode.

The solution of the x-periodic Cauchy problem describes, in the case of one
unstable at each appearance, are expressed in terms of the initial data via
elementary functions. T1 is the first appearance time of the AW (the time at
which the AW achieves the maximum of its modulus), X1, is the position of
such a maximum, 1 + 2 sinϕ1 is the value of the maximum,

∆T = T1 + T̃1 =
2

σ1
log

(
σ2
1

2ϵ
√

|α1β1|

)
, (1023)

is the recurrence time (the time interval between two consecutive AW appear-
ances),

∆X = X1 − X̃1 =
arg(α1β1)

k1
, mod L (1024)
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is the x-shift of the position of the maxima in the recurrence. In addition,
after each appearance, the AW changes the background by the multiplicative
phase factor exp(4iϕ1) (see Fig. 50).

Figure 50: 3D plot and density plot of |u(x, t)| describing the AW recurrence
of one unstable mode.

This exact AW recurrence is an interesting example of “ideal” Fermi-
Pasta-Ulam recurrence [15]. To show it, we first observe that the Akhmediev
solution (1010) can be expanded in Fourier series as follows

A(x, t;ϕ,X, T ) =
∑
n∈Z

Cn(t,X, T )e
iknx, kn = nk1 =

2π

L
n, (1025)

and its Fourier coefficients have a simple analytic expression, obtained via
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standard contour integration:

Cn(t,X, T ) =
1
L

L∫
0

e−iknxA(x, t;ϕ,X, T ) =

e2ite−iknX
(
−δn0 + A(t−T,ϕ)+B(t−T,ϕ)√

B2(t−T,ϕ)−1

(
B(t− T, ϕ)−

√
B2(t− T, ϕ)− 1

)|n|)
,

(1026)
where

A(t− T, ϕ) =
cosh[σ(t− T ) + 2iϕ]

sinϕ
, B(t− T, ϕ) =

cosh[σ(t− T )]

sinϕ
. (1027)

To be consistent with the condition that the background at t = 0 is 1, while
the background of (1010) in the remote past is exp(−2iϕ), then the Fourier
coefficients in (1025) should be multiplied by that phase: Cn → c̃n = Cne

−2iϕ.
If the initial condition excites the only unstable mode k1: u(x, 0) = 1 +

ϵ(c1 exp(ik1x) + c−1 exp(−ik1x)), then:
i) the energy is initially concentrated on the zero mode (the background) and
on the first mode (the monochromatic perturbation):

|u0(0)|2 = 1, |um(0)|2 = δm,±1ϵ
2|c±1|2, (1028)

where um(t), m ∈ Z are the Fourier coefficients of the NLS solution u(x, t).
ii) At the first appearance time T1 of the AW, described by the Akhmediev
solution, the energy is distributed on all the Fourier modes according to the
simple law

|u0(T1)|2 = |c̃0(T1)|2 = (2 cosϕ1 − 1)2 +O(ϵ), 0 < ϕ1 <
π
2
,

|um(T1)|2 = |c̃m(T1)|2 = 4(cosϕ1)
2
(
tan
(
ϕ1
2

))2|m|
+O(ϵ), m ̸= 0.

(1029)

iii) At the recurrence time ∆T , it is re-absorbed by the zero and first modes:

|u0(∆T )|2 = 1 +O(ϵ), |um(∆T )|2 = δm,±1ϵ
2|c±1|2 +O(ϵ), (1030)

starting an exact FPUT recurrence.

The FPUT recurrence was first observed Fermi, Pasta, Ulam, Tsingou through numerical integration,
using the first computers in Los Alamos, in the study of the dynamics of N anharmonic oscillators under
a nearest neighbor interaction:

q̈j(t) = − ∂H
∂qj(t)

, j = 1, . . . , N, H(q) =
N∑

k=1

(
1
2
q̇2j + V (qk+1 − qk)

)
,

V (x) = 1
2
x2 + α

3!
x2 + β

4!
x4, α, β ∈ R.

(1031)

Giving energy to the first Fourier mode, part of it is distributed among the first Fourier modes, but
eventually is re-absorbed by the first mode, giving rise to an approximately exact recurrence, while one
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expected, due to the nonlinear interaction, a redistribution of energy among all the Fourier modes (see
the following Figure 51):

Figure 51: The figure contained in the original FPUT paper. The energy,
initially given to the first Fourier mode, distributes to the first few modes,
but eventually is reabsorbed by the first mode, starting a recurrence.

To explain this apparent paradox, we proceed as follows. If we are interested in long waves (the
wave-length is much larger than the lattice step h or, equivalently, the lattice step is much smaller than
the wave-length), the continuos limits gives a good description of the process:

qj(t) = q(jh, t) ∼ u(x, t), jh ∼ x, 0 < h≪ 1,

qj±1(t) = q(jh± h, t) ∼ u± hux + h2

2
uxx ± h3

3!
uxxx + h4

4!
uxxxx +O(h5),

(1032)

implying that

qj+1(t)− qj(t) = h
(
ux + h

2
uxx + h2

3!
uxxx + h3

4!
uxxxx +O(h4)

)
,

qj(t)− qj−1(t) = h
(
ux − h

2
uxx + h2

3!
uxxx − h3

4!
uxxxx +O(h4)

)
,

(1033)

and the dynamical system becomes the following PDE (for α = h):

utt − h2uxx = h4uxuxx +O(h6). (1034)

Looking for unidirectional propagation, and using the usual multiscale expansion ansatz

u(x, t) = v(ξ, τ), ξ = x+ ht, τ = h3t, (1035)

one obtains the PDE

vξτ =
1

24
vξξξξ +

α

2
vξvξξ, (1036)

reducing to the integrable KdV equation

wτ =
1

24
wξξξ +

α

2
wwξ, w = vξ. (1037)
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It follows that, if t = O(1/h), the dynamics is described by the linear wave equation implying a rigid
translation of the wave; if t = O(1/h3), the dynamics is described by the nonlinear integrable KdV
equation, implying the numerically observed FPUT recurrence; at larger time scales t = O(1/h5), the
dynamics is described by a nonintegrable PDE, recurrence does not apply anymore, and the energy
distributes on all the Fourier modes, giving rise to an equidistribution of energy (the thermalization).

This AW recurrence is also in good agreement with nonlinear optics exper-
iments in water waves [21] and in nonlinear optics [30]. This last experiment
was performed in Roma after the above theory was developed, to test how
well NLS describes the nonlinear optics of the crystal (see Fig. 52).

Figure 52: The symmetric 3-wave interferometric scheme used to generate the
background wave with a single-mode perturbation propagating in a pumped
photorefractive potassium-lithium-tantalate-niobate (KLTN) crystal.

Since NLS
iψz + ψxx + 2|ψ|2ψ = 0 (1038)

is supposed to describe the above physics only to leading order, one expects
that the exact NLS AW recurrence be replaced by a “FPUT” - type recur-
rence, before thermalization destroys the pattern.

The linearly polarized electric field at the initial face of the crystal is

E = E0 + E1e
i(k1x+Φ1) + E2e

i(−k1x+Φ2), E0, E1, E2 ∈ R+,
k1 =

2π tan θ
λ

.
(1039)

The modulus square of the NLS initial condition ψ(x, 0) = 1 + ϵ(c1e
ik1x +

c−1e
−ik1x) is the relative light intensity

I
I0

= |ψ(x, 0)|2 = 1 + A cos(k1x+B), (1040)
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where

A = 2ϵ|c1 + c−1| = 2
√

I1
I0
+ I2

I0
+ 2

√
I1I2
I0

cos(Φ1 + Φ2)),

B = arg(c1 + c−1) = arctan
( √

I1 sinΦ1−
√
I2 sinΦ2√

I1 cosΦ1+
√
I2 cosΦ2

)
,

I = |E|2, Ij = E2
j , j = 0, 1, 2.

(1041)

The wave number k1 can be varied changing the geometric angle θ; the optical
power A and the phase delay B can be varied adjusting the phases Φ1 and Φ2

(f.i., inserting some glasses the optical path length increases). Two typical
recurrence outputs, with ∆X = L/2 and ∆X = 0 respectively in the upper
and lower pictures in Fig. 53
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Figure 53: Two typical recurrence outputs, with ∆X = L/2 (above), and
∆X = 0 (below)

The intensity at the first appearance in the upper figure in Fig. 53 is in
very good agreement with the Akhmediev profile, see Fig. 54:
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Figure 54: The light intensity at the first appearance in the upper picture
of Fig. 53 is in very good agreement with the Akhmediev profile. The
small circles are the light intensity measures; the continuous curve is what
the theory predicts. The agreement is less and less good in the subsequent
appearances, until the recurrence is completely destroyed.

AW recurrence as basic effect of nonlinear MI in the periodic set-
ting, and the finite gap method The obtained recurrence of AWs can be
predicted from simple qualitative considerations. The unstable mode grows
exponentially and becomes O(1) at logarithmically large times, when one en-
ters the nonlinear stage of MI, and one expects the generation of a transient,
O(1), coherent structure over the unstable background (the AW). Since the
Akhmediev breather describes the one-mode nonlinear instability, it is the
natural candidate to describe such a stage, at the leading order. Due again
to MI, this AW is expected to be destroyed in a finite time interval, and one
enters the third asymptotic stage, characterized, like the first one, by the
background plus an O(ϵ) perturbation. This second linear stage is expected,
due again to MI, to give rise to the formation of a second AW (the second
nonlinear stage of MI), described again by the Akhmediev breather, but, in
general, with different parameters. And this procedure iterates forever, in the
integrable NLS model, giving rise to the generation of an infinite sequence of
AWs described by different Akhmediev breathers. Then the AW recurrence
is a relevant effect of nonlinear MI in the periodic setting.
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9.5 The main spectrum of the periodic problem
As we have seen, the IST is the spectral method (nonlinear analogue of the Fourier transform method for
linear PDEs) used to solve the Cauchy problem on the line for soliton PDEs doing spectral theory on a
suitable operator (the Schrödinger operator for KdV and the Dirac type operator for NLS). Analogously,
if the Cauchy problem to solve is periodic, the method used is the so-called Finite-Gap (FG) method
(nonlinear analogue of the Fourier series method). Here we just mention it, without going deeply into the
theory.

We recall that the ZS Lax pair associated with focusing and defocusing NLS equations iut + uxx +
2η|u|2u = 0, η = ±1 reads

ψ⃗x(λ, x, t) = X̂(λ, x, t)ψ⃗(λ, x, t), ψ⃗t(λ, x, t) = T̂ (λ, x, t)ψ⃗(λ, x, t), (1042)

where

ψ⃗(λ, x, t) =

(
ψ1(λ, x, t)
ψ2(λ, x, t)

)
, X̂ = −iλ

(
1 0

0 −1

)
+ i

(
0 u(x, t)

ηu(x, t) 0

)
,

T̂ (λ, x, t) =

 −2iλ2 + iηu(x, t)u(x, t) 2iλu(x, t)− ux(x, t)

2iηλu(x, t) + ηux(x, t) 2iλ2 − iηu(x, t)u(x, t)

 .

The first equation can be written as a spectral problem:

Lψ⃗(λ, x, t) = λψ⃗(λ, x, t), L :=

(
i∂x u(x, t)

−ηu(x, t) −i∂x

)
. (1043)

Its adjoint (hermitian conjugate) L† with respect to the scalar product

(f⃗ , g⃗) =

L∫
0

2∑
j=1

f̄j(x)gj(x)dx (1044)

reads

L† =

(
i∂x −ηu(x, t)

u(x, t) −i∂x

)
. (1045)

Then, in the defocusing case η = −1, the operator L is self-adjoint and the spectrum is real. In the
focusing case η = 1, the operator L is not self-adjoint and the spectrum contains complex points.

From now on we concentrate on the focusing NLS equation (η = 1). We write now three basic prop-
erties of the problem.

1) If Ψ(λ, x, t) is any fundamental matrix solution of the Lax pair, made of two independent column
vector solutions of (1042), then also

Ψ̃(λ, x, t) = Ψ(λ, x, t)C(λ) is a fundamental solution (1046)

where C(λ) is a nonsingular matrix, constant in x and t.

2) From the periodicity u(x+ L, t) = u(x, t):

ψ⃗x(λ, x+ L, t) = X̂(λ, x+ L, t)ψ⃗(λ, x+ L, t) = X̂(λ, x, t)ψ⃗(λ, x+ L, t),

ψ⃗t(λ, x+ L, t) = T̂ (λ, x+ L, t)ψ⃗(λ, x+ L, t) = T̂ (λ, x, t)ψ⃗(λ, x+ L, t),
(1047)

implying also that
Ψ(λ, x+ L, t) = Ψ(λ, x, t)D(λ), (1048)

where D(λ) is a nonsingular matrix, constant in x and t.

3) Since trX =trT = 0, the Abel theorem (detΨ)x = (trX̂)(detΨ) implies that detΨ(λ, x, t) does not
depend on x and t:

(detΨ(λ, x, t))x = (detΨ(λ, x, t))t = 0. (1049)
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To define the main spectrum, consider the matrix equation

LΨ̃(λ, x, x0, t0) = λΨ̃(λ, x, x0, t0),

where Ψ̃(λ, x, x0, t0) is the fundamental matrix solution fixed by the initial condition Ψ̃(λ, x, x0, t0)
∣∣∣
x=x0

=

I, where I is the 2×2 identity matrix. It is obtained from any other fundamental matrix solution Ψ(λ, x, t)
as

Ψ̃(λ, x, x0, t0) = Ψ(λ, x, t0)Ψ
−1(λ, x0, t0) (1050)

using property 1). Then the monodromy matrix T (λ, x0, t0) is defined by:

T (λ, x0, t0) := Ψ̃(λ, x0 + L, x0, t0). (1051)

The fundamental solution Ψ̃(λ, x, x0, t0) is obtained integrating the ZS spectral problem (analytic in λ),
over the finite interval [x0, x0 + L], with the analytic initial condition I at x0; therefore it is an entire
function of λ, and so is the monodromy matrix T (λ, x0, t0). In addition (1049) and the initial condition
of the monodromy matrix imply that

det Ψ̃(λ, x, x0, t) = detT (λ, x0, t0) = 1; (1052)

indeed:

det Ψ̃(λ, x, x0, t0) = det Ψ̃(λ, x0, x0, t0) = 1 = det Ψ̃(λ, x0 + L, x0, t0) = detT (λ, x0, t0). (1053)

It is easy to verify that, changing the pair of parameters x0, t0 to the parameters x1, t1, one constructs a
monodromy matrix differing from the previous one by a matrix similarity transformation

T̃ (λ, x1, t1) =M−1T (λ, x0, t0)M, M := Ψ(λ, x0, t0)Ψ
−1(λ, x1, t1) (1054)

leaving the spectrum invariant. Therefore the spectrum of the monodromy matrix is a constant of motion.
The eigenvalues and eigenvectors of T (λ) are defined by the eigenvalue equation

T (λ)v⃗ = κv⃗, (1055)

from which

κ± =
tr T (λ)

2
±

√(
tr T (λ)

2

)2

− 1 (1056)

since detT (λ) = 1.
Given λ ∈ C, the eigenvalue and eigenvector of the monodromy matrix are two-valued functions of

λ, and their definition (1056) involves the square root of the entire funtion
(
tr T (λ)

2

)2
− 1; therefore

eigenvalues and eigenvectors are defined on a two-sheeted covering of the λ-plane. This Riemann surface
Γ is called the spectral curve, and is independent of time. If γ ∈ Γ, λ(γ) is the projection of γ on the λ
complex plane. If λ(γ1) = λ(γ2), then κ(γ1)κ(γ2) = 1 (the condition κ+κ− = 1 coming from (1056)).
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From the eigenvectors of T (λ) one constructs the Bloch eigenfunctions of L: Lψ⃗B(x, t) = λψ⃗B(x, t),
defined by the periodicity property

ψ⃗B(x+ L, t) = χψ⃗B(x, t), (1057)

where χ is a proportionality factor (the so-called Floquet multiplier) to be specified. Indeed the Bloch
eigenfunction must be a suitable linear combination of the columns of the fundamental matrix Ψ̃:

ψ⃗B(x, t) = Ψ̃(λ, x, x0, t)A⃗, A⃗ constant vector. (1058)

Then, choosing x0 = 0:

ψ⃗B(L, t0) = Ψ̃(λ,L, 0, t0)A⃗ = T (λ)A⃗,

ψ⃗B(L, t0) = χψ⃗B(0, t0) = χΨ̃(λ, 0, 0, t0)A⃗ = χA⃗
(1059)

implying the eigenvalue equation T (λ)A⃗ = χA⃗. Comparing it with (1055), we infer that the Floquet

multiplier in (1057) is the eigenvalue of T and A⃗ is its eigenvector.
Summarizing, while the monodromy matrix T (λ) is an entire function of λ, its eigenvalues and

eigenfunctions, as well as the Bloch eigenfunctions, are functions of γ ∈ Γ:

T (λ)v⃗(γ) = κ(γ)v⃗(γ), γ ∈ Γ, (1060)

and
ψ⃗B(γ, x, t) = Ψ̃(λ, x, , x0, t)v⃗(γ), γ ∈ Γ,

ψ⃗B(x+ L, t, γ) = κ(γ)ψ⃗B(x, t, γ).
(1061)

The second formula in (1061) implies that, to avoid an undesired exponential growth of the Bloch
eigenfunctions at ±∞, the eigenvalue κ(γ) must satisfy the condition |κ(γ)| = 1. Therefore it is conve-
niently parametrized as

κ(γ) = eip(γ)L, (1062)

in terms of the quasi-momentum p(γ) satisfying the condition Imp(γ) = 0.

|κ(γ)| = 1 ⇔ Imp(γ) = 0. (1063)

The values of γ ∈ Γ satisfying this condition characterize the main spectrum

main spectrum = {γ ∈ Γ : Im p(γ) = 0} = {γ ∈ Γ : |κ(γ)| = 1}
= {λ ∈ C : − 2 ≤ tr T (λ) ≤ 2}. (1064)

In general, this spectrum consists of disconnected lines in the complex λ plane, the so-called “bands”,
separated by “gaps”. The end points of the main spectrum (of the disconnected bands) correspond to the
conditions

tr T (λ) = ±2 ⇔ κ(γ) = ±1 (1065)

(see (1056)); they are associated with periodic and anti-periodic Bloch eigenfunctions, and are square root
branch points or multipole points (when n branch points coincide, they give rise to a multipole point of
multiplicity n); see (1056).
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One can verify that the eigenfunctions of the ZS spectral problem satisfy the following symmetry:

if (ψ1(λ), ψ2(λ))T is a solution of the ZS spectral problem, then (−ψ2(λ̄), ψ1(λ̄))T is also a solution of the

ZS spectral problem. This symmetry implies that trT (λ) = T11(λ) + T11(λ̄), and the conditions (1064),
(1065) defining the main spectrum, the branch points and multipole points imply that, if λ belongs to the
main spectrum, then also λ̄ belongs to the main spectrum: the main spectrum is invariant under
complex conjugation.

We end this section remarking that, if λ ∈ R, then X̂†(λ) = −X̂(λ). Therefore Ψ†(λ) and Ψ−1(λ)
satisfy the same equation:(

Ψ†(λ)
)
x
= −Ψ†(λ)X̂(λ),

(
Ψ−1(λ)

)
x
= −Ψ−1(λ)X̂(λ), λ ∈ R. (1066)

It follows that, if λ ∈ R, one can normalize Ψ(λ) in such a way that Ψ(λ) be a unitary matrix: Ψ†(λ) =
Ψ−1(λ); then also the monodromy matrix is unitary and its eigenvalues satisfy the unitary condition
|κ±| = 1. We conclude that the real axis belongs to the main spectrum.

9.5.1 The main spectrum associated with the background solution
of NLS

We have already calculated in (960) a fundamental solution of the ZS Lax pair corresponding to the
background exp(2it), rewritten here without normalizing its determinant:

Ψ(0)(x, t, λ) = eitσ3

(
eΘ(λ) −(µ+ λ)e−Θ(λ)

(µ+ λ)eΘ(λ) e−Θ(λ)

)
,

Θ(λ) ≡ iµ(x+ 2λt),

detΨ(0)(x, t, λ) = 2µ(µ+ λ),

(1067)

where µ, λ satisfy the constraint
µ2 = λ2 + 1. (1068)
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The fundamental matrix solution Ψ̃(λ, x, , x0, t) reducing to the identity for x = x0 will be

Ψ̃(0)(λ, x, x0, t) = Ψ(0)(λ, x, t)Ψ(0)−1
(λ, x0, t) =

eitσ3

(
cos(µ(x− x0))− iλ

µ
sin(µ(x− x0)) i

sin(µ(x−x0))
µ

i
sin(µ(x−x0))

µ
cos(µ(x− x0)) + iλ

µ
sin(µ(x− x0))

)
e−itσ3 ,

(1069)

leading to the monodromy matrix

T (0)(λ) = Ψ̃(0)(λ, x0 + L, x0, t) =

eitσ3

(
cos(µL)− iλ

µ
sin(µL) i

sin(µL)
µ

i
sin(µL)

µ
cos(µL) + iλ

µ
sin(µL)

)
e−itσ3 .

(1070)

Therefore
tr T (0)(λ) = 2 cos(µL) ⇒ κ± = e±iµL. (1071)

We remark that, although µ =
√
λ2 + 1, the monodromy matrix (1070) is an even function of µ and

depends on µ through µ2 = λ2 + 1; therefore one verifies that T (λ) in an entire function of λ. From
(1071),(1064) we infer that the main spectrum associated with the background solution corresponds to
µ ∈ R; consequently, from µ2 = λ2 + 1, either λ is real (when µ2 > 1) or λ ∈ iR, with |λ| < 1 (when
µ2 < 1):

main spectrum = {λ ∈ R} ∪ {λ ∈ iR, |λ| < 1}. (1072)

The branch points and the double points, characterized by the condition tr T (0)(λ) = 2 cos(µL) = ±2,
are given by

µn =
π

L
n, λ±n = ±λn, λn :=

√
µ2n − 1, n ∈ Z. (1073)

Since, from (1068),

∂λ =
λ

µ
∂µ, ∂2λ =

1

µ3
∂µ +

λ2

µ2
∂2µ, (1074)

it follows that
∂λtr T

(0)(λ) = 2λ
µ
∂µ cos(µL) = − 2Lλ

µ
sin(µL),

∂2λtr T
(0)(λ) = −2L

(
sin(µL)

µ3 + λ2L
µ2 cos(µL)

)
,

(1075)

it follows that the two points (µo, λ
±
0 ) = (0,±i) are branch points:

∂λtr T
(0)(λ)

∣∣∣
(0,±i)

= ∓2iL2 ̸= 0, (1076)

while the remaining end points (µn, λ
±
n ), n ̸= 0 are double points:

∂λtr T
(0)(λ)

∣∣∣
(µn,λ±

n )
= 0, n ̸= 0,

∂2λtr T
(0)(λ)

∣∣∣
(µn,λ±

n )
= (−1)n+1 2L2λ2

n
µ2
n

̸= 0, n ̸= 0.
(1077)
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Near the double points ±λn, n > 1:

tr T (0)(λ) = (−1)n
[
2−

λ2nL
4

π2n2
(λ− λn)

2 +O((λ− λn)
4)

]
. (1078)

9.5.2 The main spectrum associated with the perturbation of the
background solution

Apart from the branch points ±i, the other end points of the spectrum are doubly degenerate eigenvalues
(double points). To find how a small generic perturbation resolves such a degeneration, we use a standard
perturbations theory for time independent operators.

Let us compute the effect of the generic initial perturbation

u(x, 0) = 1 + ϵv(x), v(x) =
∑
n ̸=0

cne
2iµnx, µn =

π

L
n, (1079)

using the standard perturbation theory.
For the perturbed spectral operator L:

L = L0 + ϵL1, L0 =

(
i∂x 1
−1 −i∂x

)
, L1 =

(
0 v(x)

−v(x) 0

)
(1080)

we consider as basis that associated with the unperturbed problem, and define

|n,± >:=

(
1

µn ± λn

)
eiµnx, n ∈ Z, (1081)

with the notation

λn =
√
µ2n − 1, λ−n = λn, µ−n = −µn. (1082)

Therefore we associate with the eigenvalue λn the two eigenvectors | ±n(0),+ >, and with the eigenvalue
−λn the two eigenvectors | ± n(0),− >:

L0| ± n(0),+ >= λn| ± n(0),+ >, L0| ± n(0),− >= −λn| ± n(0),− > (1083)
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We also introduce the dual basis < l,±| such that

< l(0),±|m(0),± >= δlm, < l(0),∓|m(0),± >= 0. (1084)

We first observe that any linear combination of |n(0),+ > and | − n(0),+ > has eigenvalue λn:

L0|ψ(0)
n >= λn|ψ(0)

n >, |ψ(0)
n >= an|n(0),+ > +a−n| − n(0),+ >), (1085)

and the same for the eigenstates | ± n(0),− > of −λn.
We concentrate only on the perturbation of the eigenvalue problem (1083) with eigenvalue λn. The

perturbed eigenvalue problem reads

(L0 + ϵL1)|n,+ >= En|n,+ >, En = λn + ϵ∆En (1086)

and we expand the eigen-ket |n,+ > in the basis of the unperturbed problem:

|n >= an|n(0),+ > +a−n| − n(0),+ > +ϵ
∑
k ̸=0

(
b+k |k(0),+ > +b−k |k(0),− >

)
. (1087)

Then the RHS and LHS of (1086) become

(L0 + ϵL1)|n,+ >= λn
(
an|n(0),+ > +a−n| − n(0),+ >

)
+ ϵ
[
anL1|n(0),+ >

+a−nL1| − n(0),+ > +
∑
k ̸=0

λk

(
b+k |k(0),+ > −b−k |k(0),− >

) ]
+O(ϵ2),

(λn + ϵ∆En)|n,+ >= λn
(
an|n(0),+ > +a−n| − n(0),+ >

)
+ ϵ
[
∆En(an|n(0),+ >

+a−n| − n(0),+ >) + λn
∑
k ̸=0

(
b+k |k(0),+ > +b−k |k(0),− >

) ]
+O(ϵ2),

(1088)

implying the following equation at O(ϵ):

anL1|n(0),+ > +a−nL1| − n(0),− >= ∆En
(
an|n(0),+ > +a−n| − n(0),+ >

)
+
∑
k ̸=0

[
(λn − λk)b

+
k |k(0),+ > +(λn + λk)b

−
k |k(0),− >

]
. (1089)

Now we apply the bras < ±n(0),+| to this equation, using (1084), obtaining the 2× 2 matrix eigenvalue
equation

Anan = ∆Enan, (1090)

where

An :=

(
< −n(0)|L1| − n(0) > < −n(0)|L1|n(0) >

< n(0)|L1| − n(0) > < n(0)|L1|n(0) >

)
,

an =

(
a−n

an

)
.

(1091)

Then the two eigenvalues ∆E±
n of An give the O(ϵ) corrections to the two branch points arising for the

double point λn:
E±

n = λn + ϵ∆E±
n , , (1092)

and the corresponding eigenvectors a±n give the proper linear combination of the unperturbed eigenstates
obtained from |n± > when ϵ→ 0:

|n±,+ > → an
±|n(0),+ > +a±−n| − n(0),+ >, ϵ→ 0. (1093)

Let us construct now the branch points of the main spectrum corresponding to the perturbation given
in (1079), (1080).

Recalling that

|m,± >=

(
1

µm ± λm

)
eiµmx, (1094)
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we obtain

L1|m,± >=
∑
n ̸=0

(
cn(µm ± λm)eiµm+2nx

−c̄neiµm−2nx

)
, (1095)

that has to be expanded into the basis, obtaining

L1|m,± >=
∑
n ̸=0

[
cn(µm±λm)

2λm+2n

(
(λm+2n − µm+2n)|m+ 2n,+ >

+(λm+2n + µm+2n)|m+ 2n,− >
)
− cn

2λm−2n
(|m− 2n,+ > −|m− 2n,− >)

]
.

(1096)

applying the bras < l,±| and recalling (1084), we obtain

< l,+|L1|m,± >= 1
2λl

[
c l−m

2
(µm ± λm)(λl − µl)− cm−l

2

]
,

< l,−|L1|m,± >= 1
2λl

[
c l−m

2
(µm ± λm)(µl + λl) + cm−l

2

]
.

(1097)

At last
< −n(0),+|L1| − n(0),+ >=< n(0),+|L1|n(0),+ >= 0,

< −n(0),+|L1|n(0),+ >= 1
2λn

[c−n(µn + λn)2 − c̄n] = − eiϕn

2λn
αn,

< n(0),+|L1|n(0),− >= 1
2λn

[cn(µn − λn)2 − c̄−n] = − e−iϕn

2λn
βn,

(1098)

and

A+
n = − 1

2λn

(
0 αneiϕn

βne−iϕn 0

)
, (1099)

where
αn = e−iϕncn − eiϕnc−n, βn = eiϕnc−n − e−iϕncn. (1100)

The eigenvalues and eigenvectors of A+
n are:

A+
n : ∓

√
αnβn
2λn

, (±eiϕn
√
αn/βn, 1)T ; (1101)

therefore the perturbation resolves the degeneration of the double point λn as follows:

El = λn ∓ ϵ
√
αnβn
2λn

+O(ϵ2), l = 2n− 1, 2n. (1102)

so that

(E1 − E2)
2 = −

ϵ2αβ

sin2(ϕ1)
. (1103)
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From formulas (1175), (1176) and (1103), all of them depending on the product αβ, one can write the
following relations, to leading order, between the unstable gap (E1 − E2) and the AW recurrence period
∆T and x-shift ∆X:

∆T = 2
σ1

log

(
σ2
1

2 sinϕ1|E1−E2|

)
,

∆X =
arg(−(E1−E2)

2)
k1

.

(1104)

In the perturbed case, the analogue of equation (1078) is

tr T (λ) = tr T (λ̃1) +
tr T ′′(λ̃1)

2
(λ− λ̃1)

2 +O((λ− λ̃1)
3), (1105)

where λ̃1 is the critical point for tr T (λ). It is possible to show that

λ̃1 − λ1 = O
(
ϵ2
)
, tr T (λ̃1)− tr T (λ1) = O

(
ϵ4
)
, tr T (λ)− tr T (0)(λ) = O

(
ϵ2
)
; (1106)

therefore, to leading order, one can replace in (1105) tr T (λ̃1) by tr T (λ1), and tr T ′′(λ̃1) by tr T (0)′′(λ1) =
2λ2

1L
4

π2 , obtaining

tr T (λ) ∼ tr T (λ1) +
tr T (0)′′(λ1)

2
(λ− λ1)

2 = tr T (λ1) +
λ21L

4

π2
(λ− λ1)

2. (1107)

As a 1st simplification, we close all gaps associated with the stable modes since the associated
perturbations remain small for all times, and do not affect essentially the solution.
This finite 2N -gap approximation is non standard: in the usual finite-gap approximation, one closes gaps
smaller than a certain constant (the same criterion used when one truncates the Fourier series); in our
case, all gaps are small, and the criterion for closing a gap is the stability of the corresponding mode. The

spectral curve Γ of genus 2N is algebraic: ν2 =
2N∏
j=0

(λ− Ej)(λ− Ej), and the FG solution u(x, t) can be

written in terms of the Riemann theta-functions.
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9.6 The effect of dissipation on the AW dynamics
Since dissipation can hardly be avoided in all natural phenomena involving AWs, a natural question arises
at this point. What is the effect of a small dissipation on the NLS periodic AW dynamics?

i(ut + νu) + uxx + 2|u|2u = 0, 0 < ν ≪ 1 (1108)

If the initial perturbation is sufficiently small, a small dissipation can quench the growth process before
the nonlinear effects become relevant, stabilizing the MI, and

Tdiss =
1

ν
log

(
2|a|
k

)
(1109)

is the time at which the unstable mode k becomes stable.

But what happens in the interesting case in which dissipation is small and Tdiss ≫ T (1)?
In [21] water tank and numerical experiments show what happens: a recurrence of ABs with ∆X = L/2
shift:

The wave facility in Sydney:

The tank experiment (left) and the numerics with dissipation (right):
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The effect of a small linear dissipation (loss) or of a small linear gain is described by equation

i(ut + νu) + uxx + 2|u|2u = 0, ν ∈ R, 0 < |ν| ≪ 1 (1110)

(ν > 0 in the case of loss and ν < 0 in the case of gain). In matrix form the equation becomes:

i(Ut + νU) + Uxx + 2U3 = 0, U =

(
0 u(x, t)

u(x, t) 0

)
. (1111)

If u evolves according to NLS, the trace of the monodromy matrix and the spectral curve are constants of
motion. Now we calculate how the trace of the monodromy matrix, and, as a corollary, the spectral curve
evolve in time in the presence of a small loss or gain. The calculation of the variation of the monodromy
matrix uses a standard formula for ODEs coming from the method of variation of constants.

We first observe that, given the ZS

Ψx = X̂Ψ, X̂(x, λ) = −iλσ3 + iU, U =

(
0 u(x, t)

u(x, t) 0

)
(1112)

a small variation of X̂:

X̂ → X̂ + δX̂, δX̂ = iδU = i

(
0 δu(x, t)

δu(x, t) 0

)
(1113)

induces a small variation of the solution Ψ → Ψ+ δΨ. Solving

(Ψ + δΨ)x = (X̂ + iδU)(Ψ + δΨ) (1114)

up to O(δ), one obtains the following inhomogeneous version of the ZS problem for δΨ:

(δΨ)x = X̂δΨ+ iδUΨ. (1115)

Using the method of variation of the constants, we look for a solutions in the form δΨ = ΨδA, obtaining
the equation

(δA)x = iΨ−1δUΨ ⇒ δA = i

x∫
0

Ψ−1(x′)δU(x′)Ψ(x′)dx′ (1116)

(wlg we have chosen the integration constant in such a way that δΨ(0) = 0), implying

δΨ(x) = iΨ(x)

x∫
0

Ψ−1(x′)δU(x′)Ψ(x′)dx′. (1117)

The corresponding variation of the monodromy matrix T (λ) → T (λ) + δT (λ) is defined as

T (λ) + δT (λ) = [Ψ(L, λ) + δΨ(L, λ)][Ψ(0, λ) + δΨ(0, λ)]−1

= [Ψ(L, λ) + δΨ(L, λ)]Ψ−1(0, λ) = T (λ) + δΨ(L, λ)Ψ−1(0, λ),
(1118)

where we have used δΨ(0, λ) = 0, from which we infer that

δT (λ) = iΨ(L, λ)
L∫
0

Ψ−1(x, λ)δU(x)Ψ(x, λ)Ψ−1(0, λ)dx. (1119)

Therefore

δT (λ) = i
L∫
0

Ψ̃(L, x, λ)δU(x)Ψ̃(x, 0, λ)dx, (1120)
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where we have used the definition (1050) of Ψ̃:

Ψ̃(λ, x, x0, t) = Ψ(λ, x, t)Ψ−1(λ, x0, t). (1121)

Applying the trace to this matrix equation we obtain

trδT (λ, t) = i
L∫
0

tr
(
Ψ̃(L, x, λ)δU(x)Ψ̃(x, 0, λ)

)
dx

= i
L∫
0

tr
(
Ψ̃−1(λ, x+ L,L, t)Ψ̃(λ, x+ L,L, t)Ψ̃(L, x, λ)δU(x)Ψ̃(x, 0, λ)

)
dx

= i
L∫
0

tr
(
Ψ̃(λ, x+ L,L, t)Ψ̃(λ,L, x, t)δU(x, t)Ψ̃(λ, x, 0, t)Ψ̃−1(λ, x+ L,L, t)

)
dx

= i
L∫
0

tr
(
Ψ̃(λ, x+ L, x, t)δU(x, t)

)
dx.

(1122)

In the last step we used again the definition (1050) of Ψ̃, implying both the periodicity

Ψ̃(λ, x, 0, t)Ψ̃−1(λ, x+ L,L, t) = I (1123)

and the property
Ψ̃(λ, x, x1, t)Ψ̃(λ, x1, x0, t) = Ψ̃(λ, x, x0, t). (1124)

Choosing δU = Utdt = [iσ3(Uxx + 2U3) − νU ]dt, then δtrT = (trT )tdt; substituting these variations

into equation (1122) and taking into account that
L∫
0

tr
[
Ψ̃(λ, x+ L, x, t)σ3

(
Uxx(x, t) + 2U3(x, t)

)]
dx = 0,

since the main spectrum is invariant with respect to the NLS dynamics, it follows that

(trT )t(λ, t) = −iν
L∫

0

tr
[
Ψ̃(λ, x+ L, x, t)U(x, t)

]
dx. (1125)

At last, integrating this equation over time, from 0 to t, one obtains the variation of trT in the time
interval [0, t]:

∆trT (λ, t) = −iν
t∫

0

dt̃

 L∫
0

tr
[
Ψ̃(λ,L+ x, x, t̃)U(x, t̃)

]
dx

 =

= −iν
t∫

0

dt̃

 L∫
0

[
Ψ̃21(λ, x+ L, x, t̃)u(x, t̃) + Ψ̃12(λ, x+ L, x, t̃)u(x, t̃)

]
dx

 .
The calculation of the above integral with high genus theta-functions is very complicated. But, to leading
order, this integral can be explicitly calculated in terms elementary functions using the following properties
of this solution:

1. Near each AW appearance the solution is well approximated by the Akhmediev breather.

2. Far from the AW appearance, the integral over the x-period tends to zero exponentially in t.
Therefore the integral over the finite time interval of each AW appearance can be well approximated
by the integral over the whole line −∞ < t <∞ of the Akhmediev solution.

We conclude that, to leading order,
∆trT (λ, t) = nappνJ(λ),

where napp is the number of AW appearances in the time interval [0, t], and

J(λ) = −i
+∞∫

−∞

dt

 L∫
0

[
Ψ̃21(λ, x+ L, x, t)u(x, t) + Ψ̃12(λ, x+ L, x, t)u(x, t)

]
dx

 , (1126)

where u(x, t) is the Akhmediev breather and Ψ̃(λ, x + L, x, t) is the corresponding fundamental matrix.
Let us recall that, to calculate the variation of the curve we need both ∆trT (λ, t) and J(λ) at the point
λ = λ1. To compute Ψ̃(λ, x + L, x, t) it is convenient to use the classical DT for NLS, constructed in a
previous chapter.
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9.6.1 Darboux transformation of the constant background

We recall that, if Ψ(0)(λ, x, t) is a solution of the ZS Lax pair for U = U(0) =

[
0 u(0)(x, t)

ū(0)(x, t) 0

]
,

then Ψ(x, t, λ) is a solution of the ZS Lax pair for U =

[
0 u(x, t)

ū(x, t) 0

]
, where

Ψ(x, t, λ) =
(
I +

2iIm(λ1)
λ−λ1

P (x, t)
)
Ψ(0)(x, t, λ),

P (x, t) = 1
|q1|2+|q2|2

(
−q̄2
q̄1

)
(−q2, q1) = 1

|q1|2+|q2|2

(
|q2|2 −q̄2q1
−q2q̄1 |q1|2

)
,

(1127)

u(x, t) = u(0)(x, t)− 4iImλ1
q1q2

|q1|2 + |q2|2
, (1128)

and q(x, t) = (q1(x, t), q2(x, t))T is a vector solution of the ZS Lax pair for λ = λ1. We observe that
P (x, t) is an orthogonal projector.

We apply this transformation to the constant background. As we have already seen, the unperturbed
spectral curve Γ0 is rational, and a point γ ∈ Γ0 is a pair of complex numbers γ = (λ, µ) satisfying the
equation µ2 = λ2 + 1, parametrized by

λ = i sin(ϕ), µ = cos(ϕ), ⇒ λ+ µ = eiϕ.

As we have already seen, the Bloch eigenfunctions for the operator L0 can be easily calculated
explicitly:

ψ⃗±(γ, x) =

[
eit[

λ(γ)± µ(γ)
]
e−it

]
e±iµ(γ)x±2iλ(γ)µ(γ)t, (1129)

L0ψ
±(γ, x) = λ(γ)ψ±(γ, x),

or, in a different normalization,

ψ⃗±(ϕ, x) =

[
eit∓iϕ/2

±e−it±iϕ/2

]
e±i cos(ϕ)x∓sin(2ϕ)t. (1130)

Denote by q⃗ the special solution of the ZS Lax pair, for u = u0, and λ = λ1, obtained adding up the two
vector solutions (1130):

q⃗(x, t) =

[
q1
q2

]
=

[
eit
(
e−iϕ1/2+i cos(ϕ1)x−sin(2ϕ1)t + eiϕ1/2−i cos(ϕ1)x+sin(2ϕ1)t

)
e−it

(
eiϕ1/2+i cos(ϕ1)x−sin(2ϕ1)t − e−iϕ1/2−i cos(ϕ1)x+sin(2ϕ1)t

) ] (1131)

= 2

[
eit cos( k1

2
x− ϕ1/2 + iσ1

2
t)

ie−it sin( k1
2
x+ ϕ1/2 + iσ1

2
t)

]
, (1132)

where
λ1 = i sin(ϕ1), µ1 = cos(ϕ1), k1 = 2 cos(ϕ1), σ1 = 2 sin(2ϕ1),

and we assume ϕ1 to be real. Then q⃗(x+L, t) = −q⃗(x, t) is anti-periodic, P (x+L, t) = P (x, t) is periodic,
being quadratic in q⃗(x, t), and the dressed potential is also periodic and reads (verify it!)

u(x, t) = e2it − 4λ1
Den(x,t)

q1(x, t)q2(x, t) = e2it
cosh[σ1t+2iϕ1]−sin(ϕ1) sin(k1x)

cosh(σ1t)+sin(ϕ1) sin(k1x)
, (1133)

where
Den(x, t) = |q1(x, t)|2 + |q2(x, t)|2 = 4 [cosh(σ1t) + sin(ϕ1) sin(k1x)] .

It coincides with the Akhmediev breather solution (965),(966) introducing suitable free parameters corre-
sponding to the x and t translation symmetries of NLS.

If u = u(0)(x, t), then we can choose

Ψ(0)(x, t, λ) = eitσ3

(
eiµ(x+2λt) −(λ+ µ)e−iµ(x+2λt)

(λ+ µ)eiµ(x+2λt) e−iµ(x+2λt)

)
. (1134)
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Consequently the corresponding fundamental matrix reads:

Ψ̃(0)(x, y, t, λ) = Ψ(0)(x, t, λ)
(
Ψ(0)(y, t, λ)

)−1

=

(
cos(µ(x− y))− iλ

µ
sin(µ(x− y)) i

µ
sin(µ(x− y))e2it

i
µ
sin(µ(x− y))e−2it cos(µ(x− y)) + iλ

µ
sin(µ(x− y))

)
= 1

µ

(
cos(µ(y − x)− ϕ) i sin(µ(y − x))e2it

i sin(µ(y − x))e−2it cos(µ(y − x) + ϕ)

)
,

(1135)

with

∂λΨ̃
(0)(x, y, t, λ) =

i sin(µ(y − x))

µ3

(
−1 −λe2it

−λe−2it 1

)
+ (1136)

+
λ(x− y)

µ2

(
− sin(µ(x− y)− ϕ) i cos(µ(x− y))e2it

i cos(µ(x− y))e−2it − sin(µ(x− y) + ϕ)

)
.

Consequently:
Ψ̃(0)(λn, x+ L, x, t) = (−1)nI,

∂λΨ̃
(0)(λ, x+ L, x, t)

∣∣∣∣
λ=λn

= (−1)nn iλnπ
µ3
n

(
−λn e2it

e−2it λn

)
.

(1137)

If u is the potential (1133), dressed from the background u(0), then the corresponding transition
matrix reads (from (1127))

Ψ̃(λ, x, y, t) = Ψ(λ, x, t)Ψ(0)(λ, y, t)

=
(
I + 2i sinϕ1

λ−λ1
P (x, t)

)
Ψ(0)(x, t, λ)(Ψ(0)(λ, y, t))−1

(
I + 2i sinϕ1

λ−λ1
P (y, t)

)−1

=
(
I + 2i sinϕ1

λ−λ1
P (x, t)

)
Ψ̃(0)(λ, x, y, t)

(
I − 2i sinϕ1

λ−λ1+2i sinϕ1
P (y, t)

)
.

(1138)

Choosing x → x + L, y → x, and λ ∼ λ1, ............... Evaluating (1138) at y = x + L, we observe that

qj(x+L) = −qj(x), j = 1, 2, implying Φ̂(0)(λ1, x+L, t) = −Φ̂(0)(λ1, x, t) and λ−τ(x+L, t) = λ−τ(x, t).
In addition, if λ ∼ λ1:

Ψ̃(0)(λ, x+ L, x, t) = Ψ̃(0)(λ1, x+ L, x, t) +
∂Ψ̃(0)(λ,x+L,x,t)

∂λ
|λ=λ1

(λ− λ1) +O(λ− λ1)2

= −I + iλ1π

µ3
1

(
λ1 −e2it

−e−2it −λ1

)
(λ− λ1) +O(λ− λ1)2,

λ− τ(y, t) = λ1−λ1
Den(y,t)

[
−q2(y, t)
q1(y, t)

]
[−q2(y, t), q1(y, t)] +O(λ− λ1),

(λ− τ(x, t))−1 = 1
(λ−λ1)Den(x,t)

[
q1(x, t)
q2(x, t)

]
[q1(x, t), q2(x, t)] +O(1).

(1139)

Therefore

Ψ̃(λ, x+ L, x, t) = (λ− τ(x, t))

(
−I − iλ1π

µ3
1

(
−λ1 e2it

e−2it λ1

)
(λ− λ1)

)
(λ− τ(x, t)))−1

= −I + λ1−λ1
Den(x,t)

[
−q2(x, t)
q1(x, t)

]
[−q2(x, t), q1(x, t)] iπλ1

µ3
1

(
λ1 −e2it

−e−2it −λ1

)
×[

−q1(x, t)
q2(x, t)

]
[q1(x, t), q2(x, t)]

= −I + 2πiλ2
1

µ3
1

f(x,t)

Den2(x,t)

[
−q2(x, t)q1(x, t) −q2(x, t)q2(x, t)
q1(x, t)q1(x, t) q1(x, t)q2(x, t)

]
,

(1140)

where
f(x, t) := e2itq22(x, t)− e−2itq21(x, t)− 2i sinϕ1 q1(x, t)q2(x, t). (1141)
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9.7 The effect of dissipation on the main spectrum and
on the dynamics [11]

Using (1126) we finally write explicitely the integral J(λ1), defined in (1126), describing the variation of
trT (λ1) at each AW appearance:

J(λ1) = − 2π sin2 ϕ1
|a| cos3 ϕ1

+∞∫
−∞

dt
L∫
0

dx
f(x,t)g(x,t)

Den2(x,t)
,

g(x, t) = u(x, t)q̄1(x, t)
2 − ū(x, t)q̄2(x, t)

2.

(1142)

The following two important simplifications

f(x, t) = e2itq22(x, t)− e−2itq21(x, t)− 2i sinϕ1 q1(x, t)q2(x, t) = −4 cos2(ϕ1),

g(x, t) = u(x, t)q̄1(x, t)
2 − ū(x, t)q̄2(x, t)

2 = 4 (cos(2ϕ1)− sin(ϕ1) sin(k1x− iσ1t)) ,
(1143)

lead to the double integral

J(λ1) = 2π
sin2 ϕ1

cosϕ1

+∞∫
−∞

dt

L∫
0

dx
cos(2ϕ1)− sin(ϕ1) sin(k1x− iσ1t)

(cosh(σ1t) + sin(ϕ1) sin(k1x))2
=

= 2π2 sin2(ϕ1)

+∞∫
−∞

cosh(σ1t)

(cosh2(σ1t)− sin2(ϕ1))3/2
dt (1144)

=
2π2 sin2(ϕ1)

σ1

∞∫
−∞

d(sinh(σ1t))

(sinh2(σ1t) + cos2(ϕ1))3/2
=
π2 sinϕ

cos3 ϕ
.

The integration with respect to x has been done using contour integration. The integration wrt t is even
more elementary. Therefore the variation ∆1(trT (λ1)) of trT (λ1), due to a single appearance of the AW,
is given by

∆1(trT (λ1)) = νJ(λ1) = ν π2 sinϕ1
cos3 ϕ1

. (1145)

Evaluating (1107), rewritten here for completeness:

tr T (λ) ∼ tr T (λ1) +
λ21L

4

π2
(λ− λ1)

2 (1146)

at λ = E1 and recalling that tr T (E1) = −2 we obtain

−2 ∼ tr T (λ1) +
λ21L

4

π2
(E1 − λ1)

2. (1147)

Since E1 − E2 = 2(E1 − λ1), we have

trT (λ1) ∼ −2 +
sin2(ϕ1)L4

4π2
(E1 − E2)

2

(
= −2− ϵ2

L4

4π2
αβ, at t = 0

)
. (1148)

Then, due to (1145) and (1148), after each appearance:

ν
π2 sinϕ1

cos3 ϕ1
= ∆1(trT (λ1)) =

L2 sin2 ϕ1

4 cos2 ϕ1
∆1

(
(E1 − E2)

2
)
. (1149)

Therefore we have established that, after each appearance of the AW, the square of the gap varies of the
same O(ν) quantity:

∆1

(
(E1 − E2)

2
)
= 4ν cot(ϕ1) (1150)
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with (see (1103))

(E1 − E2)
2

∣∣∣∣
t=0

= −
ϵ2αβ

sin2 ϕ1
. (1151)

We conclude that

(E
(m)
1 − E

(m)
2 )2 = −

ϵ2αβ

sin2 ϕ1
+ 4mν cotϕ1, m ≥ 0, (1152)

where E
(m)
1 , E

(m)
2 are the positions of the branch points of the gap after the mth AW appearance. This

formula implies that, as m increases, the gap tends to become horizontal if ν > 0 (loss), or vertical if
ν < 0 (gain) (see Figure 55). The spectral description of the two asymptotics states is therefore given by
the elementary formula

(E
(m)
1 − E

(m)
2 )2 = 4mν cotϕ1 (1153)

showing that the length of the gap grows through the law

|E(m)
1 − E

(m)
2 | = 2

√
m|ν| cotϕ1. (1154)

Figure 55: The figure contains the numerical experiment illustrated in the
central picture of Figure 2, together with the corresponding time evolution of
the gap E1−E2, due to each AW appearance. It shows how the gap E1−E2

tends to become horizontal as the number of AW appearances increases, in
the case of loss (in the case of gain, the gap would tend to become vertical).
The quantitative agreement among the numerical output, the analytic for-
mulas (1160)-(1157) describing the AW dynamics, and the analytic formula
(1152) describing the position of the gap after each AW appearance is ex-
tremely good.
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It is also convenient to introduce the quantity Q such that

ϵ2∆1Q = − sin2(ϕ1) ∆1(E1 − E2)
2, Q

∣∣∣∣
t=0

= αβ. (1155)

Then also the variation of Q after each appearance of the AW is constant:

∆1Q = Qm+1 −Qm = −
ν

ϵ2
2 sin(2ϕ1) = −

νσ1

ϵ2
, Q0 = αβ (1156)

implying

Qm = αβ −
ν

ϵ2
σ1m, m ≥ 1. (1157)

Therefore the AW recurrence without loss or gain:

u(x, t) =
n∑

m=0
A
(
x, t;ϕ1, x(m), t(m)

)
eiρ

(m) − 1−e4inϕ1

1−e4iϕ1
e2it, x ∈ [0, L], (1158)

where the parameters x(m), t(m), ρ(m), m ≥ 0, are defined in terms of the initial data by the
following elementary functions

x(m) = X(1) + (m− 1)∆X, t(m) = T (1) + (m− 1)∆T,

X(1) = argα
k1

+ L
4
, ∆X =

arg(αβ)
k1

, (mod L),

T (1) ≡ 1
σ1

log
(

2 sin2(2ϕ1)
ϵ|α|

)
= 1

σ1
log

(
σ2
1

2ϵ|α|

)
,

∆T = 1
σ1

log
(

4 sin4(2ϕ1)

ϵ2|αβ|

)
= 1

σ1
log

(
σ4
1

4ϵ2|αβ|

)
,

ρ(m) = 2ϕ1 + (m− 1)4ϕ1,

(1159)

is significantly modified by the small loss/gain in the following way. The solution is still
described by a recurrence of Akhmediev breathers

u(x, t) =
ñ∑

m=0
A
(
x, t;ϕ1, x̃(m), t̃(m)

)
eiρ

(m) − 1−e4inϕ1

1−e4iϕ1
e2i|a|

2t, x ∈ [0, L], (1160)

where x̃(1), t̃(1) are essentially the same as in (1159):

x̃(1) = x(1), t̃(1) = t(1); (1161)

but now
∆Xm := x̃(m+1) − x̃(m) =

arg(Qm)
k1

(mod L),

∆Tm := t̃(m+1) − t̃(m) = 1
σ1

log
(

4 sin4(2ϕ1)

ϵ2|Qm|

)
= 1

σ1
log

(
σ4
1

4ϵ2|Qm|

)
,

(1162)

where Qm is defined in (1157).
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Figure 56: The density plot of |u(x, t)|, with −L/2 ≤ x ≤ L/2, 0 ≤ t ≤ 100,
L = 6, ϵ = 10−4, a = 1, for generic initial data: c1 = 0.5 and c−1 = 0.15−0.2i,
obtained using the refined split-step method [?]. From left to right: ν = 0,
ν = 10−9 < ϵ2 = 10−8, and ν = 10−5 ≫ ϵ2. In the left figure we have the usual
AW recurrence described by formulas (1158)-(1159). In the central figure, the
solution tends to the asymptotic state with ∆Xm → L/2, after a relatively
long transient. In the right figure, after the first appearance, the solution
enters, without any transient, the asymptotic state with ∆Xm = L/2, m ≥ 1.
The first appearance is essentially the same in all the three cases.

From (1157) we infer that, if ν = O(ϵ2), the change in the AW dynamics is O(1), no matter how small
is the dissipation. A qualitative explanation of this phenomenon is the following: when the AW appears,
it determines a small, O(ν) change in the dymanics; but, due to modulation instability, this small change
amplifies and becomes O(1) at the next AW appearance.
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9.8 Anomalous waves in multidimensions

9.8.1 Physically relevant 2+1 dimensional generalizations of NLS
and their modulation instability

In most of the physical applications, we have the following two non integrable
generalizations of the focusing NLS equation iut + uxx + 2|u|2u = 0, u =
u(x, t) ∈ C in multidimensions.
The “elliptic saturated NLS equation” (567) in n+ 1 dimensions:

iAt +∆A+ φ(|A|2)A = 0,

A = A(x⃗, t) ∈ C, x⃗ = (x1, x2, . . . , xn), ∆ =
n∑
j=1

∂2xj ,
(1163)

relevant, for instance, in a time independent nonlinear optics, where n = 1, 2,
t → z is the paraxial direction of propagation, (x1 = x, x2 = y) is the
transversal plane, and φ(ζ) : R+ → R+ is a saturation potential behaving as

φ(ζ) = O(ζ), 0 < ζ ≪ 1, φ(ζ) → const, ζ → ∞,
φ(ζ) ≥ 0, φ′(ζ) > 0, φ′′(ζ) < 0.

(1164)

The cubic “hyperbolic NLS equation” (549) in n+ 1 dimensions:

iAt +
n1∑
j=1

Axjxj −
n2∑
j=1

Ayjyj + 2|A|2A = 0, n1 + n2 = n,

A = A(x⃗, y⃗, t) ∈ C, x⃗ = (x1, . . . , xn1), y⃗ = (y1, . . . , yn2),
(1165)

relevant for instance in the following contexts. i) Surface water waves in
deep water; in this case n1 = n2 = 1, x1 = x is the direction of propagation
of the wave and y1 = y is the transversal direction. ii) Nonlinear optics in
the paraxial approximation. In this case t → z is the paraxial direction of
propagation of the wave; n2 = 1 and y1 → t is the time variable; n1 = 1, 2 are
the transversal space variables (if n1 = 1, x1 → x is the transversal direction;
if n1 = 2, (x1, x2) → (x, y) is the transversal plane).

In the rest of this chapter we limit our considerations to the simplest case
of 3 dimensions: d = 2, x1 = x, x2 = y in the elliptic case (1163), and
n1 = n2 = 1, x1 = x, y1 = y in the hyperbolic case (1165)

iAt + Axx + Ayy + φ(|A|2)A = 0,
iAt + Axx − Ayy + 2|A|2A = 0.

(1166)

Their homogeneous background solutions are

A0(x, y, t) = aeiφ(|a|
2)t, elliptic case

A0(x, y, t) = ae2i|a|
2t, hyperbolic case,

(1167)
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where a is an arbitrary complex parameter, and it is natural to investigate
their linear stability properties under perturbations.

We observe that in the elliptic cubic NLS case in which φ(|A|2) = 2|A|2,
we have focusing effects in all the space directions, and one can show that a
generic smooth perturbation of the background containing unstable modes
blows up at finite time. The saturation potential (1164) prevents such a blow
up, since in the large field limit it tends to a constant, and the equation be-
comes linear. In the hyperbolic cubic NLS case the situation is very different,
since there is focusing in the x direction and defocusing in the y direction,
and one could show that the solution does not blow up.

The only examples of integrable and physically relevant generalizations
of the focusing NLS equation in 2 + 1 dimensions are the following Davey -
Stewartson (DS) equations

iAt + Axx + νAyy + 2qA = 0, qxx − νqyy = (|A|2)xx + ν(|A|2)yy,
A = A(x, y, t) ∈ C, q = q(x, y, t) ∈ R, (1168)

where ν = 1 in the DS1 case, and ν = −1 in the DS2 case, reducing both, in
the 1 + 1 dimensional limits (∂yA = ∂yq = 0), to the focusing NLS equation.
We remark that the second equation in (1168) implies the existence of the
potential W such that

Wx = (|A|2 + q)y ,

Wy = −ν (|A|2 − q)x
(1169)

The integrability scheme of the DS equations (1168) is given by the following
Lax pair:

ψ⃗y = iσ3ψ⃗x + Uψ⃗, ψ⃗ =

(
ψ1

ψ2

)
∈ C2

ψ⃗t = 2iσ3ψ⃗xx + 2Uψ⃗x + V ψ⃗,

U =

(
0 u
−ū 0

)
, V =

(
W + iq ux − iuy

−(ūx + iūy) W − iq

)
.

(1170)

As in the 1 + 1 dimensional case, we have the following symmetry: if
(ψ1, ψ2)

T is solution of (1170), also (−ψ̄2, ψ̄1)
T is solution. Therefore Ψ =(

ψ1 −ψ̄2

ψ2 ψ̄1

)
is a fundamental matrix solution of (1170).

9.8.2 Quasi one dimensional AWs and the transversal fission as a
critical phenomenon

The simplest way to get interesting informations concerning (n + 1) dimen-
sional AWs is to consider the case of quasi one dimensional (Q1D) AWs, i.e.,
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AWs in which the dependence on the extra space variables y = (y, z, . . . ) ∈
Rn−1 is slow. If an O(ϵ) perturbation of the constant background is slowly
varying in this sense, then the terms of the NLS type equation in multidimen-
sion depending on the derivatives wrt y, z will be relevant at large time scales
(the multidimensionality scale), and if the logarithmically large time scales
ln(1/ϵ) describing the first appearance and the recurrence of the 1D AW is
smaller than the multidimensionality time scale δ−2, it is clear that the AW
appearance and first few recurrences are ruled by the 1+1 dimensional NLS
equation, for which the theory has been constructed in the previous chapter.

Consider the simplest possible situation of Q1D AWs in n+1 dimensions,
and the case of a single unstable mode of the corresponding 1D NLS theory.
For the following initial datum

u(x, y, 0) = 1 + ϵ
[
c+(δy)e

ikx + c−(δy)e
−ikx] , ϵ, δ ≪ 1, y ∈ Rn−1 (1171)

the above condition for a 1D NLS AW dynamics is equivalent to

t ∼ log

(
1

ϵ

)
≪ 1

δ2
. (1172)

Then the 1D theory of AWs illustrated in the previous section implies that
the first appearance and the recurrence of AWs for times smaller than 1

δ2

are described by the Akhmediev solution slowly varying in the extra space
variables y:

A(x, t;x1, t1) ≡ e2it
(
1 + 2i sinϕ1

sinh[σ(t−T (δy))]−i cos[k(x−X(δy)]

cosh[σ(t−T (δy))]−sinϕ cos[k(x−X(δy)]

)
= e2it

cosh[σ(t−T (δy))+2iϕ]+sinϕ cos[k(x−X(δy))]

cosh[σ(t−T (δy))]−sinϕ cos[k(x−X(δy))]
,

k = 2 cosϕ, σ = k
√
4− k2 = 2 sin(2ϕ), 1 < k < 2, k = 2π/Lx.

(1173)

More precisely, let

α(δy) = e−iϕjc+(δy)− eiϕjc−(δy),

β(δy) = eiϕjc−(δy)− e−iϕjc+(δy);
(1174)

then the solution of the x-periodic Cauchy problem describes, in the case of
one unstable mode k = 2π/Lx, an exact recurrence of Akhmediev breathers,
whose parameters, changing at each appearance, are expressed in terms of

the initial data via elementary functions. T1 = 1
σ
log
(

σ2

2ϵ|α(δy)|

)
is the first

appearance time of the AW (the time at which the AW achieves the maximum

of its modulus), X1 =
arg(α(δy))+π/2

k
, is the position of such a maximum,
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1 + 2 sinϕ is the value of the maximum,

∆T =
2

σ1
log

 σ2
1

2ϵ
√

|α(δy)β(δy)|

 , (1175)

is the recurrence time (the time interval between two consecutive AW ap-
pearances),

∆X =
arg(α(δy)β(δy))

k1
, mod Lx (1176)

is the x-shift of the position of the maxima in the recurrence. In addition,
after each appearance, the AW changes the background by the multiplicative
phase factor exp(4iϕ) (see Fig. 50).

To illustrate the result, consider the simplest case of 2+1 dimensions
(n = 2), even dependence on y, and c+ = c+0f(δy), c− = c−0f(δy

2), with
0 < f(y) ≤ 1. Then

α(y) = α0f(y), α0 = e−iϕc+0 − eiϕc−0,

X = arg(α0)+π/2
k

,

T1(y) = T0 +
1
σ
log
(

1
f(y)

)
, T0 =

1
σ
log
(

σ2

2ϵ|α0|

)
.

(1177)

If, in particular, f(y) = exp(−b2y2), b > 0, then

T (y) = T0 +
b2

σ
y2, (1178)

and the first max is located at x = X at t = T (δy) = T0 + b2δ2y2/σ. It
describes a 2+1 dimensional AW, periodic in x and localized on the back-
ground like a gaussian in y. Its first max is located at (x, y) = (X, 0) at
t = T0. At this time the AW undergoes a fission into two AWs whose max-

ima are located at (X,±
√
σ(t−T0)
δb

), t ≥ T0. The two products of the fission
travel along the transversal y axis with speeds ± σ

2δb
√
σ(t−T0)

; then their speed

is infinite at the fission time T0 and decreases to zero when t → ∞. When
t− t0 ≫ 1 the two fission products u± are well separated and described by

u± ∼
cosh

(
2
√
σ(t−t0)ξ±∓2iϕ

)
+sinϕ cos(k(x−x0))

cosh
(
2
√
σ(t−t0)ξ±

)
−sinϕ cos(k(x−x0))

,

ξ± = y ∓
√
σ(t− t0), t− t0 ≫ 1.

(1179)

It follows that their width in the y direction decreases like (t − t0)
−1/2 as t

increases.
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To show this shrinking we follow, say, u+ introducing the variable ξ+ =
y −

√
σ(t− t0) for t − t0 ≫ 1. Then σ(t − t0) − y2 ∼ −2

√
σ(t− t0)ξ

+,
and (1179) follows. To get u−, we introduce the variable ξ−, and proceed
accordingly.

While the behavior of the fission products when t − t0 ≫ 1 depends on
the slowly varying functions chosen in the initial condition, the proprties of
the fission process are generic. Indeed consider any even function f of y with
negative concavity at y = 0, and Taylor expansion f(y) = 1− b2y2 + O(y4).
Then T (y) = T0 + b2y2/σ + O(y4), and again the speed of the two fission
products is infinity at t = T0, with the law ± 1

2b
√
t−T0

+ O(1). Therefore the
fission process appears to be a universal critical phenomenon in nature, and
resembles to a phase transition of type 2, with critical exponent 1/2.

Three generalizations and their combinations are straightforward.

1) In the long wave (Peregrine) limit ϕ = π/2 + δ, δ ≪ 1 (k ∼ −2δ),
and gaussian f , we get the Peregrine type solution

P(x, y, t) = e2it
(
1− 4 + 16i(t− T0 − a2y2)

1 + 4x2 + 16(t− T0 − a2y2)2

)
, (1180)

exhibiting the same fission properties as the Akhmediev one.

2) In the previous example we consider initial data for which arg(α), arg(β)
do not depend on y. Then fission takes place on the trasversal y axis. If
instead arg(α), arg(β) are slowly varying even functions of y, then the two
fission products start moving on a small curvature parabola of the (x, y)
plane. We study here this process on the very distinguished example in
which |c+(y)| = |c−(y)|, then

α(y) = −2i|c+(y)| sin
(
ϕ+ arg(c+)+arg(c−)

2

)
ei

arg(c−)−arg(c+)

2 ,

β(y) = 2i|c+(y)| sin
(
ϕ− arg(c+)+arg(c−)

2

)
ei

arg(c+)−arg(c−)

2 ,

⇒ α(y)β(y) = 4|c+(y)|2 sin
(
ϕ− arg(c+)+arg(c−)

2

)
sin
(
ϕ+ arg(c+)+arg(c−)

2

)
= 2|c+(y)|2 [cos (arg(c+) + arg(c−))− cos(2ϕ)] .

(1181)
Consequently αβ ∈ R and

αβ > 0 ⇔ arg(αβ) = 0 ⇔ ∆X = 0,
αβ < 0 ⇔ arg(αβ) = π ⇔ ∆X = Lx

2
.

(1182)
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Both |α| and argα depend on y:

|α(y)| = 2|c+(y)|| sin
(
ϕ+ arg(c+(y)c−(y))

2

)
|,

arg(α(y)) = arg
(
c−(y)
c+(y)

)
− π

2
sign

(
sin
(
ϕ+ arg(c+(y)c−(y))

2

))
,

(1183)

where H(·) is the step function. Consequently, the first appearance time
and the position of the AW are generically slowly varying functions of y. In
particular, if arg(c+(y)c−(y)) = θ independent of y, then

|α(y)| = 2|c+(y)|| sin (ϕ+ θ/2) |,
arg (α(y)) = −2arg(c+(y)) + πH (− sin(ϕ+ θ/2)) .

(1184)

If again arg(c±(y)) are even functions of y, then the two fission products will
separate in the (x, y) plane approximately on a small curvature parabola ...

3) The case of n + 1 dimensional Q1D AWs with the choice (1177) f(y) →

f(y⃗) = exp(−
n−1∑
j=1

b2jy
2
j ). In this case fission takes place on the ellipsoid

σ(t − T0) =
n−1∑
j=1

b2jy
2
j , t ≥ T0 of the (n − 1)-dimensional transversal hy-

perplane. CONSTRUCT THE SLOWLY VARYING AKHMEDIEV AND
PEREGRINE SOLUTIONS IN THIS CASE (see figures B).
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Figures A. Four snapshots at consecutive times illustrating the AW recur-
rence and fission in 2+1 dimensions. Top left: the first appearance of the
Q1D AW; in the x main direction it exhibits the usual one dimensional RW
features: a steep elevation (for with |φ| > 1) preceeded and followed by two
holes (for with |φ| >< 1). The localization in the y direction is a simple
consequence of the y localization of the initial data. Due to the existence
of the additional y transversal direction, instead of desappearing, the Q1D
AW experiences a fission into two Q1D AWs separating in the y direction (a
transversal particle fission). Bottom left: while the two products of the first
fission keep separating, the second appearance of the recurrence occurs. Bot-
tom right: also the second AW undergoes a fission, with the same features.

Figures B. Four snapshots at consecutive times illustrating the AW recurrence
and fission of Q1D AWs in 3+1 dimensions, when bj = 1. The x axis is that
orthogonal to the plane of the circular smoke rings (the (y, z) plane). Top
left: the first appearance of the Q1D AW in 3D space; in the x main direction
it exhibits the usual RW picture: an intense color preceeded and followed by
two holes (here we chose to draw only the parts of the perturbation such
that |φ| > 1 (the holes do not appear), to make the picture more clear. Top
right: fission of the Q1D AW in the transversal (y, z) plane, generating an
opening smoke ring shaped Q1D AW. Bottom left: while the smoke ring of
the first fission evolves increasing its radius, the second appearance of the
recurrence occurs. Bottom right: also the second Q1D AW undergoes a
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fission, generating another smoke ring. If arg (α(y⃗)) = b0+ b21y
2
1 + b22y

2
2 + . . . ,

then the smoke rings open up initially on a small curvature paraboloid whose
axis is the x axis.

9.8.3 Modulation instability in 2 + 1 dimensions

The elliptic NLS equation with saturation potential. For the elliptic
NLS equation (1163) we look for a perturbation of the background solution:

A = aeiφ(|a|
2)t[1 + ϵ(u+ iv)], u, v ∈ R, 0 < ϵ≪ 1. (1185)

Then the linearized equations about the background solution read

ut + vxx + vyy = 0, vt − uxx − uyy − 2|a|2φ′(|a|2)u = 0. (1186)

If the perturbation is monochromatic:

u = Uei(kx+ly)+σt + cc, v = V ei(kx+ly)+σt + cc, k, l ∈ R, (1187)

then (
σ −(k2 + l2)

k2 + l2 − 2|a|2φ′(|a|2) σ

)(
U
V

)
= 0, (1188)

The existence of nontrivial solutions (U, V ̸= 0) implies that

σ2 = (k2 + l2)[2|a|2φ′(|a|2)− (k2 + l2)], σ2 = σ̄2, (1189)

implying that σ is either real or purely imaginary. In the first case

k2 + l2 > 2|a|2φ′(|a|2) ⇔ σ ∈ iR ⇔ neutral stability, (1190)

and in the second case

k2 + l2 < 2|a|2φ′(|a|2) ⇔ σ ∈ R ⇔ instability. (1191)

Therefore the background is linearly unstable when the length of the wave
vector of the monochromatic perturbation is smaller than |a|

√
2φ′(|a|2), and

the growth rate reads

σ(k, l) =
√
(k2 + l2)[2|a|2φ′(|a|2)− (k2 + l2)], (1192)

see Figures 57 and 58.
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Figure 57: For the elliptic 2D NLS equation, the instability region in the
k⃗ = (k, l) plane is bounded by the circle k2 + l2 = 2|a|2φ′(|a|2). The Fourier

modes of the linearized theory are k⃗m,n = 2π( m
Lx
, n
Ly
), wherem,n ∈ Z, and Lx

and Ly are respectively the periods in the x and y directions. In this picture

there are only the unstable modes ±k⃗1,0,±k⃗0,1, with k⃗−m,−n = −k⃗m,n.

Figure 58: For the cubic elliptic 2D NLS equation (φ(ζ) = 2ζ), the insta-
bility circle k2 + l2 = 4|a|2 and the corresponding growth rate σ(k, l) =√
(k2 + l2)[4|a|2 − (k2 + l2)]. σ(k, l) is zero at the origin k⃗ = 0⃗ and at the

boundary |⃗k| = 2|a|.
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The hyperbolic cubic 2D NLS equation. For the hyperbolic NLS
equation (1165), repeating the above considerations, one obtains the follow-
ing scenario.

neutral stability ⇔
{
i) k2 > l2 + 4|a|2,
ii) k2 < l2,

,

instability ⇔ 0 < k2 − l2 < 4|a|2.
(1193)

The instability region in the k⃗ = (k, l) plane is bounded by the hyperbola
k2 − l2 = 4 and by its asymptotes k ± l = 0, and the growth rate reads

σ(k, l) =
√
(k2 − l2)[4|a|2 − (k2 − l2)], (1194)

see Figures 59 and 60:
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Figure 59: For the hyperbolic 2D NLS equation, the instability region in
the k⃗ = (k, l) plane is bounded by the hyperbola k2 − l2 − 4|a|2 = 0 and
by its asymptotes k ± l = 0. The Fourier modes of the linearized theory
are k⃗m,n = 2π( m

Lx
, n
Ly
), where m,n ∈ Z, and Lx and Ly are respectively the

periods in the x and y directions. In this graph Lx = 2.4, Ly = 3.0, and

there are only the unstable modes ±k⃗1,1, ± k⃗1,−1, with k⃗−m,−n = −k⃗m,n.
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Figure 60: For the hyperbolic 2D NLS equation, the instability region in
the (k, l) plane, and the growth rate σ(k, l) =

√
(k2 − l2)[4|a|2 − (k2 − l2)].

σ(k, l) is zero on the hyperbola and on it asymptotes.

The DS equations. Analogous considerations can be made for the focusing
DS equations

iAt + Axx ± Ayy + 2qA = 0, qxx ∓ µ2qyy = (|A|2)xx ± ν2(|A|2)yy,
A = A(x, y, t) ∈ C, q = q(x, y, t) ∈ R, µ, ν ∈ R, (1195)

where DS1 and DS2 correspond respectively to the upper and lower signs,
integrable if and only if µ = ν = 1.

Their homogeneous background solution

A0 = ae2i|a|
2t, q0 = |a|2 (1196)

can be simplified to A0 = e2it, q0 = 1 using the elementary gauge and scaling
symmetries. Since equations (1195) are also invariant under the Coulomb
gauge:

A(x, y, t) → A(x, y, t)e
2i

t∫
0

f(t′)dt′

, q(x, y, t) → q(x, y, t) + f(t), (1197)

the background solution can be simplified further to

A0 = 1, q0 = 0. (1198)

To study the modulation instability properties of the background solution
(1198), we slightly perturb it as follows

A = 1 + ϵ(u+ iv), q = ϵw, ϵ≪ 1, u, v, w ∈ R. (1199)
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Then u, v, w satisfy the linear PDEs

ut + vxx ± vyy = 0, vt − (uxx ± uyy)− 2w = 0,
wxx ∓ µ2wyy = 2(uxx ± ν2vyy).

(1200)

Looking for a monochromatic perturbation

u = Uei(kx+ly)+σt + cc, v = V ei(kx+ly)+σt + cc,
w = Wei(kx+ly)+σt + cc, k, l ∈ R, (1201)

one obtains the following system of homogeneous equations σ −(k2 ± l2) 0
k2 ± l2 σ −2

2(k2 ± ν2l2) 0 −(k2 ∓ µ2l2)

U
V
W

 = 0, (1202)

and the condition for the existence of nontrivial solutions gives

σ2
±(k, l) =

(k2 ± l2)[4(k2 ± ν2l2)− (k2 ± l2)(k2 ∓ µ2l2)]

k2 ∓ µ2l2
, (1203)

reducing to

σ2
±(k, l) =

(k2 ± l2)2[4− (k2 ∓ l2)]

k2 ∓ l2
(1204)

in the integrable cases µ = ν = 1. Since we have MI when σ2 > 0, we
distinguish the following cases.
1) For DS1 (the upper sign case), we have (SHOW IT) the MI domain InstDS1
is the domain in between the straight lines k2 = µ2l2 and the curves 4(k2 +
ν2l2) = (k2+ l2)(k2−µ2l2), having the straight lines k2 = µ2l2 as asymptotes
(see figures ...)

InstDS1 = {k2 > µ2l2 and 4(k2 + ν2l2) > (k2 + l2)(k2 − µ2l2)}. (1205)

2) For DS2 (the lower sign case), we have the union of two disjoint domains
InstDS2 = Inst+DS2 ∪ Inst−DS2 (see figure ...):

Inst+DS2 = {k2 > l2 and 4(k2 − ν2l2) > (k2 − l2)(k2 + µ2l2)},
Inst−DS2 = {k2 < l2 and 4(k2 − ν2l2) < (k2 − l2)(k2 + µ2l2)}. (1206)

In the integrable DS2 case it becomes the compact domain

k2 + l2 < 4, and k2 ̸= l2, (1207)

with growth rate

σ(k, l) = |Ω(k, l)|, Ω(k, l) =
(k2 − l2)

√
4− (k2 + l2)√

k2 + l2
. (1208)
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Therefore AWs are present in the focusing DS2 equation for sufficiently small
wave vectors k⃗, in perfect analogy with the NLS case (see Figure 61).

Figure 61: For the DS2 equation, the growth rate σ(k, l) in the k⃗ = (k, l)
plane; the instability region is inside the circle k2 + l2 = 4|a|2; it is zero
outside and on the lines k2 − l2 = 0. Here a = 1.

9.8.4 The integrable DS2 case [20]

In the well-posed doubly-periodic DS2 Cauchy problem of AWs with periods
Lx and Ly, the wave vectors of the above N -breather solution are quantized
as follows

k⃗m,n = (km, ln), km = 2π
Lx
m, ln = 2π

Ly
n, m, n ∈ Z, Lx ̸= Ly, (1209)

and lie on the rectangular lattice of Figure 62, constrained by the instability
condition

k2m + l2n < 4 ⇔
(
m

Lx

)2

+

(
n

Ly

)2

<
1

π2
, Lx ̸= Ly. (1210)

The simplest possible instability configurations are, in order of complica-
tion, the following.
1) The case in which there is only one unstable mode, the mode ±k⃗1,0 =
±(k1, 0) on the k axis, with:

1 < k1 < 2, l1 > 2 ⇔ π < Lx < 2π, Ly < π, (1211)
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or the mode ±k⃗0,1 = ±(0, l1) on the l axis, with:

1 < l1 < 2, k1 > 2 ⇔ π < Ly < 2π, Lx < π; (1212)

see respectively the top left and top right pictures of Figure 62.
2) The case in which there are only the two unstable modes ±k⃗1,0,±k⃗0,1, with

1 < k1, l1 < 2, k21 + l
2
1 > 4 ⇔ π < Lx, Ly < 2π,

1

L2
x

+
1

L2
y

>
1

π2
; (1213)

see the bottom left picture of Figure 62.
3) The case in which there are only the four unstable modes±k⃗1,0,±k⃗0,1,±k⃗1,1,
±k⃗1,−1, with

1 < k1, l1 < 2, k21 + l
2
1 < 4 ⇔ π < Lx, Ly < 2π,

1

L2
x

+
1

L2
y

<
1

π2
; (1214)

see the bottom right picture of Figure 62. Increasing the periods Lx and Ly,
higher order modes enter the instability region and the picture becomes more
and more complicated. In this paper we limit our considerations to the first
two cases 1) and 2), postponing to a subsequent paper the study of a higher
number of unstable modes.
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Figure 62: For the focusing DS2 equation, the instability region in the k⃗ =
(k, l) plane consists of the 4 sectors inside the circle k2 + l2 = 4|a|2 and
delimited by the lines k2 = l2. In the doubly periodic case, the Fourier
modes of the linearized theory are ±k⃗m,n in (1209); hereafter a = 1. In the
top left picture Lx = 3.5, Ly = 2.8, and there is only the unstable mode

±k⃗1,0. In the top right picture Lx = 2.8, Ly = 3.5, and there is only the

unstable mode ±k⃗0,1. In the bottom left picture Lx = 3.5, Ly = 4.8, and

there are only the 2 unstable modes ±k⃗1,0,±k⃗0,1. Increasing more the periods

one jumps from the two unstable modes ±k⃗1,0,±k⃗0,1 directly to the four

unstable modes ±k⃗1,0,±k⃗0,1,±k⃗1,1,±k⃗1,−1, like in the bottom right picture,
where Lx = 4.6, Ly = 5.2.

The simplest truly two dimensional AW describes the interaction of the
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horizontal ±k⃗1,0 = (k1, 0) and vertical ±k⃗0,1 = (0, l1) unstable modes, where

k1 =
2π

Lx
= 2 cosϕ1,0, l1 =

2π

Ly
= 2 cosϕ0,1, θ1,0 = 0, θ0,1 = π/2, (1215)

corresponding to the conditions

π < Lx, Ly < 2π ⇔ 1 < k1, l1 < 2 ⇔ 0 < ϕ1,0, ϕ0,1 < π/3. (1216)

Then the solution reads:

u2(x, y, t;ϕ1,0, ϕ0,1, x0, y0, t1,0, t0,1, ρ) =
N(x, y, t)

D(x, y, t)
eiρ, (1217)

N(x, y, t) = cosh [σ1,0(t− t1,0) + σ0,1(t− t0,1) + 2i(ϕ1,0 − ϕ0,1))]
+b212 cosh [σ1,0(t− t1,0)− σ0,1(t− t0,1) + 2i(ϕ1,0 + ϕ0,1))]

−2b12

(
sinϕ1,0 cos(X1,0) cosh [σ0,1(t− t0,1)− 2iϕ0,1]

+ sinϕ0,1 cos(Y0,1) cosh [σ1,0(t− t1,0) + 2iϕ1,0] + sinϕ1,0 sinϕ0,1 cos(X1,0) cos(Y0,1)
)
,

(1218)
D(x, y, t) = cosh [σ1,0(t− t1,0) + σ0,1(t− t0,1)]
+b212 cosh [σ1,0(t− t1,0)− σ0,1(t− t0,1))]

+2b12

(
sinϕ1,0 cos(X1,0) cosh [σ0,1(t− t0,1)]

+ sinϕ0,1 cos(Y0,1) cosh [σ1,0(t− t1,0)]− sinϕ1,0 sinϕ0,1 cos(X1,0) cos(Y0,1)
)
,

(1219)
where

X1,0 = k1(x− x0) = 2 cos(ϕ1,0)(x− x0), Y0,1 = l1(y − y0) = 2 cos(ϕ0,1)(y − y0),

σ1,0 = k1
√

4− k21 = 2 sin(2ϕ1,0), σ0,1 = l1
√

4− l21 = 2 sin(2ϕ0,1) = −Ω0,1,

b12 =
cos(ϕ1,0−ϕ0,1)
cos(ϕ1,0+ϕ0,1)

,

(1220)
and ρ, x0, y0, t1,0, t0,1 are arbitrary real parameters.

For generic parameters, the solution (1217)-(1220) decays to the back-
ground (953) as t→ ±∞, and describes two consecutive appearances in time
of 2+ 1 dimensional doubly-periodic smooth bumps, both located at (x0, y0)
(see Figure 63).
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Figure 63: Five snapshots of the evolution of the 2-breather AW solution
(1217) in a basic period, describing the nonlinear interaction of two unstable
modes, one parallel to the x axis and the other parallel to the y axis. Top left:
the growth of the AW from the background; top right: the first appearance;
medium left: between two appearances; medium right: second appearance;
bottom: the disappearance of the AW. For generic parameters, the solution
is smooth and the two appearances are different.

To show the relevance of this solution in a Cauchy problem of anomalous
waves, we study now the doubly periodic Cauchy problem of AWs for the
focusing DS2 equation (1168):

u(x+ Lx, y, t) = u(x, y + Ly, t) = u(x, y, t),
q(x+ Lx, y, t) = q(x, y + Ly, t) = q(x, y, t),
u(x, y, 0) = 1 + ϵ v(x, y), q(x, y, 0) = ϵ w(x, y), 0 ≤ ϵ≪ 1,

(1221)
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where the initial perturbations can be expanded in Fourier modes as follows:

v(x, y) =
∑
µ,ν∈Z

cµ,νe
i(kµx+lνy), (1222)

and c0,0 is set to be zero without loss of generality using the scaling symmetry.
As in the 1+1 dimensional case, for |t| ≤ O(1), the solution is described,

through Fourier analysis and up to O(ϵ2) terms, by the following formulas

u(x, y, t) = 1 + ϵ
∑

m,n∈D

(
|αm,n|

sin(2ϕm,n)
cos (kmx+ lny − arg(αm,n)− π/2) eΩm,nt+iϕm,n

+ |βm,n|
sin(2ϕm,n)

cos (kmx+ lny + arg(βm,n)− π/2) e−Ωm,nt−iϕm,n

)
+O(ϵ)-oscillations,

(1223)

q(x, y, t) = ϵ
∑

m,n∈D

cos(2θm,n)

sin(ϕm,n)

[
|αm,n| cos (kmx+ lny − arg(αm,n)− π/2) eΩm,nt

+|βm,n| cos (kmx+ lny + arg(βm,n)− π/2) e−Ωm,nt
]
+O(ϵ)-oscillations,

(1224)
where

km = 2 cosϕm,n cos θm,n, ln = 2 cosϕm,n sin θm,n,

⇒ ϕm,n = arccos

(√
k2m+l2n
2

)
, θm,n = arctan

(
ln
km

)
,

αm,n = e−iϕm,n c̄m,n − eiϕm,nc−m,−n,
βm,n = eiϕm,n c̄−m,−n − e−iϕm,ncm,n,

(1225)

and

D =

{
m ≥ 1, n ∈ Z,

(
m
Lx

)2
+
(

n
Ly

)2
< 1

π2

}
∪
{
m = 0, n ≥ 1,

(
n
Ly

)2
< 1

π2

}
.

(1226)
As time increases, the perturbation in (1223) grows exponentially and, at

t = O(log(1/ϵ)), it becomes order one and the dynamics is described by the
fully nonlinear theory. It is when the exact solutions we constructed play a
relevant role.

From now on we consider the case in which only the modes ±k⃗1,0 and

±k⃗0,1 are unstable, where k⃗1,0 = (k1, 0) and k⃗0,1 = (0, l1), k1 =
2π
Lx
, l1 =

2π
Ly

are

unstable, see the bottom left picture in Figure 62. This case is characterized
by the constraints

π < Lx, Ly < 2π, 1
L2
x
+ 1

L2
y
> 1

π2 , ⇔
1 < k1, l1 < 2, k21 + l21 > 4, ⇔
0 < ϕ1,0, ϕ0,1 < π/3, cos2 ϕ1,0 + cos2 ϕ0,1 > 1.

(1227)
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Then the linear stage of MI (1223), for |t| ≤ O(1), reduces to

u(x, y, t) = 1 + ϵ
[

1
sin(2ϕ1,0)

(
|α1,0| cos (2 cosϕ1,0x− arg(α1,0)− π/2) eiϕ1,0+σ1,0t

+|β1,0| cos (2 cosϕ1,0x+ arg(β1,0)− π/2) e−iϕ1,0−σ1,0t
)

+ 1
sin(2ϕ0,1)

[
|α0,1| cos (l1y − arg(α0,1)− π/2) e−σ0,1t+iϕ0,1

+|β0,1| cos (l1y + arg(β1,0)− π/2) eσ0,1t−iϕ0,1
]
+O(ϵ)-oscillations

(1228)
(notice that Ω1,0 = σ1,0 and Ω0,1 = −σ0,1).

Reasoning as for NLS, since the exact solution u2(x, y, t) of DS2 in (1217)-

(1220) describes the nonlinear interaction of the unstable modes ±k⃗1,0, ±k⃗0,1,
it is the natural candidate to characterize this nonlinear stage, and following
exactly the same strategy as before, we find that the first AW appearance is
described to leading order by the solution (1217)

u(x, y, t) = u2(x, y, t;ϕ1,0, ϕ0,1, x
(1), y(1), t

(1)
1,0, t

(1)
0,1, ρ

(1)) +O(ϵ), (1229)

where the solution parameters are expressed in terms of the initial data as
follows

ρ(1) = 2 (ϕ1,0 − ϕ0,1) , x
(1) = arg(α1,0)+π/2

k1
, y(1) = − arg(β0,1)+π/2

l1
,

t
(1)
1,0 =

1
σ1,0

log
(

2b12 sin
2(2ϕ1,0)

ϵ|α1,0|

)
, t

(1)
0,1 =

1
σ0,1

log
(

2b12 sin
2(2ϕ0,1)

ϵ|β0,1|

)
.

(1230)

Therefore the first appearance of the AW in the Cauchy problem consists
of the two emergences described by the exact solution (1217)-(1220) (see Fig-
ure 63), whose parameters are expressed in terms of the initial data through
elementary functions.

As for the case of one unstable mode, we remark that, since we have
only two growing modes in the overlapping time region, and since the exact
solution (1217)-(1220), describing the growth and the nonlinear interaction
of these unstable modes, contains enough free parameters for a successful
matching, the remaining mismatch cannot affect the leading order behavior.
Therefore this stability argument plus uniqueness of the DS2 evolution imply
that the first appearance of the AW is described by the solution (1229),(1230),
an elementary function of the initial data.

To have an idea of how well the analytic solution u2 in (1229),(1230)
describe the first appearance of the AW in the AW Cauchy problem, we
evaluate the uniform distance between u2 and the numerical solution unum:

∥unum − u2∥∞(t) := sup
x∈[0,Lx],y∈[0,Ly ]

|unum(x, y, t)− u2(x, y, t)|, (1231)
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in the time interval in which the AW first appears, see Figure 64. The
agreement is excellent, since the error is much smaller than expected from
theoretical considerations.

Figure 64: Here we study the two emergences of AWs in the time interval
of the first appearance, for the initial data ϵ = 10−3, c1,0 = 0.8 + i0.4,
c−1,0 = 1.2 − i0.1, c0,1 = −0.64 − i0.3, c0,−1 = 0.5 + i0.2. Left pic-
ture: the max of the amplitude of the AW ∥unum∥∞(t) as function of time,
where unum is the numerical solution; the first emergence at (x, y, t) =
(3.24019, 1.227442, 3.780) with a peak of height 6.6786; the second emer-
gence at (x, y, t) = (3.24019, 1.227442, 5.868) with a peak of smaller height
2.3631. Right picture: the uniform distance ∥unum − u2∥∞(t) between the
analytic solution u2 (1229),(1230) and the numerical solution unum; the two
peaks of the distance correspond exactly to the two AW emergences of the
left picture, and the distance remains always ≤ 5 · 10−4, smaller than the
estimated error from theoretical considerations O(10−3), indicated by the
horizontal dotted line.

9.9 Exercices

1) i) Verify that the formula (1004) describes to leading order the solution of the Cauchy problem of
the anomalous waves (995),(996) for 0 ≤ t = O(1), and ii) use the Akhmediev solution and matched
asymptotic expansions to derive to leading order the NLS recurrence of anomalous waves in the case of
one unstable mode only.

2) Derive formulas (1193) and (1194).

3) Using matched asymptotic expansions show that equations (1228) and (1217)-(1220) imply the first
appearance of AWs described by (1229),(1230).
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10 Appendix

10.1 A1. Similarity Solutions

Similarity solutions of a PDE are often relevant in the description of asymp-
totic regions of the solution space of particular importance, like the longtime
behavior, the blow up, and the gradient catastrophe. They are special solu-
tions of the form

usim(x, t) =
1

tp
g (z) , z =

x

tq
, (1232)

where the parameters p, q and function g have to be fixed.

10.1.1 Similarity solutions of the Schrödinger equation

In the case of iut + uxx = 0, VERIFY that q = 1/2, ∀p, and g(z) satisfies
the ordinary differential equation (ODE)

g′′ − i(pg +
z

2
g′) = 0. (1233)

Choosing p = 1/2, then (1233) simplifies to

g′′ − i

2
(zg)′ = 0, (1234)

whose general solution is

g(z) = c1

∫ z

e
i
4
(z2−z′2)dz′ + c2e

iz2/4. (1235)

At last, if c1 = 0, one obtains the simple similarity solution

usim(x, t) =
1√
t
ei

x2

4t (1236)

10.1.2 Similarity solutions of the linearized KdV equation

In the case of of the linear KdV equation ut+uxxx = 0, VERIFY that (1232)
is solution if q = 1/3, ∀p, and g(z) satisfies the ODE

g′′′(z)− z

3
g′(z)− pg(z) = 0. (1237)

If p = 1/3, then the equation simplifies to

(g′′(z)− 1

3
(zg(z)))′ = 0 ⇒ g′′(z)− 1

3
(zg(z)) = c. (1238)
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Choosing the integration constant c = 0, we obtain g′′(z) − z
3
g(z) = 0, and

changing variable: z = 3
√
3ξ, the ODE becomes the ODE (39) defining the

Airy functions Ai and Bi. Therefore the bounded and decaying similarity
solution is

usim(x, t) =
1
3
√
t
Ai

(
x

3
√
3t

)
. (1239)

10.2 A2. Integrals depending on a large parameter:
integration by parts, Laplace and the Steepest
Descent Methods [36, 9, 29]

We want to estimate the leading order contribution of the Laplace integral

L(p) =

b∫
a

epf(t)g(t)dt (1240)

where p is a positive large parameter p ≫ 1. We distinguish three different
cases.

10.2.1 Integration by parts

If a < b, f(t), g(t) : R → R are smooth functions and f ′(t) ̸= 0 in [a, b], the
main contribution comes from the integration by parts:

L(p) =
b∫
a

(
pf ′(t)epf(t)

) ( g(t)
pf ′(t)

)
dt =

b∫
a

(
epf(t)

)′ ( g(t)
pf ′(t)

)
dt

= 1
p

(
g(b)
f ′(b)

epf(b) − g(a)
f ′(a)

epf(a)
)
− 1

p

b∫
a

epf(t)
(
g(t)
f ′(t)

)′
dt

= 1
p

(
g(b)
f ′(b)

epf(b) − g(a)
f ′(a)

epf(a)
)(

1 +O(1
p
)
)
, p≫ 1.

In the first step we construct (pf ′(t)epf(t)) = d(epf(t))/dt; in the second step
we integrate by parts. Assuming that f ′(t), g(t) be smooth functions, we
repeat the same integration by parts, arriving to the above estimate.

The same result holds if one integrates over a contour C of the complex
z plane with end points a, b ∈ C, where f(z), g(z) are analytic in a domain
D containing C and f ′(z) ̸= 0 in D:

I(p) =
b∫
a

epf(z)g(z)dz

= 1
p

(
g(b)
f ′(b)

epf(b) − g(a)
f ′(a)

epf(a)
)(

1 +O(1
p
)
)
, p≫ 1.

(1241)
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10.2.2 The Laplace method

We consider the Laplace integral (1240) with a < b, and f(t) ∈ R has now a
single max in t0 ∈ (a, b).

If p ≫ 1, the leading order contribution to the integral comes from a
neighborhood of t0, where:

f(t) = f(t0) +
f ′′(t0)

2
(t− t0)

2 +O(t− t0)
3, f ′′(t0) < 0,

g(t) = g(t0) +O(t− t0).
(1242)

Therefore, following the same qualitative considerations made in the case of
the stationary phase method, we construct the leading order contribution

L(p) ∼ g(t0)e
pf(t0)

t0+ϵ∫
t0−ϵ

e−p|f
′′(t0)| (t−t0)

2

2 dt

=
√
2g(t0)epf(t0)√
p|f ′′(t0)|

√
p|f ′′(t0)|

2
ϵ∫

−
√

p|f ′′(t0)|
2

ϵ

e−s
2
ds

∼
√
2g(t0)epf(t0)√
p|f ′′(t0)|

∫
R e

−s2ds =
√
2πg(t0)√
p|f ′′(t0)|

epf(t0),

(1243)

where in the first step we use the fact that the integral takes its main con-
tribution about t0, in the second step we make the change of variables t→ s
given by t− t0 =

√
2√

p|f ′′(t0)|
s, in the third step we approximate the integral of

the gaussian around its O(1) region by the integral over R.
If t0 = a or t0 = b, the procedure is the same and the leading order

contribution is half of the above contribution. For instance, if t0 = a:

L(p) ∼ g(t0)e
pf(t0)

t0+ϵ∫
t0

e−p|f
′′(t0)| (t−t0)

2

2 dt

=
√
2g(t0)epf(t0)√
p|f ′′(t0)|

√
p|f ′′(t0)|

2
ϵ∫

0

e−s
2
ds

∼
√
2g(t0)epf(t0)√
p|f ′′(t0)|

∞∫
0

e−s
2
ds =

√
πg(t0)√

2p|f ′′(t0)|
epf(t0),

(1244)

As we shall see, this is indeed the leading order contribution of an asymp-
totic expansion of the following type.
If p≫ 1 and t0 ∈ (a, b):

L(p) =

√
2πg(t0)√
p|f ′′(t0)|

epf(t0)
(
1 +O

(
1

p

))
; (1245)
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if, instead, p≫ 1 and t0 = a or t0 = b, then

L(p) =

√
πg(t0)√

2p|f ′′(t0)|
epf(t0)

(
1 +O

(
1
√
p

))
. (1246)

To prove these formulas, we evaluate the integral first in a right neigh-
borhood [t0, t0 + δ] of t0:

I+ :=
t0+δ∫
t0

epf(t)g(t)dt = epf(t0)
t0+δ∫
t0

e−p[f(t0)−f(t)]g(t)dt

= epf(t0)
δ+∫
0

e−pyg (φ(y)) dt
dy
dy = epf(t0)

δ+∫
0

e−py g(φ(y))
dy
dt

∣∣
t=φ(y)

dy,

(1247)

where in the first step we add and subtract f(t0) in the argument of the
exponential; in the second step we change variables t→ y(t) := f(t0)−f(t) ≥
0, since y(t) is a monotonically decreasing function and its inverse t = φ(y)
exists, where δ+ = f(t0) − f(t0 + δ); in the third step we use the inverse
function theorem. Analogously, for the left neighborhood [t0 − δ, t0]:

I− :=
t0∫

t0−δ
epf(t)g(t)dt = −epf(t0)

δ−∫
0

e−py g(φ(y))
dy
dt

∣∣
t=φ(y)

dy,

δ− := f(t0)− f(t0 − δ).

(1248)

Our goal now is to expand the integrand with respect to the new variable
y. Since

y = f(t0)− f(t) =
|f ′′(t0)|

2
(t− t0)

2− f ′′′(t0)

6
(t− t0)

3+O
(
(t− t0)

4
)
, (1249)

to leading order we have:

y ∼ |f ′′(t0)|
2

(t− t0)
2 ⇒ t− t0 ∼ ±

√
2

|f ′′(t0)|
√
y, (1250)

suggesting the following expansion

t− t0 = sign(t− t0)

√
2

|f ′′(t0)|
√
y + βy +O(y3/2). (1251)

Substituting this ansatz into (1249), one verifies that, toO(y3/2), β = f ′′′(t0)

3(f ′′(t0))
2 ;

therefore

t− t0 = sign(t− t0)

√
2

|f ′′(t0)|
√
y +

f ′′′(t0)

3 (f ′′(t0))
2y +O

(
y3/2

)
. (1252)
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It is also possible to show that sign(t − t0) is present only in terms corre-
sponding to fractional powers yn+1/2, n ∈ N+ of y in the expansion of t− to
and of the integrand:

dy
dt

= sign(t− t0)|f ′′(t0)|(t− t0)− f ′′′(t0)
2

(t− t0)
2 + . . .

= sign(t− t0)
√

2|f ′′(t0)|
√
y + β1y + sign(t− t0)β2y

3/2 + . . .

g(t)
dy/dt

= sign(t− t0)
g(t0)√
2|f ′′(t0)|

1√
y
+ c0 + sign(t− t0)c1

√
y + . . .

(1253)

It follows that

I+ = epf(t0)
δ+∫
0

e−py
(

g(t0)√
2|f ′′(t0)|

1√
y
+ c0 + c1

√
y +O(y)

)
dy

= epf(t0)
∞∫
0

e−py
(

g(t0)√
2|f ′′(t0)|

1√
y
+ c0 + c1

√
y +O(y)

)
dy

= epf(t0)
(√

π
2|f ′′(t0)|pg(t0) +

c0
p
+ c1

Γ(3/2)

p3/2
+O (p−2)

)
,

(1254)

I− = −epf(t0)
δ−∫
0

e−py
(
− g(t0)√

2|f ′′(t0)|
1√
y
+ c0 − c1

√
y +O(y)

)
dy

= epf(t0)
∞∫
0

e−py
(

g(t0)√
2|f ′′(t0)|

1√
y
− c0 + c1

√
y +O(y)

)
dy

= epf(t0)
(√

π
2|f ′′(t0)|pg(t0)−

c0
p
+ c1

Γ(3/2)

p3/2
+O (p−2)

)
.

(1255)

In the first step we used the second of equations (1253); in the second step
we replaced the finite integral by the integral over R+ with an exponentially
small error, as we shall see below; in the third step we used the following
formulas

∞∫
0

e−pyy−1/2dy =

√
π

p
,

∞∫
0

e−pydy =
1

p
,

∞∫
0

e−pyy1/2dy =

√
Γ(3/2)

p3/2
, (1256)

where Γ(·) is the Euler gamma function.
If t ∈ [a, t0−δ] or t ∈ [t0+δ, b], there exists η > 0 such that f(t0)−f(t) ≥

η > 0; consequently

pf(t) = (p− σ)f(t) + σf(t) ≤ (p− σ)(f(t0)− η) + σf(t), (1257)

where 0 < σ ≪ p. It follows that the contribution of the integral outside the
neighborhood of t0 is exponentially small:∣∣∣∣ t0−δ∫

a

epf(t)g(t)dt

∣∣∣∣ ≤ e(p−σ)(f(t0)−η)
t0−δ∫
a

eσf(t)|g(t)|dt

= O
(
e(p−σ)(f(t0)−η)

)
= epf(t0)O(e−ηp).

(1258)

At last, equations (1254) and (1255) imply formulas (1245) and (1246).
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10.2.3 The steepest descent method

Consider now the case of the Laplace integral over a complex contour

I(p) =

∫
C
epf(z)g(z)dz, p≫ 1, (1259)

where f(z) and g(z) are analytic in a domain D of the complex z plane
containing the curve C, and suppose that ∃! z0 ∈ D such that f ′(z0) = 0 and
f ′′(z0) ̸= 0. We use the standard notation: z = x + iy, u(x, y) =Ref(z) =
fR(z) and v(x, y) =Imf(z) = fI(z).

We look for a contour γ ⊂ D such that:
1) u(x, y) has its max on γ in z0 = x0 + iy0 ∈ γ.
2) v(x, y) is constant on γ: v(x, y) = v(x0, y0), to avoid rapid oscillations of
the integrand.
Does this contour exist? Since f(z) is analytic, then uxx+ uyy = 0, implying
that uxxuyy < 0 and that uxxuyy < u2xy. Therefore z0 is a saddle point
(see figure 3). Along γ, v is constant, implying that ▽v ⊥ γ. From the
Cauchy-Riemann conditions it follows that ▽v · ▽u = 0; i.e., γ is tangent
to ▽u. Therefore the curve on which v(x, y) = v(x0, y0) is the curve of
steepest variation of u (see Fig. 65).

How many curves of this type pass through z0? Can one select, among
them, the steepest descent curves? Around z0 we have:

f(z) = f(z0) +
f ′′(z0)

2
(z − z0)

2 +O(z − z0)
3. (1260)

Therefore
f(z) = f(z0) + (z − z0)

2h(z),
h(z) analytic, with h(z0) ̸= 0,

h(z0) =
f ′′(z0)

2
= ρ0

2
eiφ0 ,

ρ0 = |f ′′(z0)|, φ0 = arg(f ′′(z0))

(1261)

Let
z − z0 = reiθ, h(z) =

ρ

2
eiφ, (1262)

then
f(z)− f(z0) =

r2ρ
2
ei(2θ+φ),

u(x, y)− u(x0, y0) =
r2ρ
2
cos(2θ + φ),

v(x, y)− v(x0, y0) =
r2ρ
2
sin(2θ + φ).

(1263)

Since 2θ + φ has a variation equal to 4π when z rotates once around z0
and θ varies from 0 to 2π, four curvilinear sectors meet in z0, and u(x, y)−
u(x0, y0) changes sign four times. Therefore we define 4 sectors in which
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u(x, y)− u(x0, y0) has constant sign inside each sector, and opposite sign in
the neighboring sector (see Fig.s 65 and 66):

Figure 65: The plot of u(x, y) and the saddle point at z0 = x0 + iy0, in the
case f ′′(z0) ̸= 0

Figure 66: The four curvilinear sectors emanating from the saddle point z0
and the two curves of steepest variation, in the case f ′′(z0) ̸= 0. In the
two dark sectors u(x, y) < u(x0, y0) and the curve γ contained there is the
steepest descent curve. In the two white sectors u(x, y) > u(x0, y0) and the
curve contained there is the steepest ascent curve.

The sectors with negative sign contain the curve γ of steepest descent we
are looking for, defined by the equations:

u(x, y)− u(x0, y0) = − r2ρ
2
< 0,

v(x, y)− v(x0, y0) = 0
(1264)
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coming from cos(2θ+φ) = −1 and sin(2θ+φ) = 0. Therefore we obtain the
two angles

θ0k = −φ0

2
+

(
k − 1

2

)
π, k = 1, 2, (1265)

defining the two directions of steepest descent at z0.
Then the integral over γ can be evaluated using the Laplace method:

Iγ(p) =
∫
γ
epf(z)g(z)dz = eipfI(z0)

∫
γ
epfR(z)g(z)dz

= eipfI(z0)
b∫
a

epfR(z(t))g(z(t))dz
dt
dt =

g(z0)
dz(t0)
dt

√
2π

p

∣∣∣∣ d2fR(z(t))

dt2

∣∣
t0

∣∣∣∣e
pf(z0)(1 +O(p−1)), z0 inside γ,

g(z0)
dz(t0)
dt

√
π

2p

∣∣∣∣ d2fR(z(t))

dt2

∣∣
t0

∣∣∣∣e
pf(z0)(1 +O(p−1/2)), z0 end point of γ,

(1266)
where t ∈ [a, b] → z(t) ∈ γ is a parametrization of the steepest descent curve,
with z(t0) = z0 and t0 ∈ [a, b]. In the neighborhood of z0 on γ:

z(t)− z0 = r(t)eiθ(t) ∼ c(t− t0)e
iθ(t), c > 0, t ∼ t0

⇒ dz
dt

→ ceiθ0 ,
(
dz
dt

)2 → c2eiθ0 , t→ t0,
(1267)

where θ0 is one of the two steepest descent directions (1265); the choice
between these two values depends on how one chooses the travel direction
along the curve, and will be decided later on. In addition, since df = dfR on
γ:

d2fR(z(t))
dt2

= d2f(z(t))
dt2

= f ′′(z(t))
(
dz(t)
dt

)2
+ f ′(z(t))d

2z(t)
dt2

→ f ′′(z0)
(
dz(t0)
dt

)2
= ρ0c

2ei(2θ0+ϕ0) = −ρ0c2 < 0, t→ t0.
(1268)

Replacing these results into (1266), we conclude that, for p ≫ 1, (VERIFY
IT)

Iγ(p) =


√

2π
p|f ′′(z0)|g(z0)e

pf(z0)+iθ0 (1 +O(p−1)) , z0 inside γ,√
π

2p|f ′′(z0)|g(z0)e
pf(z0)+iθ0

(
1 +O(p−1/2)

)
, z0 end point of γ.

(1269)
The asymptotics (1269) are useful if one can connect the original integral
(1259) to the steepest descent integral Iγ(p), like in the KdV example of
§1.4, without involving regions where the integral gives a contribution bigger
than that in (1269).
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10.2.4 Examples

To be more explicit, let us consider the simplest possible case of the linear
Schrödinger equation iut + uxx = 0 and its Fourier transform solution

u(x, t) =

∫
R

dk

2π
û0(k)e

i(kx−k2t) =

∫
R

dk

2π
û0(k)e

f(k,x/t)t, (1270)

with
f
(
k, x

t

)
:= i

(
k x
t
− k2

)
= u+ iv,

u := kI(2kR − x
t
), v := k2I − k2R + kR

x
t
,

f ′ (k, x
t

)
= i
(
x
t
− 2k

)
⇒ k0 =

x
2t
∈ R.

f ′′ (k, x
t

)
= −2i,

u(k0) = 0, v(k0) =
(
x
2t

)2
> 0.

(1271)

The curves of steepest variation v(k)−v(k0) = 0 are the main and secondary
diagonals passing through the saddle point k0:

v(k)− v(k0) = −(kR − kI −
x

2t
)(kR + kI −

x

2t
) = 0. (1272)

and the steepest descent curve is the secondary diagonal kR + kI − x
2t

= 0
(see Fig. 67)(VERIFY IT).

Figure 67: In the k complex plane centered at k0 = x/(2t), the lines of
steepest variation are the main and secondary diagonals (in continuous red);
the steepest descent line is the secondary diagonal; the lines v =const are in
dashed red; the lines u =const are in dashed blue; the gray regions are the
regions in which u(kR, kI)− u(x/(2t), 0) < 0.
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For the convergence at k ∼ ∞: f(k) ∼ −ik2 = |k|2(sin(2φ)−i cos(2φ), k =
|k|eiφ; then sin(2φ) < 0, implying π/2 < φ < π and 3π/2 < φ < 2π. It fol-
lows that the integral converges to zero on infinite arcs of the second and
fourth quadrants.

Therefore the integral (1270) over the real line is equal to the integral over
the contour γ̃ consisting of the union of the infinite arc (−∞,∞ exp(3iπ/4)),
of the steepest descent straight line γ (from ∞ exp(3iπ/4) to ∞ exp(−iπ/4)),
and of the infinite arc (∞ exp(−iπ/4),∞), by the Cauchy theorem, assum-
ing that û0(k) be analytic inside the closed contour R ∪ (−γ̃). Since the
contribution of the two infinite arcs is zero, we have∫

R
dk
2π
û0(k)e

i(kx−k2t) =
∫
γ
dk
2π
û0(k)e

i(kx−k2t)

=
û0( x

2t)√
4πt

e
i
(

x2

4t
−π

4

) (
1 +O

(
1
t

))
, t≫ 1, x

t
= O(1),

(1273)

coinciding with the result (32) of the qualitative analysis made using the
stationary phase method. Therefore in this case the leading order term comes
indeed from the steepest descent integral.

As a second example, we consider the integral (1270), but on a different
contour C with end points a, b:

I(x, t) =

b∫
a

dk

2π
û0(k)e

f(k,x/t)t, (1274)

where a < x/(2t) and b ∈ C with 0 < arg(b − x/(2t)) < π/4. Using the
Cauchy theorem, we can replace the original integral with the contour γ̃
in figure, consisting of the union of the v =const line γ̃1 connecting a to
∞ exp(3iπ/4), of the steepest descent line γ, and of the v =const line γ̃2
connecting ∞ exp(−iπ/4) to b, having assumed that û0(k) is analytic inside
the closed contour C ∪ γ̃ (see Fig. 68).
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Figure 68: Due to the Cauchy theorem, the integration curve C is replaced
by the red curve from a to b; in this case the main contribution does not
come from the steepest descent curve

By the Cauchy theorem the contour C is replaced by the contour γ̃. The
main contribution comes from the last part of the red contour and is obtained
using integration by parts.

We see that the integrals over γ̃1 and over γ̃2 can be evaluated using the
integration by parts (since f ′(k) ̸= 0 on these contours), obtaining respec-
tively:

∞e3iπ/4∫
a

dk
2π
û0(k)e

f(k,x/t)t = − û0(a)
2πi(x−2at)

ei(ax−a
2t)
(
1 +O

(
1
t

))
, t≫ 1, x

t
= O(1),

(1275)
and

b∫
∞e−iπ/4

dk
2π
û0(k)e

f(k,x/t)t = û0(b)
2πi(x−2bt)

ei(bx−b
2t)
(
1 +O

(
1
t

))
, t≫ 1, x

t
= O(1),

(1276)
while the integral over the steepest descent contour has the leading con-
tribution (1273). While the contribution of γ̃1 is much smaller than the
contribution of (1273), the contribution of γ̃2 is much larger than the contri-
bution (1273), given by the steepest descent path γ, since Re(i(bx− b2t)) =

227



2bI(bR − x/(2t))t≫ 1. Therefore in this example the leading order term
does not come from the saddle point contribution, and

I(x, t) =
û0(b)

2πi(x− 2bt)
ei(bx−b

2t)

(
1 +O

(
1

t

))
, t≫ 1,

x

t
= O(1). (1277)

References

[1] M. J. Ablowitz, Nonlinear Dispersive Waves, Asymptotic Analysis and
Solitons, Cambridge Texts in Applied Mathematics (No. 47), 2011.

[2] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equa-
tions and Inverse Scattering, London Math. Society Lecture Note Series,
vol. 194, Cambridge University Press, Cambridge (1991).

[3] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Trans-
form, SIAM Philadelphia, 1981.

[4] N.N. Akhmediev, V.M. Eleonskii, and N.E. Kulagin, “Generation of
periodic trains of picosecond pulses in an optical fiber: exact solutions”,
Sov. Phys. JETP, 62:5 (1985), 894–899.

[5] N.N. Akhmediev, V.M. Eleonskii, and N.E. Kulagin, “Exact first order
solutions of the Nonlinear Schödinger equation”, Theor. Math. Phys,
72:2 (1987), 809–818.

[6] N.N. Akhmediev and V.I. Korneev, “Modulation instability and periodic
solutions of the nonlinear Schrd̈inger equation”, Theor. Math. Phys.,
69:2 (1986), 1089–1093.

[7] Appunti del Corso di Dottorato “Onde non lineari. Metodi
perturbativi ed esatti” tenuto da P. M. Santini, a cura
di G. Angilella. Università di Catania, AA 1995-96.
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