Experimental challenges in Nuclear Astrophysics

Istituto Nazionale di Fisica Nucleare Sezione di Roma

Alba Formicola

Outline

Why nuclear cross section at lower energies are so challenging?

Highlights from LUNA and ERNA experiments

LUNA ${}^{13}C(\alpha,n){}^{16}O$

ERNA ${}^{12}C(\alpha,\gamma){}^{16}O$

Future project: LUNA MV facility LUNA MV $^{14}N(p,\gamma)^{15}O$

Experimental Reaction Rates

Problem of extrapolation

improving "signal" (e.g. high beam currents, high target density, high efficiency) reducing "noise" (i.e. background)

¹³C(α ,n)¹⁶O neutron source for s process

About half of the stable isotopes heavier than iron are produced through slow-neutron-capture nucleosynthesis (s process, 90<A<208).

The ${}^{13}C(\alpha,n){}^{16}O$ is active in stars belonging to the asymptotic giant branch (AGB), cool and giant stars with relatively low mass (Straniero et al. 1995, Gallino et al. 1998).

Average temperature $10^8 \text{ K} \rightarrow \text{Gamow window } 140-250 \text{ keV}$

Time Straniero et al. Nuclear Physics A 777 (2006)

LUNA 400kV accelerator

: protons, o

LUNA 400kV accelerat

 $\begin{array}{rcl} U_{max} &= 50 - 400 \ \text{kV} \\ \hline 400 \ \text{kV} \ \text{at LNGS:} & I_{max} &= 700 \ \mu\text{A} \\ \Delta E_{max} &= 0.07 \ \text{keV} \\ & \text{allowed beams} &: \end{array}$

- U_{terminal} = 50 400kV
- I_{max} = 500µA (on target)
- Allowed beams: H⁺,
 ⁴He, (³He)

¹³C(α,n)¹⁶O neutron source for s process

Yield (a.u.)

DIRECT MEASUREMENTS

Lowest point at E_{cm} = 280keV by Drotleff et al.

LUNA MAIN GOAL

A direct meauserement of the ¹³C(a,n)¹⁶O approaching the Gamow window with a 20% uncertainty.

Background Reduction

ENVIRONMENTAL: neutron flux reduction of a factor 1000 in Underground Laboratory

INTRINSIC: α particles source of intrinsic background from U and Th impurities in the counters' case

10 atm pressurised ³He counters with a stainless steel case with low intrinsic background Background ($n+\alpha$): (2.93+-0.09) counts/h in the

Presamples

64

66

68

62

60

76

74

72

70

 $\times 10^3$

78

(∝s)

¹³C(α,n)¹⁶O -S(E) factor towards the Gamow window

Hydrogen burning: the Carbon-Nitrogen-Oxygen (CNO) cycle $^{14}N(p,\gamma)^{15}O$ Bottleneck reaction

Astrophysical sites: Massive Stars where CNO more efficient than pp cycle

Sun: CNO contributes only 0.8% to energy, produces detectable neutrino flux

Stars at the turn-off from the main sequence in the Hertzsprung-Russell diagram

γ-ray natural background

between E_{γ} =7 and 12MeV the bck suppression factor is 100 times

underground passive shielding is more effective since μ flux, that create secondary γ 's in the shield, is suppressed

0.3 m³ Pb-Cu shield suppression three orders of magnitude below 2MeV

State of the art: ${}^{14}N(p,\gamma){}^{15}O$ S-factor

- Before 2001: $S_{tot}(0) = 3.1 \text{ keV b} (1.55 \text{ from ground state})$ Schröder et al. (1987) —
- 2004/5: cross section for capture to ground state strongly decreased $\rightarrow S_{tot}(0) =$ 1.6 keV b Formicola et al. (2004), Imbriani et al. (2005), Runkle et al. (2005)
- 2006: total cross section measured down to 70 keV (T_6 =60) Lemut et al. (2006)
- 2008: discrepancy on S_{GS}(0) solved, precision 8% Marta et al. (2008)

¹⁴N(p, γ)¹⁵O S-factor

Energy range $E_p = 0.7-3.6 \text{MeV}$ Implanted TiN target $\vartheta_{\text{lab}} = 0^{\circ}-45^{\circ}-90^{\circ}-135^{\circ}-150^{\circ}$

¹⁴N(p, γ)¹⁵O reaction at LUNA MV

Verify the performance of LUNA-MV accelerator and surrounding setup Differential cross-section measurement is found critical

- ✓ to fit the higher energy data → Perform the measure over a wide angle range.
- ✓ Provide more high-quality higher-energy data over a extensive energy range in order to reduce the error in low-energy extrapolations

(A.Compagnucci-PhD@GSSI)

¹²C(α,γ)¹⁶O – The Holy Grail of Nuclear Astrophysics

Main Uncertainties in the Presupernova Massive Star Models

$$T \sim 1.5 - 3.5 \cdot 10^8 \text{ K}$$
 $\rho \sim 0.2 - 4 \cdot 10^3 \text{ gcm}^{-3}$

 $^{12}C(\alpha,\gamma)^{16}O$ is crucial since it determines the $^{12}C/^{16}O$ ratio at core He depletion that in turn drives all the subsequent nuclear burning stages


```
Courtsey of Marco Limongi
```


Implications on the Initial Mass-Remnant Mass relation \rightarrow BH/NS forming CCSNe \rightarrow GW Progenitors

Main components to the total cross section of the ${}^{12}C(\alpha, \gamma){}^{16}O$

The cross section around the Gamow peak is dominated by ground-state transitions through four different processes:

◆E1 amplitudes due to the low-energy tail of the 1⁻ resonance at E=2.42 MeV and to the subthreshold resonance at-45 keV

E2 amplitude due to the 2⁺ subthreshold resonance at -245 keV

direct capture to the ¹⁶O ground state (plus the relevant interference terms)

Cascades, the E2 direct capture to the
6.05 MeV and 6.92 MeV states.

ERNA

Recoil Mass Separator : the reaction yield by means of the direct detection of the recoil ions

$$\begin{split} \mathbf{N}_{\text{recoils}} &= \mathbf{N}_{\text{projectiles}} \times \mathbf{n}_{\text{target}} \times \boldsymbol{\sigma} \times \mathbf{T}_{\text{ERNA}} \times \boldsymbol{\Phi}_{\text{q}} \times \boldsymbol{\varepsilon}_{\text{part}} \\ \mathbf{N}_{\text{gamma}} &= \mathbf{N}_{\text{recoils}} \times \boldsymbol{\varepsilon}_{\gamma} \end{split}$$

ERNA Experimental setup

ERNA Goals

- 1 MeV < E_{cm} < 3 MeV
- E1, E2 and cascade contribution

By C. Santonastaso SIF, 13-17 Settembre 2020

X17 initiative (refer to Carlo Gustavino)

- ✤ G. Gervino (UNITO)
- P. Mastinu (INFN LNL)
- C. Gustavino (INFN ROMA)
- ✤ A. Mengoni (ENEA)
- C. Massimi (UNIBOLOGNA)
- N. Colonna (INFN BARI) n TOF
- S. Fiore (ENEA ROMA)
- ✤ A. Mazzone (CNR BARI)
- M.C. Petrone (IFIN-HH BUCHAREST)

**

- M. Viviani (INFN PISA) Theoretical
- ✤ A. Kievsky (INFN PISA) group
- L. E. Marcucci (UNIPISA)
- L. Girlanda (UNISALENTO)
- E. Cisbani (ISS)
 Detector R&D
- F. Renga (INFN ROMA)

Working group (in evolution)

X17 @ nToF

ATOMKI REACTION

Physics:

- Probing X17 existence
- X17 Mass, quantic numbers, coupling, life time,...
- proto-phobic nature of the fifth force.
- First measurement of $\sigma(E)$ ³He(n,e⁺e⁻)⁴He
- Data Vs Theoretical nuclear physics

n_TOF REACTION

Rome Group

carlo.gustavino@roma1.infn.it

Alba.Formicola@roma1.infn.it

oscar.straniero@inaf.it

marco.limongi@inaf.it