# Investigation of rare nuclear processes in neodymium and osmium naturally occurring isotopes

Dmytro Kasperovych

Institute for Nuclear Research of NAS of Ukraine (Kyiv, Ukraine)

The investigations has been done in collaboration with:

- DAMA group (Rome, Italy)
- National Science Center 'Kharkiv Institute of Physics and Technology' and V.N. Karazin Kharkiv National University (Kharkiv, Ukraine)
- Institute of Theoretical and Experimental Physics, National Research Centre 'Kurchatov Institute' (Moscow, Russia)
- John de Laeter Centre for Isotope Research, Curtin University (Bentley, Australia)

## Content

- Investigation of double beta decay of <sup>150</sup>Nd to the first 0<sup>+</sup> excited level of <sup>150</sup>Sm (E\*=740.5 keV)
- 2. Search for  $\alpha$  decay and  $2\beta$  decay of naturally occurring osmium nuclides accompanied by  $\gamma$  quanta
- 3. Conclusions

### Investigation of double beta decay of <sup>150</sup>Nd to the first 0<sup>+</sup> excited level of <sup>150</sup>Sm (E\*=740.5 keV)

#### <sup>150</sup>Nd: one of the most promising nuclides for 2β experiments



- High energy release
- **Q**<sub>ββ</sub> = 3371.38(20) keV [2] • Optimistic theoretical
- Optimistic theoretical estimations of  $T_{1/2}$
- Comparatively high natural isotopic abundance

**δ** = 5.638(28)% [3]

 Possibility to investigate the decay to excited levels of <sup>150</sup>Sm

[1] J.D. Vergados et al., Rep. Prog. Phys. 75 (2012) 106301
[2] V.S. Kolhinen et al., Phys. Rev. C 82 (2010) 022501
[3] J. Meija et al., Pure Appl. Chem. 88 (2016) 293

#### Previous observations of $^{150}Nd \rightarrow ^{150}Sm$ (0<sup>+</sup>, 740.5 keV) transition

| Short description                                                                                                                                                                                           | <i>T<sub>1/2</sub>,</i> 10 <sup>20</sup> y <sup>#</sup> | Year        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|
| Modane underground laboratory (4800 m w.e.), HP Ge<br>400 cm³, 3046 g of Nd <sub>2</sub> O <sub>3</sub> (δ = 5.638%), 11321 h, 1-dim<br>spectrum                                                            | $1.4^{+0.4}_{-0.2} \pm 0.3$                             | 2004<br>[1] |
| Re-estimation of the result [1]                                                                                                                                                                             | $1.33^{+0.36}_{-0.23}{}^{+0.27}_{-0.13}$                | 2009<br>[2] |
| Modane underground laboratory (4800 m w.e.), NEMO-3<br>detector, foil with 57.2 g of ${}^{150}Nd_2O_3$ ( $\delta$ = 91.0%), 40774 h,<br>energies of e <sup>-</sup> and $\gamma$ , tracks for e <sup>-</sup> | $0.71 \pm 0.13 \pm 0.09$                                | 2013<br>[3] |
| Kimballton Underground Research Facility (1450 m w.e.),<br>2 HPGe (~304 cm <sup>3</sup> each one), 50 g <sup>150</sup> Nd <sub>2</sub> O <sub>3</sub> (δ = 93.6%),<br>15427 h, coincidence spectrum         | $1.07^{+0.45}_{-0.25}\pm0.07$                           | 2014<br>[4] |
| NEMO-3 (re-estimation of [3])                                                                                                                                                                               | $1.11^{+0.19}_{-0.14}  {}^{+0.17}_{-0.15}$              | 2021<br>[5] |

<sup>#</sup> The 1<sup>st</sup> uncertainty is statistical, the 2<sup>nd</sup> one corresponds to systematics

[1] A.S. Barabash et al., *Phys. Atom. Nucl.* **67** (2004) 1216.

[2] A.S. Barabash et al., *Phys. Rev. C* **79** (2009) 045501.

[3] S. Blondel, PhD thesis, LAL, Orsay, France (2013).

08/11/2021

[4] M.F. Kidd et al., Phys. Rev. C 90 (2014) 055501.

[5] V. Tretyak, LXXI Int. Conf. "NUCLEUS-2021", 20-25 Sep

2021, Book of Abstracts, Saint Petersburg (2021), p. 257

#### **Experimental setup**





- 2381-g Nd<sub>2</sub>O<sub>3</sub> sample (average density ~2.84 g/cm<sup>3</sup>), used in previous experiment [1], additionally purified before the present measurements [2]
- 4 HP Ge detectors (~225 cm<sup>3</sup> each) in a cryostat with cylindrical well in the center; Gran Sasso National Laboratory (LNGS)
- Shield: copper (10 cm), lead (20 cm)
- Plexiglas container flushed with high-purity nitrogen gas (to remove radon)

| No. c | of detector    | FWHM, keV<br>(1333 keV, <sup>60</sup> Co calibration source) |
|-------|----------------|--------------------------------------------------------------|
|       | 1              | 2.36(2)                                                      |
|       | 2              | 2.01(2)                                                      |
|       | 3              | 2.06(2)                                                      |
|       | 4              | 4.01(4)                                                      |
| .216. | [2] R.S. Boiko | , Int. J. Mod. Phys. A 32 (2017) 1743005                     |

[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216.
 08/11/2021

6

Nd<sub>2</sub>O<sub>3</sub> vs background



# Radioactive contamination of the Nd<sub>2</sub>O<sub>3</sub> sample



#### 1-dim spectrum analysis (334.0 keV)



$$T_{1/2}^{334} = [6.6^{+2.3}_{-1.4}(\text{stat}) \pm 0.8 \text{ (syst)}] \cdot 10^{19} \text{y}$$

#### 1-dim spectrum analysis (406.5 keV)



$$T_{1/2}^{406} = [17_{-6}^{+17} \pm 2 \text{ (syst)}] \cdot 10^{19} \text{y}$$

#### **Coincidence spectrum**



- The two-dimensional energy spectrum of coincidences allows us to observe γ quanta emitted in the cascade (*left diagram*);
- The spectrum when the energy in one detector is fixed as (609 ± 5) keV (<sup>214</sup>Bi, top right).
- The energy of one detector is fixed as (2615 ± 5) keV (<sup>208</sup>Tl, bottom right).

#### **Analysis of coincidences**



 $S_{CC} = 6.0^{+3.3}_{-2.7}$ (stat)  $\pm 0.9$ (syst) counts

$$T_{1/2}^{CC} = \left[10_{-5}^{+10}(\text{stat}) \pm 2(\text{syst})\right] \cdot 10^{19} \text{y}$$



# 2. Search for α decay and 2β decay of naturally occurring osmium nuclides accompanied by γ quanta

#### $\alpha$ decay in naturally occurring Os isotopes



- All the 7 isotopes of natural Os are potentially unstable relative to α decay (A = 184, 186, 187, 188, 189, 190, 192)
  - <sup>184</sup>Os ([1], geochemical in meteorites) and <sup>186</sup>Os ([2], direct observation) g.s.-g.s. transitions were observed
- <sup>184</sup>Os and <sup>186</sup>Os are prospective to search for α decay to the 1<sup>st</sup> excited states of daughters (experimental sensitivity is on the level of predictions).

[1] S. T. M. Peters *et al.*, Earth Planet. Sci. Lett. **391**, 69 (2014).
[2] V. E. Viola *et al.*, J. Inorg. Nucl. Chem. **37**, 11 (1975).

#### **Experiment description**



STELLA facility, LNGS (Italy) [1]

Os sample:

- 99.999% purity grade
- ingots obtained from osmium powder and used in the previous experiment [1] were cut into (0.8-1.3)-mm slices for this measurement
- mass of 117.96(2) g
- placed directly on the cryostat endcap of the 112.5-cm<sup>3</sup> BEGe detector (dead layer of 0.4  $\mu m$ )

Passive shield made of radiopure copper (4-5 cm) and lead (20 cm)

Measurement time 15851 h (1.8 y)

[1] M. Laubenstein, Int. J. Mod. Phys. A **32** (2017) 1743002

#### Isotopic composition of osmium

- John de Laeter Centre at Curtin University (Perth, Western Australia)
- Negative thermal ionization mass spectrometry (N-TIMS)
- Relative uncertainties for all the isotopes have been improved by 1-3 orders of magnitude (<sup>184</sup>Os: 100% → 4.1%, <sup>186</sup>Os: 40.3% → 0.04%)

|                   | δ (       | %)            | Number of nuclei            |  |  |
|-------------------|-----------|---------------|-----------------------------|--|--|
| Isotope           | IUPAC [1] | This work [2] | in the sample               |  |  |
| <sup>184</sup> Os | 0.02(2)   | 0.0170(7)     | $6.35(26) \times 10^{19}$   |  |  |
| <sup>186</sup> Os | 1.59(64)  | 1.5908(6)     | $5.9405(25) \times 10^{21}$ |  |  |
| <sup>187</sup> Os | 1.96(17)  | 1.8794(6)     | $7.0182(25) \times 10^{21}$ |  |  |
| <sup>188</sup> Os | 13.24(27) | 13.253(3)     | $4.9490(14) \times 10^{22}$ |  |  |
| <sup>189</sup> Os | 16.15(23) | 16.152(4)     | $6.0316(18) \times 10^{22}$ |  |  |
| <sup>190</sup> Os | 26.26(20) | 26.250(8)     | $9.8025(34) \times 10^{22}$ |  |  |
| <sup>192</sup> Os | 40.78(32) | 40.86(5)      | $1.5258(19) \times 10^{23}$ |  |  |

[1] J. Meija et al., Pure Appl. Chem. 88 (2016) 293

[2] P. Belli et al., Phys. Rev. C 102 (2020) 102

#### Os sample vs. background



#### **Radioactive contamination of the Os sample**

| Decay chain       | Radionuclide      | Specific activity (mBq/kg) |  |  |
|-------------------|-------------------|----------------------------|--|--|
|                   | <sup>40</sup> K   | $11 \pm 4$                 |  |  |
|                   | <sup>60</sup> Co  | ≤ 1.3                      |  |  |
|                   | <sup>137</sup> Cs | $0.5 \pm 0.1$              |  |  |
| <sup>232</sup> Th | <sup>228</sup> Ra | $\leqslant 6.6$            |  |  |
|                   | <sup>228</sup> Th | ≤ 16                       |  |  |
| <sup>235</sup> U  | <sup>235</sup> U  | $\leqslant 8.0$            |  |  |
|                   | <sup>231</sup> Pa | ≤ 3.5                      |  |  |
|                   | <sup>227</sup> Ac | ≤ 1.1                      |  |  |
| <sup>238</sup> U  | <sup>238</sup> U  | ≤ 35                       |  |  |
|                   | <sup>226</sup> Ra | $\leqslant 4.4$            |  |  |
|                   | <sup>210</sup> Pb | $\leq 180$                 |  |  |

#### $^{184,186}Os\ \alpha$ decay to the 1st excited levels of $^{180,182}W$



#### The limits substantially exceed the theoretical predictions!

08/11/2021

#### **Application of systematics [1]**

|                                                | relative<br>uncer | relative systematic<br>uncertainties |  |  |
|------------------------------------------------|-------------------|--------------------------------------|--|--|
| Source                                         | <sup>184</sup> Os | <sup>186</sup> Os                    |  |  |
| Detection efficiency                           | 0.098             | 0.118                                |  |  |
| Interval of fit                                | 0.076             | 0.065                                |  |  |
| Isotopic abundance                             | 0.041             | 0.0004                               |  |  |
| Total relative systematic error ( $\sigma_r$ ) | 0.131             | 0.135                                |  |  |

 $\lim S \to \lim S' = \lim S \times a$  $a = [1 + (\lim S - S) \times \frac{\sigma_r^2}{2}]$ 

where  $\sigma_r$  is a relative systematic uncertainty of the peak area *S*. Corrected  $T_{1/2}$  limits:  $\lim T_{1/2}(^{184}\text{Os}) = 6.8 \times 10^{15} \text{ y}, \lim T_{1/2}(^{186}\text{Os}) = 3.3 \times 10^{17} \text{ y}$ 

[1] R.D. Cousins and V.L. Highland, Nucl. Instrum. Meth. A 320 (1992) 331

#### Summary

| Nuclido                                | ⁄۸ ۵              | کور کو |            | <i>Τ</i> <sub>1/2</sub> , γ                 |                           |  |
|----------------------------------------|-------------------|--------------------------------------------|------------|---------------------------------------------|---------------------------|--|
| Nuclide                                | 0, 70             | energy in keV                              | (g.sg.s.)  | predictions                                 | This work                 |  |
| 1840 - 0+                              | 0.0150(11)        | <sup>180</sup> W, 2 <sup>+</sup> , 103.6   |            | (1.3 – 2.9)×10 <sup>15</sup>                | ≥ 6.8 × 10 <sup>15</sup>  |  |
|                                        | <u>0.0158(11)</u> | <sup>180</sup> W, 4 <sup>+</sup> , 337.6   | 2958.7(10) | (0.09 – 2.5)×10 <sup>19</sup>               | $\geq 4.6\times 10^{16}$  |  |
| 1860 - 0+                              | 1 5008(6)         | <sup>182</sup> W, 2 <sup>+</sup> , 100.1   | 2021 2(0)  | (0.3 – 2.2)×10 <sup>17</sup>                | ≥ 3.3 × 10 <sup>17</sup>  |  |
| US, U*                                 | 1.5908(0)         | <sup>182</sup> W, 4 <sup>+</sup> , 329.4   | 2821.2(9)  | (0.07 – 2.9)×10 <sup>21</sup>               | $\geq 6.0 \times 10^{18}$ |  |
| 1870- 1/2-                             | 1.9704(6)         | <sup>183</sup> W, 3/2⁻, 46.5               | 2721.7(9)  | $1.6 \times 10^{17} - 4.4 \times 10^{20}$   | $\geq 3.2\times 10^{15}$  |  |
|                                        | 1.8794(6)         | <sup>183</sup> W, 5/2⁻, 99.1               |            | 9.1×10 <sup>17</sup> – 2.8×10 <sup>21</sup> | $\geq 1.9\times 10^{17}$  |  |
| <sup>188</sup> Os, 0 <sup>+</sup> 13.2 | 12 252(2)         | <sup>184</sup> W, 2 <sup>+</sup> , 111.2   | 2143.2(9)  | (0.1 – 2.9)×10 <sup>29</sup>                | $\geq 3.3\times 10^{18}$  |  |
|                                        | 15.255(5)         | <sup>184</sup> W, 4 <sup>+</sup> , 364.1   |            | $8.9 \times 10^{33} - 1.9 \times 10^{36}$   | $\geq 5.0 \times 10^{19}$ |  |
|                                        |                   | <sup>185</sup> W, 3/2 <sup>-</sup> , g.s.  | 1976.1(9)  | $3.1 \times 10^{29} - 2.4 \times 10^{34}$   | $\geq 3.5\times 10^{15}$  |  |
| <sup>189</sup> Os, 3/2 <sup>-</sup>    | 16.152(4)         | <sup>185</sup> W, 1/2⁻, 23.5               |            | 3.2×10 <sup>30</sup> – 1.8×10 <sup>35</sup> | $\ge 3.5 \times 10^{15}$  |  |
|                                        |                   | <sup>185</sup> W, 5/2⁻, 65.9               |            | $3.1 \times 10^{31} - 2.1 \times 10^{36}$   | $\geq 7.6\times 10^{17}$  |  |
| <sup>190</sup> Os, 0+                  | 26.250(8)         | <sup>186</sup> W, 2+, 122.6                | 1375.8(12) | $1.6 \times 10^{51} - 1.1 \times 10^{54}$   | $\geq 1.2 \times 10^{19}$ |  |
|                                        |                   | <sup>186</sup> W, 4 <sup>+</sup> , 396.5   |            | $1.6 \times 10^{65} - 5.8 \times 10^{69}$   | $\geq 8.6 \times 10^{19}$ |  |
| <sup>192</sup> Os, 0 <sup>+</sup>      | 40.78(32)         | <sup>188</sup> W, 0 <sup>+</sup> , g.s.    | - 361(4)   | $1.4 \times 10^{140} - 1.7 \times 10^{153}$ | $\geq 5.8 \times 10^{18}$ |  |
|                                        |                   | <sup>188</sup> W, 2 <sup>+</sup> , 143.2   |            | $9.9 \times 10^{190} - 1.6 \times 10^{215}$ | ≥ 2.7 × 10 <sup>19</sup>  |  |

#### 2β processes in Os nuclides



#### 2v2K and 2vKL decays of <sup>184</sup>Os



#### 2EC decays of <sup>184</sup>Os to 111.2-keV daughter level



#### ECβ<sup>+</sup> decay of <sup>184</sup>Os



| Transition | Final level of<br><sup>184</sup> W | Lim T <sub>1/2</sub> , y |  |
|------------|------------------------------------|--------------------------|--|
| 24500+     | g.s.                               | $1.0 \times 10^{17}$     |  |
| ZVECP      | 2+, 111.2 keV                      | $1.0 \times 10^{17}$     |  |
| 0vECβ+     | g.s.                               | $1.0 \times 10^{17}$     |  |
|            | 2+, 111.2 keV                      | 9.9 × 10 <sup>16</sup>   |  |

#### 2β<sup>-</sup>(2v+0v) decay of <sup>192</sup>Os (to 316.5-keV level)



#### **Comparison with previous result (1)**

| Process, daughter<br>level | E koV                              | Т <sub>1/2</sub> , уг                  |                          | Process daughter level                          | E ko\/                            | <i>Τ</i> <sub>1/2</sub> , γ      |                           |
|----------------------------|------------------------------------|----------------------------------------|--------------------------|-------------------------------------------------|-----------------------------------|----------------------------------|---------------------------|
|                            | $E_{\gamma}$ , kev                 | This work [1]                          | Previous [2]             | Process, daughter level                         | ε <sub>γ</sub> , κεν              | This work [1]                    | Previous [2]              |
|                            | $^{184}\text{Os} \rightarrow ^{1}$ | <sup>84</sup> W                        |                          |                                                 | $^{184}$ Os $\rightarrow$ $^{13}$ | <sup>84</sup> W                  |                           |
| 2v2K – g.s.                | 57–69                              | ≥ 3.0 × 10 <sup>16</sup>               | ≥ 1.9 × 10 <sup>14</sup> | 0v2K − 2+, 111.2                                | 1202.6(7)                         | ≥ 7.6 × 10 <sup>16</sup>         | $\geq 3.3 \times 10^{17}$ |
| 2vKL – g.s.                | 57–69                              | ≥ <b>2.0</b> × <b>10</b> <sup>16</sup> | _                        | 0vKL – 2+, 111.2                                | 57–69                             | ≥ 1.9 × 10 <sup>16</sup>         | -                         |
| 2v2K – 2⁺, 111.2           | 57–69                              | ≥ <b>3.6</b> × <b>10</b> <sup>16</sup> | ≥ 3.1 × 10 <sup>15</sup> | 0v2EC – 2+, 903.3                               | 903.3                             | ≥ 1.7 × 10 <sup>17</sup>         | ≥ 2.8 × 10 <sup>16</sup>  |
| 2vKL − 2⁺, 111.2           | 57–69                              | ≥ 2.4 × 10 <sup>16</sup>               | ≥ 3.1 × 10 <sup>15</sup> | 0v2EC – 0⁺, 1002.5                              | 310.6–<br>312 0                   | ≥ 2.1 × 10 <sup>17</sup>         | $\geq 3.5 \times 10^{17}$ |
| 2v2EC – 2+, 111.2          | 111.2                              | ≥ 7.3 × 10 <sup>15</sup>               | ≥ 3.1 × 10 <sup>15</sup> | $0_{\rm V}2EC = 2^+ 1121 A$                     | 757.2                             | > 9 / x 10 <sup>16</sup>         | $> 6.4 \times 10^{16}$    |
| 2v2EC – 2⁺, 903.3          | 903.3                              | ≥ 2.0 × 10 <sup>17</sup>               | ≥ 3.2 × 10 <sup>16</sup> | 00210 - 2 , 1121.4                              | /5/.3                             | 2 3.4 ~ 10                       | 2 0.4 × 10                |
| 2v2EC – 0⁺, 1002.5         | 891.3                              | ≥ 2.8 × 10 <sup>17</sup>               | ≥ 3.8 × 10 <sup>17</sup> | 0vKL – (0⁺), 1322.2                             | 903.3                             | $\geq 1.7 \times 10^{17}$        | $\geq 2.8 \times 10^{16}$ |
| 2v2FC - 2+ 1121 4          | 757 3                              | > 1.0 × 10 <sup>17</sup>               | > 6 9 × 10 <sup>16</sup> | 0v2L – 2⁺, 1386.3                               | 1275.1                            | ≥ 3.0 × 10 <sup>16</sup>         | $\geq 6.7 \times 10^{16}$ |
|                            | 757.5                              |                                        | 2 0.5 ** 10              | 0v2L – (3)⁺, 1425.0                             | 903.3                             | ≥ 8.4 × 10 <sup>16</sup>         | _                         |
| 2vKL – (0+), 1322.2        | 903.3                              | ≥ 1.7 × 10 <sup>17</sup>               | _                        | 0v2L − 2 <sup>+</sup> , 1431.0                  | 1210.0                            | > 1 1 1016                       | > 0 2 1016                |
| 2v2L – 2⁺, 1386.3          | 1275.1                             | ≥ <b>3.0</b> × 10 <sup>16</sup>        | _                        | resonant                                        | 1319.8                            | ≥ 4.4 × 10 <sup>10</sup>         | ≥ 8.2 × 10 <sup>10</sup>  |
| 2v2L – (3)⁺, 1425.0        | 903.3                              | ≥ 8.4 × 10 <sup>16</sup>               |                          | 2vECβ⁺ – g.s.                                   | 511                               | ≥ 1.0 × 10 <sup>17</sup>         | ≥ 2.5 × 10 <sup>16</sup>  |
|                            | 1210.0                             |                                        |                          | 2vECβ <sup>+</sup> - 2 <sup>+</sup> , 111.2     | 511                               | ≥ 1.0 × 10 <sup>17</sup>         | ≥ 2.5 × 10 <sup>16</sup>  |
| 2V2L - 2°, 1431.0          | 1319.8                             | 2 4.4 × 10 <sup>-3</sup>               | -                        | 0vECβ <sup>+</sup> − g.s.                       | 511                               | ≥ 1.0 × 10 <sup>17</sup>         | ≥ 2.5 × 10 <sup>16</sup>  |
| 0v2K – g.s.                | 1313.8(7)                          | ≥ 1.6 × 10 <sup>17</sup>               | ≥ 2.0 × 10 <sup>17</sup> | 0vECβ <sup>+</sup> – 2 <sup>+</sup> , 111.2     | 511                               | ≥ 9.9 × 10 <sup>16</sup>         | ≥ 2.4 × 10 <sup>16</sup>  |
| 0vKL – g.s.                | 1372.1(17)                         | ≥ 1.3 × 10 <sup>17</sup>               | ≥ 1.3 × 10 <sup>17</sup> | $192 \Omega_{\rm C} \rightarrow 192 \text{ Dt}$ |                                   | I                                |                           |
| 0v2L – g.s.                | 1430.5(26)                         | ≥ 7.3 × 10 <sup>16</sup>               | ≥ 1.4 × 10 <sup>17</sup> | (2)11 (2)12 - 2+ 216 F                          |                                   | $> 2.0 \times 10^{20}$           | $> E 2 \times 10^{19}$    |
|                            |                                    | -                                      |                          | $(2v+0v)2p - 2^{\circ} 310.5$                   | 316.5                             | <b>∠ Z.U × IU</b> <sup>-</sup> ° | ≤ 2.3 × 10 <sup>10</sup>  |

[1] Belli et al., J. Phys. G 48 (2021) 085104
[2] Belli et al. Eur. Phys. J. A 49 (2013) 24

08/11/2021

#### Conclusions

• 2 $\beta$  decay of <sup>150</sup>Nd to the first 0<sup>+</sup> excited state of <sup>150</sup>Sm has been investigated with ~2.4-kg Nd<sub>2</sub>O<sub>3</sub> sample by using low-background 4-crystal HPGe  $\gamma$ spectrometer. The half-life value has been obtained after 4.5 yr. of data taking to be

 $T_{1/2} = [9.7^{+2.9}_{-1.9}(\text{stat}) \pm 1.5 \text{ (syst)}] \cdot 10^{19} \text{y}$  (preliminary).

The measurement is in progress to increase the statistics.

- α and double-β processes in Os naturally occurring isotopes were searched for over 1.8 yr. using low-background 112-cm<sup>3</sup> BEGe detector and 118-g sample of osmium.
- The half-life limits for <sup>184,186</sup>Os relative to  $\alpha$  decay to the 1<sup>st</sup> excited states of daughters are measured to be substantially higher than theoretical predictions for these transitions.
- New or improved half-life limits on most of the 2 $\beta$  decay channels of <sup>184</sup>Os have been set at the level of  $10^{16} 10^{17}$  y at 90% C.L. The half-life limit on  $2\beta^{-}$  decay of <sup>192</sup>Os to the first excited level of <sup>192</sup>Pt has been 4 times increased compared to the previous result.
- The next stage of the experiment is in progress with a sample placed directly on the Ge crystal inside the cryostat to improve detection efficiency.