

Fusione nucleare: stato e prospettive

Paola Batistoni Resp. Divisione Sviluppo Energia da Fusione ENEA-FSN – Centro di Ricerca di Frascati

Università di Roma La Sapienza, 11 aprile 2022

SOMMARIO

- 1. La fusione: cos'è e come si ottiene
- 2. A che punto siamo
- 3. I recenti risultati di JET
- 4. Il reattore sperimentale ITER
- 5. Cosa resta da fare la Roadmap europea
- 6. L'esperimento italiano DTT

In cielo non come in terra

- Il processo p-p che alimenta il Sole è troppo lento
- 1 m³ nel Sole produce \approx 30 W
- Il Sole funziona perché è grande

- La reazione di fusione Deuterio-Trizio è ordini di grandezza più veloce
- Con la D-T il Sole vivrebbe < 1s
- Servono temperature molto più alte che nel Sole (100-200 milioni K)

Come si ottiene la fusione

- Reazione D-T: sezione d'urto più alta a temperature più basse
- Temperatura T \ge 10⁸ K (10 keV)
- Plasmi termonucleari (non funzionerebbe in sistemi fasciobersaglio, fascio-fascio) «confinati»
- L'energia del plasma "confinata" per un intervallo di tempo tale che l'energia prodotta ecceda quella spesa per mantenere le condizioni di reazione

Ciclo DT: condizioni per il guadagno di energia (1/2)

$D + T \rightarrow {}^{4}He (3.5 MeV) + n (14.1 MeV)$

- I neutroni sfuggono dal plasma e portano fuori dal sistema l'energia (80% energia di fusione) che può essere trasformata in energia elettrica
- Le particelle alfa depositano la loro energia (20% energia di fusione) nel plasma e così ne sostengono la temperatura
- In un plasma DT, perché la potenza delle alfa sia maggiore di quella persa per irraggiamento (bremmstrahlung) serve T > 4.3 keV

Ciclo DT: Condizioni per il guadagno di energia (2/2)

Potenza in uscita:

• per radiazione (bremsstrahlung), $P_B \propto n^2 \ T^{1/2}$, dove n è la densità elettronica

• per trasporto, $P_T = 3nTV/\tau_E$, dove τ_E è il tempo caratteristico di confinamento dell'energia

Potenza in entrata:

• potenza delle α , P_c = 1/5 P_{fus} \propto n²F(T)

riscaldamento ausiliario fornito dall'esterno P_{ext}

 $Q = P_{fus} / P_{ext}$ guadagno di potenza

Q = 1 Breakeven

 $Q \ge 1 \rightarrow n\tau_E \ge 6 \times 10^{19} \text{ m}^{-3}\text{s}, T \approx 20 \text{ keV}$

 $nT\tau_{E} \ge 1.2 \times 10^{21} \text{ m}^{-3} \text{ keV s al minimo della curva}$

P. Batistoni, Fusione Nucleare: Stato e Prospettive, La Sapienza, 11 aprile 2022

I vantaggi della fusione

- Il combustibile è virtualmente illimitato nell'acqua di mare c'è abbastanza deuterio e litio per coprire gli attuali consumi per alcune decine di milioni di anni; 1g D equivale 300 t carbone
- il combustibile è uniformemente distribuito sulla Terra, non genera quindi tensioni geopolitiche;
- la reazione su cui si basa non produce gas climalteranti;
- è intrinsecamente sicura (in ogni momento nella camera di reazione si trova circa un grammo di idrogeno);
- la reazione di fusione non produce scorie radioattive – i neutroni di fusione inducono radioattività nelle le pareti della camera di reazione, che con un'opportuna scelta dei materiali decade in ca.1 secolo.

P. Batistoni, Fusione Nucleare: Stato e Prospettive, La Sapienza, 11 aprile 2022

7

Come si ottiene

Confinamento magnetico

Plasma a bassa densità, in condizioni quasi stazionarie, confinato da campi magnetici opportunamente configurati (pressione cinetica del plasma < pressione magnetica)

Inner Poloidal field coils (Primary transformer circuit)

Confinamento inerziale

Microesplosione di materia fortemente compressa con fasci laser o di particelle, "confinata" dalla sua sola inerzia

≈ R/c_s, τ

c_s è la velocità del suono

Dove siamo

- Negli esperimenti attualmente in funzione sono già raggiunti valori di densità e temperatura del plasma simili a quelli richiesti in un reattore a fusione.
- Si è andati vicini al pareggio (breakeven) tra potenza iniettata nella camera di reazione e quella prodotta dalla fusione.

1997
$$E_{fus} = 22 \text{ MJ}, P_{fus} = 16 \text{ MW } P_{fus} / P_{ext} = 0.65.$$
(P_{ext} = 25MW)

✓2021
$$E_{fus}$$
 = 59 MJ, P_{fus} = 11 MW P_{fus}/P_{ext} = 0.3 (P_{ext} = 33MW)

• NIF (LLNL, US)

٧

✓2021 E_{fus} = 1.35 MJ. pari a 5 volte l'energia assorbita dal plasma, a fronte di 1.9 MJ di energia laser impiegata.

JET – Joint European Tokamak

- Attualmente l'esperimento di fusione (tokamak) più grande al mondo
- L'unico in grado di operare in deuterio-trizio (DT)
- Due campagne sperimentali in DT nel 1997 e nel 2021

R = 2,96 m, a = 1,25 m B < 3,45T, I < 4,8 A P_{aux}= 38 MW, V = 100 m³

II divertore

- La separatrice definisce il confine tra il plasma confinato e quello in contatto con la parete
- In un sottile strato subito fuori dalla separatrice, le particelle vengono convogliate verso divertore, un componente interno ma separato dalla camera principale
- Lo smaltimento del calore e delle alfa avviene in una superficie limitata sul divertore
 → decine MW/m².
 - \rightarrow Sputtering chimico e fisico
 - \rightarrow Erosione / ri-deposizione
 - $\rightarrow \textbf{Fusione}$
 - \rightarrow Contaminazione del plasma

P. Batistoni, Fusione Nucleare: Stato e Prospettive, La Sapienza, 11 aprile 2022

Campagna in DT al JET - 2021

Sostituzione della parete interna di carbonio con Be per la prima parete e W per il divertore, gli stessi materiali usati in ITER (2011)

Nuove

scenari

Risultati della nuova campagna DT al JET (2021)

- Studio dell'effetto isotopico conferma dell'effetto positivo dell'aumento della massa sul confinamento anche con la ITER-like-Wall
- Sostentamento della fusione per t >> τ_{E}
- Record di energia da fusione prodotta

Risultati della nuova campagna DT al JET (2021)

- Effetto isotopico sull'erosione della prima parete: passando dal D al T aumenta il tasso di erosione sul W, ma entro limiti accettabili
- Effetto misurabile del riscaldamento delle alfa
- La Potenza di fusione misurara conferma le predizioni teoriche
- Validazione delle estrapolazioni per ITER

ITER : il prossimo passo

In costruzione a Cadarache (Francia) nell'ambito di una collaborazione tra **Europa, Giappone, Russia, Stati Uniti, Cina, Corea del Sud, India**

Obiettivi:

- dimostrare la fattibilità scientifica e tecnologica della fusione
- $Q = P_{fus}/P_{in} = 10$
- 500MW di potenza di fusione a fronte di 50MW di potenza iniettata nella camera di reazione per impulsi della durata di alcune centinaia di secondi fino a circa un'ora

ITER: il sito (Cadarache, Francia)

L'Edificio Tokamak

ITER: la base fisica

- La base fisica di ITER è solidamente fondata sui risultati ottenuti nei vari esperimenti sin qui condotti
- Rispetto agli esperimenti attuali ITER rappresenta una estrapolazione sufficientemente piccola da renderci confidenti nel raggiungimento degli obiettivi ma al tempo stesso significativa per la dimostrazione della fusione

$$\tau_{\rm E, ITER}$$
 = 4.3s

nT
$$\tau_{E, ITER} \sim 8.6 \times 10^{21} \text{m}^{-3} \text{s keV}$$

(con n=10²⁰m⁻³ e T=20keV)

Q=10

ITER: l'assemblaggio in corso

ITER: Vacuum vessel e blanket

ITER: magneti superconduttori del campo toroidale

- 18 bobine superconduttrici
- Raffreddamento LHe (4 K, 0.6 MPa)
- Corrente nominale 68 kA
- Campo magnetico di picco 11.8 T
- ~ 82 kms di Nb₃Sn Cable in Conduit Conductor (sviluppato in ENEA)

- 10 delle 18 bobine costruite in Italia
- ENEA/TRATOS/CRIOTEC parte dei cavi in Nb₃Sn
- ASG gli avvolgimenti
- SIMIC le strutture di supporto e le casse

ITER: il divertore (target e supporto)

54 "cassette" che supportano 3 target Flussi di calore : < 10 MWm² (stazionario) < 20 MWm² (transienti).

Target di tipo monoblocco con tegole di tungsteno e tubi in CuCrZr (tecnologia sviluppata in ENEA)

Prototipo scala 1:1 realizzato da Ansaldo Nucleare con ENEA e testato con successo a 5 MW/m² per 5000 cicli e 20 MW/m² per 300 cicli di 10 s ciascuno

ITER: dimostrazione dell'energia da fusione

Operazioni con «burning plasma» ad alto Q in ITER

- Buon confinamento dell'energia
- Buon confinamento delle particelle di plasma
- Controllo delle impurità
- Controllo della stabilità del plasma in presenza di sostanziale riscaldamento dalle alfa
- Controllo dello smaltimento della potenza
- Protezione delle pareti interne attivamente raffreddate

• Dimostrazione di alcune tecnologie ma ...

ITER non produrrà trizio, non produrrà energia elettrica

La Roadmap europea per la fusione

- L'Europa ha adottato una Roadmap (2014, 2018) Che definisce il programma di attività verso l'obiettivo dell' energia elettrica da fusione
- Il programma previsto dalla Roadmap è attuato dal Consorzio Eurofusion
- 30 organizzazioni di ricerca
- 152 entità affiliate
- 25 Stati Membri
- Regno Unito, Svizzera e Ucraina come associati
- Finanziamento tramite Grant FP9 Euratom per 550 M€ (2021-2025)

Eurofusion Consortium				
ENEA Programme Manager				
RFX	UniCatania			
DTT	PoliTo			
CNR	UniPalermo			
CREATE	UniCagliari			
INFN	UniTuscia			
UniTorVergata	CINECA			
UniSapienza				
UniRomaTre	ENI			
UniPisa	ANN-Ansaldo			
UniMiBicocca	CSM-RINA			
PoliMi	LT Calcoli			

European Research Roadmap LONG VERSION to the Realisation of Fusion Energy

www.euro-fusion.org/eurofusion/roadmap/

La Roadmap europea per la fusione

 Roadmap della fusione ha l'obiettivo di completare in tempo utile tutti gli sviluppi che consentano l'inizio della costruzione di un reattore dimostrativo (DEMO) nel momento in cui ITER consegua l'obiettivo di guadagno P_{fus}/P_{in} = 10 (2035), quindi l'inizio dell' operazione intorno alla metà del secolo.

La Roadmap europea per la fusione

Il mantello

Il mantello ricopre internamente la camera a vuoto ed ha tre principali funzioni:

 Conversione dell'energia dei neutroni in calore ed estrazione

 \rightarrow alta efficienza > 40%

Produzione ed estrazione di trizio
 ~ 55.6 kg / GW_{Fus} / y
 (~154 gT/GW_{Fus}/day)

 \rightarrow autosufficienza T/n > 1.1

 Schermaggio della radiazione e protezione dei componenti permanenti (camera, magneti)
 → proprietà di schermaggio
 → materiali resistenti alla radiazione

II mantello

Materiali strutturali

Lo spettro in energia dei neutroni di fusione è più «duro» rispetto a quello di fissione

- \rightarrow He (appm) /dpa ~ 10
- \rightarrow indurimento, rigonfiamento ...

 \rightarrow Maggiore infragilimento ad alta temperatura dovuto alla produzione di He

ITER: 2 displacements per atom (dpa) a fine vita DEMO: 80 dpa dopo 4 anni full power

1e+15

1e+14

1e+13

1e+12

1e+1

1e+10

1e+09

1e-01

1e+01

Neutron Flux (n cm⁻² s⁻¹ per lethargy interval

Fusion (DEMO FW)

1e+05

1e+07

Fission (PWR)

1e+03

Materiali strutturali

Acciai Ferritici Martensitici ad attivazione ridotta (RAFM) Mo, Nb, Co, Ni sostituiti con W, V and Ta Eurofer97 (9CrWVTa) (350°C – 600°C).

Produzione di trizio

- Parte dei neutroni di fusione sono catturati da altri materiali o persi attraverso le penetrazioni
- Per ottenere l'autosufficienza T/n >1 occorre
 - usare Li arricchito in ⁶Li
 - usare materiali moltiplicatori di neutroni: Pb o Be

P. Batistoni, Fusione Nucleare: Stato e Prospettive, La Sapienza, 11 aprile 2022

La produzione di trizio

Mantello "Water Cooled Lithium Lead (WCLL)"

PbLi liquido come breeder e moltiplicatore di neutroni 15.7% Li (at) Li arricchito al 90% in ⁶Li. Materiale strutturale: EUROFER97 Refrigerante: acqua

La produzione di trizio

Mantello "Helim Cooled Pebble Bed (HCPB)"

Li₄SiO₄ breeder Be moltiplicatore di neutroni Li arricchito al 40% in ⁶Li. Materiale strutturale: EUROFER97 Refrigerante: He

Smaltimento del calore

- Divertore di DEMO: fino a 60MW/m² (~ come sulla superficie del Sole)
- La soluzione adottata per ITER potrebbe non essere sufficiente per DEMO
 - $\checkmark\,$ sviluppo di regimi altamente radiativi \rightarrow maggiore potenza persa per radiazione
 - ✓ Maggiore superficie "bagnata" sul divertore

Configurazione Snowflake - TCV tokamak EPFL Losanna - Svizzera

Configurazione Super-X - MAST-U tokamak Culham UK

Divertor Tokamak Test facility

	DTT	ITER	DEMO
R (m)	2.19	6.2	9.1
a (m)	0.7	2	2.93
Α	3.1	3.1	3.1
I _p (MA)	5.5	15	19.6
B (T)	6	5.3	5.7
Heating P _{tot} (MW)	45	120	460
P _{sep} /R (MW/m)	15	14	17
Pulse length (s)	95	400	7600

Sviluppo e dimostrazione di soluzioni alternative per il divertore di DEMO

BICOCCĂ

Conclusioni

- L'Europa persegue l'energia da fusione come elemento importante del futuro mix energetico
- ITER è l'esperimento chiave della Roadmap
- In parallelo a ITER, stiamo sviluppando le tecnologie per costruire e operare un reattore dimostrativo DEMO: un'opportunità per i giovani fisici e ingegneri
- L'obiettivo è produrre elettricità da fusione intorno alla metà del secolo e di avere le soluzioni disponibili tra 15 anni da oggi!

Paola Batistoni Paola.batistoni@enea.it

Titolo della presentazione - luogo - data (piè pagina - vedi istruzioni per visualizzazione in tutta la presentazione)

High confinement mode (H-mode)

H- mode

 Stato di confinamento dell'energia migliorato grazie alla transizione verso stati auto-organizzati con la soppressione della turbolenza e la formazione di una "barriera di trasporto"

Instabilità localizzate al bordo (ELMs)

- rilassamenti periodici che causano la fuoriuscita di particelle e energia
- utili per facilitare l'espulsione delle impurità.
- benigni purché la loro ampiezza sia mantenuta sufficientemente piccola

Sistemi di riscaldamento

2 (3) Neutral beam injectors 16.5 MW each, E_{b} = 1 MeV

Ion resonance heating (ICRH) 2 antennas, 10 MW, 40 to 55 MHz

Electron resonance heating (ECRH) 20 MW, 170 GHz

