
Chapter 10

Symmetries

H. Weyl: “Symmetry, as wide or as narrow as you may define its meaning, is one idea by
which man through the ages has tried to comprehend and create order, beauty, and perfection.”

The solution of a physical problem can be considerably simplified if it allows some sym-
metries. Let us consider for example the equations of Newtonian gravity. It is easy to find a
solution which is spherically symmetric, but it may be di�cult to find the analytic solution
for an arbitrary mass distribution.

In euclidean space a symmetry is related to an invariance with respect to some opera-
tion. For example plane symmetry implies invariance of the physical variables with respect
to translations on a plane, spherically symmetric solutions are invariant with respect to
translation on a sphere, and the equations of Newtonian gravity are symmetric with respect
to time translations

t
0 ! t+ ⌧.

Thus, a symmetry corresponds to invariance under translations along certain lines or over
certain surfaces. This definition can be applied and extended to Riemannian geometry. A
solution of Einstein’s equations has a symmetry if there exists an n-dimensional manifold,
with 1  n  4, such that the solution is invariant under translations which bring a point
of this manifold into another point of the same manifold. For example, for spherically
symmetric solutions the manifold is the 2-sphere, and n=2. This is a simple example, but
there exhist more complicated four-dimensional symmetries. These definitions can be made
more precise by introducing the notion of Killing vectors.

10.1 The Killing vectors

Consider a vector field ~⇠(xµ) defined at every point x
↵ of a spacetime region. ~⇠ identifies

a symmetry if an infinitesimal translation along ~⇠ leaves the line-element unchanged, i.e.

�(ds2) = �(g↵�dx
a
dx

b) = 0. (10.1)

This implies that
�g↵�dx

a
dx

b + g↵�

h
�(dxa)dxb + dx

a
�(dxb)

i
= 0. (10.2)
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~⇠ is the tangent vector to some curve x
↵(�) , i.e. ⇠

↵ = �x↵

d� , therefore an infinitesimal

translation in the direction of ~⇠ is an infinitesimal translation along the curve from a point
P (�) to the point P 0(�+ d�). Putting

�x
↵ = x

↵(�+ d�)� x
↵(�) =

dx
↵

d�
d� = ⇠

↵
d� ,

the coordinates of P (�) and P
0(�+ d�) are, respectively,

P = (x↵) and P
0 = (x↵ + �x

↵).

P
2xδ

δ x1

x2

1x

x
µ

x
µ

λ( )=

P

ξ
P = (x1

, x
2)

P
0 = (x1 + �x

1
, x

2 + �x
2)

When we move from P to P
0 the metric components change as follows

g↵�(P
0) ' g↵�(P ) +

@g↵�

@�
d�+ ... (10.3)

= g↵�(P ) +
@g↵�

@xµ

dx
µ

d�
d�+ ...

= g↵�(P ) + g↵�,µ⇠
µ
d�,

hence
�g↵� = g↵�,µ⇠

µ
d�. (10.4)

Moreover, since the operators � and d commute, we find

�(dxa) = d(�x↵) = d(⇠↵d�) = d⇠
↵
d� (10.5)

=
@⇠

↵

@xµ
dx

µ
d� = ⇠

↵
,µdx

µ
d� .

Thus, using eqs. (10.5) and (10.4), eq. (10.2) becomes

g↵�,µ⇠
µ
d�dx

↵
dx

� + g↵�

h
⇠
↵
,µdx

µ
d�dx

� + ⇠
�
,�dx

�
d�dx

↵
i
= 0, (10.6)

and, after relabelling the indices,
h
g↵�,µ⇠

µ + g��⇠
�
,↵ + g↵�⇠

�
,�

i
dx

↵
dx

�
d� = 0. (10.7)

In conclusion, a solution of Einstein’s equations is invariant under translations along ~⇠, if
and only if

g↵�,µ⇠
µ + g��⇠

�
,↵ + g↵�⇠

�
,� = 0. (10.8)
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In order to find the Killing vectors of a given a metric g↵� we need to solve eq. (10.8),

which is a system of di↵erential equations for the components of ~⇠ . If eq. (10.8) does
not admit a solution, the spacetime has no symmetries. It may look like eq. (10.8) is not
covariant, since it contains partial derivatives, but it is easy to show that it is equivalent to
the following covariant equation (see appendix A)

⇠↵;� + ⇠�;↵ = 0. (10.9)

This is the Killing equation.

10.1.1 Lie-derivative

The variation of a tensor under an infinitesimal translation along the direction of a vector
field ~⇠ is the Lie-derivative ( ~⇠ must not necessarily be a Killing vector), and it is

indicated as L~⇠. For a

 
0
2

!

tensor

L~⇠T↵� = T↵�,µ⇠
µ + T��⇠

�
,↵ + T↵�⇠

�
,� . (10.10)

For the metric tensor

L~⇠g↵� = g↵�,µ⇠
µ + g��⇠

�
,↵ + g↵�⇠

�
,� = ⇠↵;� + ⇠�;↵ ; (10.11)

if ~⇠ is a Killing vector the Lie-derivative of g↵� vanishes.

10.1.2 Killing vectors and the choice of coordinate systems

The existence of Killing vectors remarkably simplifies the problem of choosing a coordinate
system appropriate to solve Einstein’s equations. For instance, if we are looking for a solution
which admits a timelike Killing vector ~⇠, it is convenient to choose, at each point of the
manifold, the timelike basis vector ~e(0) aligned with ~⇠; with this choice, the time coordinate

lines coincide with the worldlines to which ~⇠ is tangent, i.e. with the congruence of
worldlines of ~⇠, and the components of ~⇠ are

⇠
↵ = (⇠0, 0, 0, 0) . (10.12)

If we parametrize the coordinate curves associated to ~⇠ in such a way that ⇠0 is constant
or equal unity, then

⇠
↵ = (1, 0, 0, 0) , (10.13)

and from eq. (10.8) it follows that
@g↵�

@x0
= 0 . (10.14)

This means that if the metric admits a timelike Killing vector, with an appropriate
choice of the coordinate system it can be made independent of time.

A similar procedure can be used if the metric admits a spacelike Killing vector. In this
case, by choosing one of the spacelike basis vectors, say the vector ~e(1), parallel to ~⇠, and
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by a suitable reparametrization of the corresponding conguence of coordinate lines, one can
write

⇠
↵ = (0, 1, 0, 0) , (10.15)

and with this choice the metric is independent of x1, i.e. @g↵�/@x1 = 0.
If the Killing vector is null, starting from the coordinate basis vectors ~e(0),~e(1),~e(2),~e(3),

it is convenient to construct a set of new basis vectors

~e(↵0) = ⇤�
↵0~e(�) , (10.16)

such that the vector ~e(00) is a null vector. Then, the vector ~e(00) can be chosen to be parallel

to ~⇠ at each point of the manifold, and by a suitable reparametrization of the corresponding
coordinate lines

⇠
↵ = (1, 0, 0, 0) , (10.17)

and the metric is independent of x00 , i.e. @g↵�/@x00 = 0.
The map

ft : M ! M
under which the metric is unchanged is called an isometry, and the Killing vector field is the
generator of the isometry.

The congruence of worldlines of the vector ~⇠ can be found by integrating the equations

�x
µ

d�
= ⇠

µ(x↵). (10.18)

10.2 Examples

1) Killing vectors of flat spacetime
The Killing vectors of Minkowski’s spacetime can be obtained very easily using cartesian

coordinates. Since all Christo↵el symbols vanish, the Killing equation becomes

⇠↵,� + ⇠�,↵ = 0 . (10.19)

By combining the following equations

⇠↵,�� + ⇠�,↵� = 0 , ⇠�,�↵ + ⇠�,�↵ = 0 , ⇠�,↵� + ⇠↵,�� = 0 , (10.20)

and by using eq. (10.19) we find
⇠↵,�� = 0 , (10.21)

whose general solution is
⇠↵ = c↵ + ✏↵�x

�
, (10.22)

where c↵, ✏↵� are constants. By substituting this expression into eq. (10.19) we find

✏↵�x
�
,� + ✏��x

�
,↵ = ✏↵��

�
� + ✏���

�
↵ = ✏↵� + ✏�↵ = 0

Therefore eq. (10.22) is the solution of eq. (10.19) only if

✏↵� = �✏�↵ . (10.23)
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The general Killing vector field of the form (10.22) can be written as the linear combination of
ten Killing vector fields ⇠(A)

↵ = {⇠(1)↵ , ⇠
(2)
↵ , . . . , ⇠

(10)
↵ } corresponding to ten independent choices

of the constants c↵, ✏↵�:

⇠
(A)
↵ = c

(A)
↵ + ✏

(A)
↵� x

�
A = 1, . . . , 10 . (10.24)

For instance, we can choose

c
(1)
↵ = (1, 0, 0, 0) ✏

(1)
↵� = 0

c
(2)
↵ = (0, 1, 0, 0) ✏

(2)
↵� = 0

c
(3)
↵ = (0, 0, 1, 0) ✏

(3)
↵� = 0

c
(4)
↵ = (0, 0, 0, 1) ✏

(4)
↵� = 0

c
(5)
↵ = 0 ✏

(5)
↵� =

0

BBB@

0 1 0 0
�1 0 0 0
0 0 0 0
0 0 0 0

1

CCCA

c
(6)
↵ = 0 ✏

(6)
↵� =

0

BBB@

0 0 1 0
0 0 0 0
�1 0 0 0
0 0 0 0

1

CCCA

c
(7)
↵ = 0 ✏

(7)
↵� =

0

BBB@

0 0 0 1
0 0 0 0
0 0 0 0
�1 0 0 0

1

CCCA

c
(8)
↵ = 0 ✏

(8)
↵� =

0

BBB@

0 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 0

1

CCCA

c
(9)
↵ = 0 ✏

(9)
↵� =

0

BBB@

0 0 0 0
0 0 0 1
0 0 0 0
0 �1 0 0

1

CCCA

c
(10)
↵ = 0 ✏

(10)
↵� =

0

BBB@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 �1 0

1

CCCA (10.25)

Therefore, flat spacetime admits ten linearly independent Killing vectors.
The symmetries generated by the Killing vectors with A = 1, . . . , 4 are spacetime transla-

tions; the symmetries generated by the Killing vectors with A = 5, 6, 7 are Lorentz’s boosts;
the symmetries generated by the Killing vectors with A = 8, 9, 10 are space rotations.

2) Killing vectors of a spherical surface
Let us consider a sphere of unit radius

ds
2 = d✓

2 + sin
2
✓d'

2 = (dx1)2 + sin
2
x
1(dx2)2 . (10.26)
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Eq. (10.8)
g↵�,µ⇠

µ + g��⇠
�
,↵ + g↵�⇠

�
,� = 0

gives

1) ↵ = � = 1 2g�1⇠
�
,1 = 0 ! ⇠

1
,1 = 0 (10.27)

2) ↵ = 1, � = 2 g�2⇠
�
,1 + g1�⇠

�
,2 = 0 ! ⇠

1
,2 + sin2

✓⇠
2
,1 = 0

3) ↵ = � = 2 g22,µ⇠
µ + 2g�2⇠

�
,2 = 0 ! cos ✓⇠1 + sin ✓⇠2,2 = 0.

The general solution is

⇠
1 = Asin('+ a), ⇠

2 = Acos('+ a)cot✓ + b. (10.28)

Therefore a spherical surface admits three linearly independent Killing vectors, associated
to the choice of the integration constants (A, a, b).

10.3 Conserved quantities in geodesic motion

Killing vectors are important because they are associated to conserved quantities, which may
be hidden by an unsuitable coordinate choice.

Let us consider a massive particle moving along a geodesic of a spacetime which admits
a Killing vector ~⇠. The geodesic equations written in terms of the particle four-velocity
~U = �x↵

d⌧ read
dU

↵

d⌧
+ �↵

�⌫U
�
U

⌫ = 0. (10.29)

By contracting eq. (10.29) with ~⇠ we find

⇠↵

"
dU

↵

d⌧
+ �↵

�⌫U
�
U

⌫

#

=
d(⇠↵U↵)

d⌧
� U

↵d⇠↵

d⌧
+ �↵

�⌫U
�
U

⌫
⇠↵ . (10.30)

Since

U
↵d⇠↵

d⌧
= U

� d⇠�

d⌧
= U

� @⇠�

@x⌫

�x
⌫

d⌧
= U

�
U

⌫ @⇠�

@x⌫
, (10.31)

eq. (10.30) becomes
d(⇠↵U↵)

d⌧
� U

�
U

⌫

"
@⇠�

@x⌫
� �↵

�⌫⇠↵

#

= 0 , (10.32)

i.e.
d(⇠↵U↵)

d⌧
� U

�
U

⌫
⇠�;⌫ = 0 . (10.33)

Since ⇠�;⌫ is antisymmetric in � and ⌫, while U�
U

⌫ is symmetric, the term U
�
U

⌫
⇠�;⌫ vanishes,

and eq. (10.33) finally becomes

d(⇠↵U↵)

d⌧
= 0 ! ⇠↵U

↵ = const , (10.34)
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i.e. the quantity (⇠↵U↵) is a constant of the particle motion. Thus, for every Killing vector
there exists an associated conserved quantity.

Eq. (10.34) can be written as follows:

g↵µ⇠
µ
U

↵ = const . (10.35)

Let us now assume that ~⇠ is a timelike Killing vector. In section 10.1.2 we have shown that
the coordinate system can be chosen in such a way that ⇠µ = {1, 0, 0, 0}, in which case eq.
(10.35) becomes

g↵0⇠
0
U

↵ = const ! g↵0U
↵ = const . (10.36)

If the metric is asymptotically flat, as it is for instance when the gravitational field is gener-
ated by a distribution of matter confined in a finite region of space, at infinity g↵� reduces
to the Minkowski metric ⌘↵�, and eq. (10.36) becomes

⌘00U
0 = const ! U

0 = const . (10.37)

Since in flat spacetime the energy-momentum vector of a massive particle is p↵ = mcU
↵ =

{E/c,mv
i
�}, the previous equation becomes

E

c
= const , (10.38)

i.e. at infinity the conservation law associated to a timelike Killing vector reduces to the
energy conservation for the particle motion. For this reason we say that, when the metric
admits a timelike Killing vector, eq. (10.34) expresses the energy conservation for the particle
motion along the geodesic.

If the Killing vector is spacelike, by choosing the coordinate system such that, say, ⇠µ =
{0, 1, 0, 0}, eq. (10.34) reduces to

g↵1⇠
1
U

↵ = const ! g↵1U
↵ = const .

At infinity this equation becomes

⌘11U
1 = const ! p

1

mc
= const ,

showing that the component of the energy-momentum vector along the x
1 direction is con-

stant; thus, when the metric admit a spacelike Killing vector eq. (10.34) expresses momentum
conservation along the geodesic motion.

If the particle is massless, the geodesic equation cannot be parametrized with the proper
time. In this case the particle worldline has to be parametrized using an a�ne parameter
� such that the geodesic equation takes the form (10.29), and the particle four-velocity is
U

↵ = dx↵

d� . The derivation of the constants of motion associated to a spacetime symmetry,
i.e. to a Killing vector, is similar as for massive particles, reminding that by a suitable choice
of the parameter along the geodesic p

↵ = {E, p
i}.

It should be mentioned that in Riemannian spaces there may exist conservation laws
which cannot be traced back to the presence of a symmetry, and therefore to the existence
of a Killing vector field.
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10.4 Killing vectors and conservation laws

In Chapter 7 we have shown that the stress-energy tensor satisfies the “conservation law”

T
µ⌫

;⌫ = 0, (10.39)

and we have shown that in general this is not a genuine conservation law. If the spacetime
admits a Killing vector, then

(⇠µT
µ⌫);⌫ = ⇠µ;⌫T

µ⌫ + ⇠µT
µ⌫

;⌫ = 0. (10.40)

Indeed, the second term vanishes because of eq. (10.39) and the first vanishes because ⇠µ;⌫

is antisymmetric in µ an ⌫, whereas T
µ⌫ is symmetric.

Since there is a contraction on the index µ, the quantity (⇠µT µ⌫) is a vector, and according
to eq. (8.69)

V
⌫
;⌫ =

1p
�g

@

@x⌫

⇣p
�gV

⌫
⌘
, (10.41)

therefore eq. (10.40) is equivalent to

1p
�g

@

@x⌫

hp
�g (⇠µT

µ⌫)
i
= 0 , (10.42)

which expresses the conservation of the following quantity and accordingly, a conserved
quantity can be defined as

T =
Z

(x0=const)

p
�g

⇣
⇠µT

µ0
⌘
dx

1
dx

2
dx

3
, (10.43)

as shown in Chapter 7.
In classical mechanics energy is conserved when the hamiltonian is independent of time;

thus, conservation of energy is associated to a symmetry with respect to time translations.
In section 10.1.2 we have shown that if a metric admits a timelike Killing vector, with a
suitable choice of coordinates it can me made time independent (where now “time” indicates
more generally the x

0-coordinate). Thus, in this case it is natural to interpret the quantity
defined in eq. (10.43) as a conserved energy.

In a similar way, when the metric addmits a spacelike Killing vector, the associated
conserved quantities are indicated as “momentum” or “angular momentum”, although this
is more a matter of definition.

It should be stressed that the energy of a gravitational system can be defined in a non
ambiguous way only if there exists a timelike Killing vector field.

10.5 Hypersurface orthogonal vector fields

Given a vector field ~V it identifies a congruence of worldlines, i.e. the set of curves to
which the vector is tangent at any point of the considered region. If there exists a family
of surfaces f(xµ) = const such that, at each point, the worldlines of the congruence
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are perpendicular to that surface, ~V is said to be hypersurface orthogonal. This is
equivalent to require that ~V is orthogonal to all vectors ~t tangent to the hypersurface, i.e.

~t · ~V = 0 ! t
↵
V

�
g↵� = 0 . (10.44)

We shall now show that, as consequence, ~V is parallel to the gradient of f . As described
in Chapter 3, section 5, the gradient of a function f(xµ) is a one-form

d̃f ! (
@f

@x0
,
@f

@x1
, ...

@f

@xn
) = {f,↵}. (10.45)

When we say that ~V is parallel to d̃f we mean that the one-form dual to ~V , i.e. Ṽ !
{g↵�V � ⌘ V↵} satisfies the equation

V↵ = �f,↵ , (10.46)

where � is a function of the coordinates {xµ}. This equation is equivalent to eq. (10.44).
Indeed, given any curve x

↵(s) lying on the hypersurface, and being t
↵ = dx

↵
/ds its tangent

vector, since f(xµ) = const the directional derivative of f(xµ) along the curve vanishes, i.e.

df

ds
=

@f

@x↵

dx
↵

ds
= f,↵t

↵ = �
�1
V↵t

↵ = 0 , (10.47)

i.e. eq. (10.44).
If (10.46) is satisfied, it follows that

V↵;� � V�;↵ = (�f,↵);� � (�f,�);↵ (10.48)

= � (f,↵;� � f,�;↵) + f,↵�;� � f,��;↵ =

= � (f,↵,� � f,�,↵ � �µ
�↵f,µ + �µ

↵�f,µ) + f,↵�,� � f,��,↵

= V↵
�,�

�
� V�

�,↵

�
,

i.e.

V↵;� � V�;↵ = V↵
�,�

�
� V�

�,↵

�
. (10.49)

If we now define the following quantity, which is said rotation

!
� =

1

2
✏
�↵�µ

V[↵;�]Vµ , (10.50)

using the definition of the antisymmetric unit pseudotensor ✏
�↵�µ given in Appendix B, it

follows that
!
� = 0. (10.51)

Then, if the vector field ~V is hypersurface horthogonal, (10.51) is satisfied. Actually,
(10.51) is a necessary and su�cient condition for ~V to be hypersurface horthogonal; this
result is the Frobenius theorem.
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10.5.1 Hypersurface-orthogonal vector fields and the choice of co-
ordinate systems

The existence of a hypersurface-orthogonal vector field allows to choose a coordinate frame
such that the metric has a much simpler form. Let us consider, for the sake of simplicity, a
three-dimensional spacetime (x0

, x
1
, x

2).

Be S1 and S2 two surfaces of the family f(xµ) = cost, to which the vector field ~V is orthog-
onal. As an example, we shall assume that ~V is timelike, but a similar procedure can be
used if ~V is spacelike. If ~V is timelike, it is convenient to choose the basis vector ~e(0) parallel

to ~V , and the remaining basis vectors as the tangent vectors to some curves lying on the
surface, so that

g00 = g(~e(0),~e(0)) = ~e(0) · ~e(0) 6= 0 (10.52)

g0i = g(~e(0),~e(i)) = 0, i = 1, 2.

Thus, with this choice, the metric becomes

ds
2 = g00(dx

0)2 + gik(dx
i)(dxk), i, k = 1, 2 . (10.53)

The generalization of this example to the four-dimensional spacetime, in which case the
surface S is a hypersurface, is straightforward.

In general, given a timelike vector field ~V , we can always choose a coordinate frame such
that ~e(0) is parallel to ~V , so that in this frame

V
↵(xµ) = (V 0(xµ), 0, 0, 0) . (10.54)

Such coordinate system is said comoving. If, in addition, ~V is hypersurface-horthogonal,
then g0i = 0 and, as a consequence, the one-form associated to ~V also has the form

V↵(x
µ) = (V0(x

µ), 0, 0, 0) , (10.55)

since Vi = giµV
µ = gi0V

0 + gikV
k = 0.
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10.6 Appendix A

We want to show that eq. (10.8) is equivalent to eq. (10.9).

⇠↵;� = (g↵µ⇠
µ);� (10.56)

= g↵µ⇠
µ
;� = g↵µ

⇣
⇠
µ
,� + �µ

��⇠
�
⌘
,

hence

⇠↵;� + ⇠�;↵ = g↵µ

⇣
⇠
µ
,� + �µ

��⇠
�
⌘

(10.57)

+ g�µ

⇣
⇠
µ
,↵ + �µ

↵�⇠
�
⌘

= g↵µ⇠
µ
,� + g�µ⇠

µ
,↵ + (g↵µ�

µ
�� + g�µ�

µ
↵�) ⇠

�
.

The term in parenthesis can be written as

1

2
[g↵µg

µ� (g��,� + g��,� � g��,�) + g�µg
µ� (g↵�,� + g��,↵ � g↵�,�)]

=
1

2

h
�
�
↵ (g��,� + g��,� � g��,�) + �

�
� (g↵�,� + g��,↵ � g↵�,�)

i
(10.58)

=
1

2
[g�↵,� + g↵�,� � g��,↵ + g↵�,� + g��,↵ � g↵�,�]

= g↵�,�,

and eq. (10.57) becomes

⇠↵;� + ⇠�;↵ = g↵µ⇠
µ
,� + g�µ⇠

µ
,↵ + g↵�,�⇠

� (10.59)

which coincides with eq. (10.8).

10.7 Appendix B: The Levi-Civita completely antisym-
metric pseudotensor

We define the Levi-Civita symbol (also said Levi-Civita tensor density), e↵���, as an object
whose components change sign under interchange of any pair of indices, and whose non-zero
components are ±1. Since it is completely antisymmetric, all the components with two
equal indices are zero, and the only non-vanishing components are those for which all four
indices are di↵erent. We set

e0123 = 1. (10.60)

Under general coordinate transformations, e↵��� does not transform as a tensor; indeed,
under the transformation x

↵ ! x
↵0,

@x
↵

@x↵0
@x

�

@x�0
@x

�

@x�0
@x

�

@x�0 e↵��� = J e↵0�0�0�0 (10.61)

where J is defined (see Chapter 7) as

J ⌘ det

 
@x

↵

@x↵0

!

(10.62)
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and we have used the definiton of determinant.
We now define the Levi-Civita pseudo-tensor as

✏↵��� ⌘
p
�g e↵��� . (10.63)

Since, from (8.26), for a coordinate transformation x
↵ ! x

↵0

|J | =
p
�g0p
�g

, (10.64)

then

✏↵��� ! ✏↵0�0�0�0 = sign(J)
@x

↵

@x↵0
@x

�

@x�0
@x

�

@x�0
@x

�

@x�0 ✏↵��� . (10.65)

Thus, ✏↵��� is not a tensor but a pseudo-tensor, because it transforms as a tensor times the
sign of the Jacobian of the transformation. It transforms as a tensor only under a subset of
the general coordinate transformations, i.e. that with sign(J) = +1.

Warning: do not confuse the Levi-Civita symbol, e↵���, with the Levi-Civita pseudo-
tensor, ✏↵��� .


