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2.2 VECTORS
2.2.1 The traditional definition of a vector
Let us consider an n-dimensional manifold, and a generic coordinate transformation

x
i
0
= x

i
0
(xj), i

0
, j = 1, . . . , n . (2.16)

A contravariant vector
~V !O {V

i
}i=1,...n , (2.17)

where the symbol !O indicates that ~V has components {V µ
} with respect to a given frame

O, is a collection of n numbers which transform under the coordinate transformation (2.16)
as follows:
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j
. (2.18)

Notice that in writing the last term we have used Einstein’s convention. V i
0
are the com-

ponents of the vector in the new frame. If we now define the n⇥ n matrix

(⇤i
0
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, (2.19)

the transformation law can be written in the general form

V
i
0
= ⇤i

0
jV

j
. (2.20)

In addition, covariant vectors are defined as objects that transform according to the follow-
ing rule

Ai0 =
@x

j

@xi0
Aj = ⇤j

i0Aj , (2.21)

where ⇤j
i0 is the inverse matrix of ⇤i

0
j (see Box 2-D). This definition of a vector relies on

the choice of a coordinate system. However, we know that in Rn the vector can be defined
as a geometrical object (an oriented segment joining two points), without introducing a
coordinate frame. We shall now show that in a general manifold it is possible to define a
vector as a geometrical object, i.e. one that exists regardless of the coordinate system. Of
course, once a coordinate system is given we can associate to a vector its components with
respect to that sytstem and, when the frame is changed the vector components transform
as in Eq. 2.18. However, the vector itself does not change.
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The matrices ⇤i
j0 and ⇤i

0
j

Given a coordinate transformation x
i0 = x

i
0
(xj), or the inverse x

j = x
j(xi

0
), i

0
, j =

1, . . . , n, the matrices

⇤i
0
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@xj
(2.22)

and

⇤i
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i

@xj0
, (2.23)

are one the inverse of the other. Indeed
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0
k⇤

k
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@xk

@x
k

@xj0
=

@x
i
0

@xj0
= �

i
0

j0 . (2.24)

Note that: when we write ⇤i
0
j or ⇤i

j0 , the first index (i.e. the one on the left) refers
to the row of the matrix, the second to the column.

Box 2-D

A comment on notation

Here and in the following, we shall use indices with and without primes to refer to
di↵erent coordinate frames.
Strictly speaking, Eq. 2.16 should be written as

x
0i0 = x

0i0(xj), i
0
, j = 1, . . . , n , (2.25)

because the coordinate with (say) i0 = 1 belongs to the new frame, and is then di↵erent
from the coordinate with j = 1, belonging to the old frame. However, for brevity of
notation, we will omit the primes in the coordinates, keeping only the primes in the
indices.

Box 2-E

2.2.2 A geometrical definition
In order to define vectors as geometrical objects, we need to go by steps: firstly we shall
introduce the notions of paths and curves to define the tangent vectors to a curve at a given
point p. Then we shall introduce the directional derivative along a curve in p, which will
be shown to be in a ono-to-one correspondence with the vector tangent to the same curve
at the same point. This will allow us to give a definition of vectors that is independent of
the coordinate system.

Paths and curves

A path C is a connected series of points in a manifold. An example of path is shown in
Figure 2.12.
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�

Figure 2.12 Path on a manifold.

A curve is a mapping from an interval I = [a, b] ⇢ R to a path,

� : s 2 [a, b] 7! �(s) 2 C . (2.26)

Thus, a curve � associates a real number to each point of the path. We say that the curve

ℝs

s'
ℝ

Figure 2.13 Di↵erent parametrizations of the same path.

is a parametrization of the path C, and the variable s 2 [a, b] is called parameter of the
curve. The path is then the image of the real interval I in the manifold.

Given a coordinate system (x1
, . . . , x

n) defined in the open set of the mainfold containing
the path, we can express the curve � as a set of n real functions (x1(s), . . . , xn(s))

� : s 2 [a, b] 7! (x1(s), x2(s), . . . , xn(s)) . (2.27)

We say that the curve is Ck if the n functions are C
k.

If we change the parameter by a parameter transformation s
0 = s

0(s), the number
associated to a given point of the path changes, i.e. the curve changes (see Fig. 2.13);
therefore we get

�
0 : s

0
2 [a0, b0] 7! (x1(s(s0)), x2(s(s0)), . . . , xn(s(s0))) = (x01(s0), x02(s0), . . . , x0n(s0)) ,

(2.28)
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Figure 2.14 Curve on a manifold expressed as n real functions.

where x
01, x02 are new functions of s0. This is a new curve, although the path is the same.

Example

The position of a bullet shot by a gun in the 2-dimensional plane (x,z) is a path; when
we associate the parameter t (time) at each point of the trajectory, we define a curve;
if we change the parameter, say for instance the curvilinear abscissa, we define a new
curve.

Box 2-F

Tangent vector to a curve

Let us consider a regular (i.e., C1) curve � on a di↵erentiable manifold M, with parameter
�, and a point p 2 M belonging to the curve. Given a coordinate system (x1

, . . . , x
n), as

shown in Eq. 2.27 we can express the curve as a set of n real C1 functions (x1(�), . . . , xn(�))
(see Fig. 2.14).

The set of numbers
n

dx
1

d�
, . . . ,

dx
n

d�

o
are the components of the tangent vector to � in

p:

~V !O

⇢
dx

i

d�

�

i=1,...,n

. (2.29)

One must be careful not to confuse the curve with the path. In fact a path has, at any
given point, an infinite number of tangent vectors, all parallel, but with di↵erent lenghts,
corresponding to the di↵erent possible parametrizations of the path. A curve, instead, has
a unique tangent vector in any given point. Note also that there are curves that are tangent
to one another in p, and therefore have the same tangent vector (see Fig. 2.15).

Let us now consider a di↵erent coordinate system (x1
0
, . . . , x

n
0
). Since M is a di↵eren-
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Figure 2.15 Di↵erent curves having the same tangent vector.

tiable manifold, the functions (x1
0
(x1

, . . . , x
n), . . . , xn

0
(x1

, . . . , x
n)) are regular and invert-

ible in their domain. The components of the tangent vector in the new coordinate basis
become
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. (2.30)

For instance, if n = 2, x1
0
= x

1
0
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, x
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0
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2
0
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, x
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thus
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As expected, this is the same transformation as in Eq. 2.20 that was used to define a
contravariant vector in Sec. 2.2.1:

V
i
0
= ⇤i

0
jV

j
. (2.32)

The definition 2.29 of vector tangent to a curve in a given point still depends on the choice
of the coordinate system. In order to show that vectors are geometrical objects, i.e. objects
that do not depend on the coordinate frame, we need to define the directional derivatives
along a curve.

Directional derivatives along a curve

Let us consider a regular curve � on a di↵erentiable manifold M, with parameter �, and a
point p 2M belonging to the curve. Be U neighborhood of p. Let us also consider a real,
di↵erentiable function � defined in U ,

� : U ! R . (2.33)

Given a coordinate system (x1
, . . . , x

n), we can express � as a function on Rn, � =
�(x1

, . . . , x
n), and the curve � as a set of n real C1 functions (x1(�), . . . , xn(�)).

We define the directional derivative of � in p along the curve � as the real number

d�

d�
=

@�

@xi

dx
i

d�
. (2.34)
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Since the function � is totally arbitrary, we can rewrite this expression as

d

d�
=

dx
i

d�

@

@xi
, (2.35)

where d

d�
is the directional derivative operator in p, acting on the space of the C1 functions

in U :
d

d�
: C

1(U) ! R . (2.36)

An important remark

Eq. 2.35 establishes a one-to-one relation between the directional derivative d

d�
along

a curve in p, and the components of the tangent vector to the same curve in p, dx
i

d�
.

Let us consider a di↵erent coordinate frame defined in U , (x1
0
, . . . , x

n
0
). As discussed in

the previous Section, the functions (x1
0
(x1

, . . . , x
n), . . . , xn

0
(x1

, . . . , x
n)) are regular and

invertible in their domain. We can then write

@�

@xi0
dx

i
0

d�
=

✓
@�

@xj

@x
j

@xi0

◆ 
@x

i
0

@xk

dx
k

d�

!
=

@�

@xi

dx
i

d�
=

d�

d�
. (2.37)

Therefore the value of the directional derivative of a function does not depend on the choice
of the coordinate system, i.e. the directional derivative operator is a geometrical object.

We shall now show that the space of directional derivatives along a curve on a di↵erential
manifold, satisfies the axiomatic definition of a vector space, which is the following 1.

A vector space is a set V on which two operations are defined:

1. Vector sum
(~v, ~w) ! ~v + ~w (2.38)

2. Multiplication by a real number:
(a,~v) ! a~v (2.39)

(where ~v, ~w 2 V , a 2 R), which satisfy the following properties:

• Associativity and commutativity of vector sum

~v + (~w + ~u) = (~v + ~w) + ~u (2.40)

~v + ~w = ~w + ~v . 8~v, ~w, ~u 2 V . (2.41)

• Existence of a zero vector, i.e. of an element ~0 2 V such that

~v +~0 = ~v 8~v 2 V . (2.42)

• Existence of the opposite element: for any ~w 2 V there exists an element ~v 2 V such
that

~v + ~w = ~0 . (2.43)

1To be precise, what we are defining here is a real vector space, but we will omit this specification,
because in this book only real vector spaces will be considered.
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• Associativity and distributivity of multiplication by real numbers:

a(b~v) = (ab)~v

a(~v + ~w) = a~v + a~w (2.44)

(a+ b)~v = a~v + b~v 8~v 2 V , 8 a, b 2 R, .

• Finally, the real number 1 must act as an identity on vectors:

1~v = ~v 8~v . (2.45)

Let us now go back to directional derivatives, and consider two curves on a di↵erential
manifold M passing through the same point p. Given the coordinate system (x1

, . . . , x
n),

the curves are described by the functions x
i = x

i(�) and x
i = x

i(µ). The directional
derivatives in p along these curves are

d

d�
=

dx
i

d�

@

@xi
,

d

dµ
=

dx
i

dµ

@

@xi
. (2.46)

Be a a real number. We define the following two operations on the space of directional
derivatives along the curves passing through p.

• Sum of two directional derivatives

d

d�
+

d

dµ
⌘

✓
dx

i

d�
+

dx
i

dµ

◆
@

@xi
. (2.47)

The numbers
⇣

dx
i

d�
+ dx

i

dµ

⌘
are the components of a new vector, which is tangent to

some curve through p. Therefore, there must exist a curve with a parameter, say, s,
such that in p

dx
i

ds
=

✓
dx

i

d�
+

dx
i

dµ

◆
, and

d

ds
=

dx
i

ds

@

@xi
=

d

d�
+

d

dµ
. (2.48)

• Product of the directional derivative d

d�
with the real number a

a
d

d�
⌘

✓
a
dx

i

d�

◆
@

@xi
. (2.49)

The numbers
⇣
a
dx

i

d�

⌘
are the components of a new vector, which is certainly tangent

to some curve in p. Therefore, there must exist a curve with parameter, say, s0, such
that in p

dx
i

ds0
=

✓
a
dx

i

d�

◆
, and

d

ds0
=

dx
i

ds0
@

@xi
= a

d

d�
. (2.50)

It is easy to verify that the operations of sum and multiplication by a real number defined
in Eqs. 2.47 and 2.49, respectively, satisfy the above properties. For instance:

• Commutativity of the sum:

d

d�
+

d

dµ
=

✓
dx

i

d�
+

dx
i

dµ

◆
@

@xi
=

✓
dx

i

dµ
+

dx
i

d�

◆
@

@xi
=

d

dµ
+

d

d�
. (2.51)
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• Associativity of multiplication by real numbers:

a

✓
b
d

d�

◆
= a

✓✓
b
dx

i

d�

◆
@

@xi

◆

=

✓
a

✓
b
dx

i

d�

◆◆
@

@xi
=

✓
ab

dx
i

d�

◆
@

@xi
= ab

d

d�
. (2.52)

• Distributivity of multiplication by real numbers:

a

✓
d

d�
+

d

dµ

◆
= a

✓
dx

i

d�

@

@xi
+ a

dx
i

dµ

@

@xi

◆
=

✓
a
dx

i

d�
+ a

dx
i

dµ

◆
@

@xi

=

✓
a
dx

i

d�

◆
@

@xi
+

✓
a
dx

i

dµ

◆
@

@xi
= a

d

d�
+ a

d

dµ
. (2.53)

• The zero element is the vector tangent to the curve x
µ
⌘ const, which is simply the

point p.

• The opposite of the vector ~v tangent to a given curve is obtained by changing sign to
the parametrization

� ! �� . (2.54)

The proof of the remaining properties is analogous. Therefore, the set of all directional
derivatives on a point of a manifold form a vector space. We call this space the tangent
space in p to the manifold M, Tp . The directional derivative operator d

d�
2 Tp is then

a vector.

A basis for the space of directional derivatives

In any coordinate system (x1
, . . . , x

n) there are special curves, the coordinate lines. Along
these lines one of the coordinates is taken as parameter, while the others are constant (think
for example to the grid of cartesian coordinates). The directional derivatives along these
lines are

d

dxi
=

@x
k

@xi

@

@xk
= �

k

i

@

@xk
=

@

@xi
. (2.55)

Thus, the operator of directional derivative along the coordinate lines coincides with the
operator of partial derivative. Since, as shown in Eq. 2.35,

d

d�
=

dx
i

d�

@

@xi
, (2.56)

the generic directional derivative d

d�
is a linear combination of the directional derivatives

along the coordinate lines @

@xi ; therefore, these form a basis of the tangent space Tp, called
the coordinate basis associated with the coordinate system (x1

, . . . , x
n). The quantities

{
dx

i

d�
} are the components of the vector d

d�
in this basis.

Vectors as geometrical objects

As previously remarked, Eq. 2.35 establishes a one-to-one correspondence between the di-
rectional derivatives along the curves through p and the tangent vectors to the same curves
in p. Therefore, the tangent space Tp is also the space of the tangent vectors to the curves



Elements of di↵erential geometry ⌅ 37

in p. Since the directional derivative is independent of the choice of the coordinate system,
this correspondence shows that vectors are geometrical objects, i.e.

~V =
d

d�
. (2.57)

In a coordinate system (x1
, . . . , x

n) we can express this vector in the corresponding coordi-
nate basis using Eq. 2.56:

~V =
dx

i

d�

@

@xi
= V

i
@

@xi
(2.58)

where V
i = dx

i

d�
are the components of ~V in the coordinate basis { @

@xi }.

If we now apply d

d�
, i.e. ~V , to a generic function � we find

d�

d�
= ~V (�) = V

i
@�

@xi
, (2.59)

and this is the directional derivative of � along ~V .

Thus, vectors map functions to real numbers.

Note that this mapping is linear; indeed, given a function � = a�1 + b�2, with �1,�2

functions on U and a, b real numbers, from the linearity of the partial di↵erentiation operator
and from Eq. 2.59 it follows

V
i
@�

@xi
= aV

i
@�1

@xi
+ bV

i
@�2

@xi
= a~V (�1) + b~V (�2) , (2.60)

i.e

~V (a�1 + b�2) = a~V (�1) + b~V (�2) 8�1 ,�2 functions on U , 8 a, b 2 R . (2.61)

In conclusion, we have shown that a vector is a linear map which associates to any function
� the real number V

i @�

@xi .
It should be stressed that vectors do not belong to the manifold M: they belong to the

tangent space to M in p, Tp. If the manifold is Rn this distinction may be overlooked,
because the tangent space (at any point) coincides with Rn, but for a general manifold M
the two spaces are di↵erent. Indeed, a generic manifold is not a vector space. For example,
if the manifold is a sphere, we can not define the vectors as “arrows” on the sphere: they lie
in the tangent space, which is the plane tangent to the sphere at a given point. For more
general manifolds it is not easy to visualize Tp . In any event Tp has the same dimensions
as the manifold M.

We shall denote the vectors of the coordinate basis (associated with the coordinate
system

�
x
i
 
) as

~e(i) ⌘
@

@xi
(2.62)

(see e.g. Fig 2.17). To hereafter, we shall enclose within ( ) the indices that indicate the
vector of a given basis, not to be confused with the index that indicates the components of
the vector. The only exception is the operator of partial derivative, @

@xi . For instance e
1

(2)

indicates the component 1 of the basis vector ~e(2).

Any vector ~A at a point p, can be expressed as a linear combination of the basis vectors

~A = A
i
~e(i) , i.e. ~A !O {A

i
} (2.63)
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p

Figure 2.16 Tangent space Tp to a manifold M.

where the numbers A
i are the components of ~A with respect to the chosen basis. If we

make a coordinate transformation, the new set of coordinates (x1
0
, x

2
0
, . . . , x

n
0
) defines a

new coordinate basis {~e(i0)} ⌘
@

@xi0 . Expanding the vector ~A in the new basis,

~A = A
j
0
~e(j0), (2.64)

where Aj
0
are the components of ~A with respect to the new basis ~e(j0). Since the vector ~A is

a geometrical object, i.e. it is independent on the coordinate frame, the following equality
must hold

A
i
~e(i) = A

i
0
~e(i0). (2.65)

From Eq. 2.32 we know how to express Ai
0
as functions of the components of ~A in the old

basis, i.e. Ai
0
= ⇤i

0
jA

j , and replacing these expressions into Eq. 2.65 we find

A
i
~e(i) = ⇤i

0
jA

j
~e(i0) (2.66)

where ⇤i
0
j =

@x
i0

@xj . By relabelling the dummy indices this equation can be written as

h
~e(j) � ⇤i

0
j~e(i0)

i
A

j = 0 . (2.67)

Since Eq. 2.67 must be satisfied for any non-vanishing vector ~A, the term in square brakets
must vanish, i.e.

~e(j) = ⇤i
0
j~e(i0) . (2.68)

Multiplying both members by ⇤j
k0 and remembering that ⇤j

k0⇤i
0
j = �

i
0

j0 (see Eq. 2.24), we
find

⇤j
k0~e(j) = ⇤j

k0⇤i
0
j~e(i0) = �

i
0

k0~e(i0) , (2.69)

i.e.
~e(k0) = ⇤j

k0~e(j). (2.70)

It should be noted that we do not need to choose necessarily a coordinate basis. We may
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 x2

x1 = const

= const

e(2)
e(1)

 x2

 x1

e(1)

e(2)

Figure 2.17 Coordinate basis of the tangent space

choose a set of independent basis vectors that are not tangent to the coordinate lines. In
this case the matrix which transforms one basis to another has to be assigned, since it can
not be written in terms of partial derivatives of a coordinate transformation.
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Let us consider the 4-dimensional flat spacetime of Special Relativity, restricted to the
(x� y) plane, where we choose the coordinates (ct, x, y) ⌘ (x0

, x
1
, x

2). The coordinate
basis is the set of vectors

@

@x0
= ~e(0) !O (1, 0, 0) ,

@

@x1
= ~e(1) !O (0, 1, 0) , (2.71)

@

@x2
= ~e(2) !O (0, 0, 1) ,

or, in a compact form
e
�

(↵)
= �

�

↵
(2.72)

(the superscript � now indicates the �-component of the ↵-th vector). Let us consider
the coordinate transformation (x0

, x, y) ! (x0
, r, ✓)

8
<

:

x
0 = x

0
0

x
1 = r cos ✓

x
2 = r sin ✓,

i.e. x0
0
= x

0, x1
0
= r, x2

0
= ✓. The basis vectors transform according to Eq. 2.70, i.e.

~e(µ0) = ⇤↵
µ0~e(↵) , where ⇤↵

µ0 =
@x

↵

@xµ0 . (2.73)

The matrix ⇤↵
µ0 written for the coordinate transformation 2.73 is

⇤↵
µ0 =

0

@
1 0 0
0 cos ✓ �r sin ✓
0 sin ✓ r cos ✓

1

A . (2.74)

Remember that the first index (↵ in this case) indicates the row of the matrix, and the
second (µ0) indicates the column. The new coordinate basis therefore is

8
><

>:

~e(00) = ⇤↵
00 ~e(↵) = ~e(0)

~e(10) ⌘ ~e(r) = ⇤↵
10 ~e(↵) = cos ✓~e(1) + sin ✓~e(2)

~e(20) ⌘ ~e(✓) = ⇤↵
20 ~e(↵) = �r sin ✓~e(1) + r cos ✓~e(2) .

(2.75)

Box 2-G


